CITY OF HOUSTON

DEPARTMENT OF PUBLIC WORKS AND ENGINEERING OFFICE OF CITY ENGINEER
 TRAFFIC AND TRANSPORTATION SECTION WASTEWATER OPERATIONS SECTION WATER ENGINEERING SECTION
 FINANCE SECTION

SUMMARY OF
 TECHNICAL REVIEW COMMITTEE MEETING AND RECORD OF DECISIONS AND ACTION ITEMS

DATE PREPARED:
PROJECT TITLE:

WBS NO.:
DESIGN CONSULTANT:
SUPERVISING ENGINEER:
TRC DATE:

January 7, 2015
TIRZ 17
Memorial Drive West Mobility and Drainage Improvements Project WBS No. T-17000-0031B-7

Lockwood, Andrews \& Newnam, Inc.
Thomas Artz, PE
December 1, 2015

Attendees:
City of Houston:

Tommy Artz	Joaquin Lopez	Mazen Abdulrazzak
T. Rebagay	JoAnne Kamman	Kent Wu
Mitchell Ramon	Gary Hill	Mohd Warrad

Lockwood. Andrews \& Newnam, Inc.:
Muhammad Ali Derek St. John
Ricky Gonzalez

I. Purpose

To review and discuss the recommendations provided by the engineering consultant, make decisions and provide directives. The recommendations are detailed in the Preliminary Engineering Report (PER) titled, "Memorial Drive Mobility and Drainage Improvements Project Preliminary Engineering Report", dated October 2015, prepared by Lockwood, Andrews \& Newnam, Inc.

The purpose of the Memorial Drive Project is to Improve Mobility, Safety, Drainage Deficiencies, and Quality of Life.

The project proposes to improve the Mobility and Safety by converting the existing 4 -lane asphalt open ditch roadway to a 4 -lane concrete curb and gutter section with a raised median. The project will require full roadway reconstruction of Memorial Drive, from the northbound Beltway 8 frontage road to Tallowood Rd. As part of the roadway reconstruction, the aging or deficient public utilities shall be replaced and private utilities shall be evaluated and relocated or replaced as necessary.

The project proposes to improve Drainage Deficiencies with the installation of reinforced concrete storm sewer boxes; ranging from $10^{\prime} \times 5^{\prime}$ to $10^{\prime} \times 10^{\prime}$, which will result in increased conveyance and storage, an increase in storm level protection, reduction in overland flow leaving the project area, reduction in roadway ponding and reduction in surrounding area residential flooding.

The project proposes to improve Quality of Life by installing 8 -foot wide shared use paths along both sides of the Memorial Drive project corridor, replacing existing traffic signals, providing ADA compliant sidewalks and wheel chair ramps, and installing hardscape and softscape features along the project.

II. Project Background

A. Introduction

Lockwood, Andrews \& Newnam, Inc. (LAN) was retained by the Tax Increment Reinvestment Zone No. 17 (TIRZ 17) to perform a Preliminary Engineering Study for Memorial Drive Mobility and Drainage Improvements Project. In addition to the general mobility improvement, another important objective is to address documented drainage issues in the immediate area. The Memorial Drive Mobility and Drainage project was identified in the City of Houston (City) approved TIRZ17 Project Plan and Capital Improvement Plan (CIP No. T-1717).

B. October 2015 PER Findings \& Recommendations

Three main roadway improvement alternatives were considered and analyzed. The impacts of each alternative to existing right-of-way, access management, pedestrian amenities, tree inventories, and underground utilities were considered. The alternative selected is the most optimal solution based on benefit, cost and constructability. It will involve complete reconstruction of Memorial Drive, within the existing ROW, with the addition of sub-surface, in-line detention. The recommended proposed improvement will improve overall mobility and safety, drainage deficiencies, and quality of life.

The following recommendations are based on the results from the preliminary geometric evaluation and condition assessment, and drainage analysis:

Roadway:
 Existing:

Centered within an existing 100^{\prime} right-of-way. Memorial Drive is an existing, undivided 44 -foot asphalt roadway with a combination of shallow open ditches and curb and gutter sections; with two 11 -foot lanes in each direction, from the northbound Beltway 8 intersection, east to Tallowood Rd. Memorial Drive is currently classified as a major thoroughfare per the 2014 City Major Thoroughfare and Freeway Plan (MTFP). The posted speed limit along Memorial Drive is 35 mph within the project limits. Existing sidewalks are 4 -feet wide and discontinuous along the project alignment.

There are two (2) existing signalized intersections along the project limits; Beltway 8 frontage road and W . Bough/Broken Bough intersections. There are also eight (8) unsignalized intersection along the project limits. The City Pavement Condition Rating (PCR) scores along the project alignment vary from the mid 60's to the mid 70 's.

Proposed:

The Recommended Alternate I proposes a 4-11-foot wide lanes, two way concrete curb and gutter roadway divided by a 24 -foot wide raised median with left turn lanes at each median opening. Per the 2015 COH IDM the pavement will be 11 -inches thick concrete. The median opening locations were based on an access management study and feedback from the public.

Proposed 8 -foot wide Shared Use Paths will be constructed along both sides of Memorial Drive. The proposed Shared Use Path, along the south side of Memorial Drive, is intended to tie into the future TXDOT shared use path project from Terry Hershey Park to the southeast corner of the Belway 8 nothbound frontage road and Memorial Drive. There will be minmum 4 -foot buffer space separating the roadway from the shared use paths. ADA compliant wheel chair ramps will also be constructed at both signalized intersections.

Both signalized intersections will up replaced to meet current City of Houston criteria.
No additional ROW is required for the proposed Memorial Drive project with the exception of a $25^{\prime} \times 25^{\prime}$ comer clip at the northeast comer of Memorial Drive and Beltway 8 northbound frontage road, and a $20^{\prime} \times 20^{\circ}$ corner clip at the northwest corner of Memorial Drive and W. Bough Lane. These comer clips are required for proposed sidewalk continuity, ADA compliant pedestrian ramps, and proposed traffic signal improvements.

Drainage:

Existing:
The entire study area is part of the W153-00-00 watershed and is generally drained by roadside ditches and storm sewers existing along the project alignment, ultimately out-falling to W153-00-00. The western limits of the project from W. Bough LaneBroken Bough Drive to Beltway 8 drain to the Beltway 8 storm sewer trunkline before continuing downstream to Buffalo Bayou. A Regional Drainage Study performed in 2012, then updated in 2014, documented significant deficiencies within the watershed. Significant structural flood damage was reported in the April 2009 rain event as well as the more recent May 2015 rain event. The existing Memorial Drive Drainage System does not currently meet the City's $2-y r$ or $100-\mathrm{yr}$ drainage criteria. Flooding is partially due to the limited capacity of the Memorial Drive drainage infrastructure and overflow from W153 itself. At the peak of a major rain event, W153 becomes overwhelmed and overland flows into Memorial Drive ROW from W153 via adjacent properties, thus putting adjacent properties at risk of structural flooding. The capacity of the Memorial Drive crossing at W153 is further reduced by the significant tailwater in Buffalo Bayou. Additionally, the area south of Memorial Drive is inundated due to the Buffalo Bayou $100 y r$ floodplain. Neither of these issues can be resolved by the local drainage improvements proposed as part of the roadway project.

Proposed:

Five (5) drainage improvements options were evaluated for the project. The recommended Option I is designed to meet the City's 2 -year criteria and maximize the benefit of the drainage improvements, while minimizing impacts to W153 and adjacent properties. The proposed drainage option does not change the existing drainage patterns of the current Memorial Drive system. A proposed single $10^{\prime} \times 10^{\prime} \mathrm{RCB}$ will be installed from W. Bough/Broken Bough to Beltway 8. Dual $10^{\prime} \times 5^{\prime}$ RCB's will be installed from W. Bough/Broken Bough to Boheme. A smaller $10^{\prime} \times 5^{\prime}$ box is required at the Boheme intersection, so as to not impact an existing 48 -inch sanitary sewer crossing. Dual $10^{\prime} \times 10^{\prime} \mathrm{RCB}$'s will continue from east of Boheme to W 153 . Restrictors are proposed at the Beltway 8 and W153 outfalls to maintain or reduce existing flow rates and water surface elevations. Throughout the dual RCB's, equalizers will be installed to properly convey flows.

Option I results in a net sub-surface detention volume of approximately $12(t)$ acre-feet. The project will match or lower flow rates to the receiving storm sewer. This option will also provide a 10 -year level of protection.

Public Utilities

A. Water lines:

The project area is serviced by a 16 -inch ductile iron waterline that runs primarily along the southern ROW of Memorial Drive, from east of Beltway 8 , for the extent of the project. This line was installed in 1995 and is not recommended to be replaced.

A 12 -inch asbestos concrete (AC) water line located at Beltway 8 and continues east to tie into the 16 -inch ductile iron water line was installed in 1969 and is recommend to be replaced due to its age and material.

There are seven (7) water line crossings that run perpendicular to Memorial Drive, ranging in size from 8 -inch, 12 -inch and 16 -inch. All water line crossings are recommended to be replaced due to pipe material, conflicts with proposed improvements, and to eliminate any future water line projects that may impact the proposed future roadway.

New fre hydrants will be installed per City spacing requirements. The existing fire hydrants will be removed and salvaged, whenever possible, to reduce costs.

B. Sanitary Sewer:

There are four (4) santary sewer lines that run parallel to Memorial Drive: A 48 -inch gravity line, a 15 -inch gravity line, a 12 -inch gravity line and a 10 -inch gravity line. The existing 48 -inch line, installed in 1997 crosses Memorial Drive at Boheme and traverses east along the northern side of Memorial Drive to W153. It is not recommended to replace this line. The 15 -inch polyethylene line is located in back lot sanitary sewer easements between Beltway 8 and Boheme. It is not recommended this line be replaced. The 12 -inch line runs along the noth/east ROW from approximately Old Oaks Drive and Boheme Drive. For the first 290 feet, the pipe was replaced in 1999 using polyethylene pipe. The remaining 285 feet is made of unreinforced concrete that was
installed in 1960. It is recommended that only the older 285 feet of the sanitary sewer line be replaced. The 10 -inch line runs along the north/east ROW between Huntingwick Drive and Boheme Drive. This extra strength concrete line rums parallel to the 12 -inch line and was installed in 1966. It is recommended that this line be replaced due to its age and pipe material. During detailed design, LAN will study the option of combining the 12 -inch and 10 -inch lines into one single line.

There are ten (10) sanitary sewer line crossings that run perpendicular to Memorial Drive. They range in size from 8 -inch to 24 -inch. Seven (7) lines were installed in the 1950's and 1960's and CCTV footage depicted irregularities in the lines. Therefore, it is recommended that these seven (7) sanitary sewer crossings be replaced. The remaining three (3) lines are $1 \sim 6$-inch ductile iron force main; 1~6-inch cast iron force main, and 1~10-inch ductile iron force main, installed in the 1970's and 1980's. The 6 -inch cast iron line is in conflict with proposed improvements and is recommended to be replaced. The 6 -inch ductile iron line is also recommended to be replaced due to its age and pipe material.

Traffic Signals

The two existing traffic signals at Beltway 8 and West Bough/Broken Bough will be replaced to meet current City standards.

Private Utilities

CenterPoint Energy has underground gas lines, underground conduits and overhead electric lines. Southwestern Bell Company (SBC or AT\&T) has underground cables fiber optic cables, and duct banks. and PVC conduits in the project limits. Coordination with private utility entities will be conducted early in the design process as needed.

Existing Trees:

Approximately 293 existing trees are located within the construction area of the project. 75 trees will be impacted by the project resulting in 393 replacement inches. Landscaping plans and tree protection plans will be necessary in Phase II to comply with City Tree Ordinance.

Geotechnical Study:

The geotechnical report by Aviles Engineering recommends a rigid concrete pavement thickness of 11 -inches with an 8 -inch lime stabilized subgrade, consistent with the latest City IDM requirements for a 50 -year life span pavement.

Environmental Site Assessment:

The Phase I ESA conducted by Aviles Engineering identified seven (7) Recognized Environmental Concerns (REC). Research found a fault line along the project limits, but Aviles' site reconnaissance found no evidence of a fault line. A detailed Phase II ESA is recommended during detailed design along with a fault study to confirm if a fault line exists.

Right-of-way/Easement Acquisition:

No additional ROW is required for the proposed Memorial Drive project with the exception of a $25^{\prime} \times 25^{\prime}$ comer clip at the northeast comer of Memorial Drive and Beltway 8 northbound frontage road, and a $20^{\prime} \times 20^{\prime}$ corner clip at the northwest comer of Memorial Drive and W. Bough Lane. These comer clips are required for proposed sidewalk continuity, ADA compliant wheel chair ramps and proposed traffic signal improvements.

Project Coordination:

Project coordination will continue throughout the final design with the City of Houston, TIRZ 17 , TxDOT, METRO, Harris County Toll Road Authorty, Haris County Flood Control District, adacent property owners, and several private utility entites. Coordination meetings will be scheduled with the City of Houston as needed throughout the design phase to coordinate design. Upon completion of 60% and 90% design, drawings will be submitted to the City Engineer's Office for review and approval. Early coordination with private utility entities will also be conducted in design.

Traffic Control:

The traffic control plan and construction sequencing will require two main phases to minimize disruption to the traveling public, pedestrians, and adjacent properties. During the first construction phase, the south half of the project will be constructed including storm sewer boxes, and concrete pavement. Temporary pavement along the north side of Memorial Drive will need to be installed to accommodate one lane in each direction, along with a continuous two way left turn lane. The
second phase of construction will move traffic to the newly constructed pavement and maintain the same three lane configuration, then complete the construction of the remaining items along the north side of the project.

Lighting Landscaping:

Standard City Street lighting will be installed along the project. A detailed landscaping and pedestrian lighting plan will also be developed during construction. These improvements are meant to promote a pedestrian friendly environment along the proposed project corridor.

C. TRC Decisions and Directives

1. LAN will provide 11 -foot lanes during construction to accommodate bus traffic.
2. LAN to revise design to reflect \mathcal{B}-foot wide shared-use paths on both sides of Memorial Drive due to the long distances between legal street crossing locations. This will provide the north and south side neighborhoods an equal opportunity to utilize these amenities.
3. Use High Early strength concrete at all intersections,
4. The 100 -year storm event City Criteria cannot be met due to W153's limited capacity and back water from Buffalo Bayou. A regional solution is needed for the area but this is beyond the project's scope.
5. TIRZ 17 will handle the ROW acquisition for corner clips.
6. LAN will work with planning department to determine if there is a need for utility stubouts for the Rebuild Houston project at Memorial Bend subdivision.
7. LAN will do a sight distance analysis at each intersection to evaluate if there are sign distance issues.

Based on the above directives and conclusions, the engineering consultant on behalf of TIRZ 17 , will proceed with final design of the Memorial Drive Mobility and Drainage Improvements Project. Please contact Muhammad Ali at 713-266-6900, should this summary be inconsistent with the TRC findings and decisions.

City of Houston/PWE
Engineering Branch

Distribution:

CITY OF HOUSTON:

Tommy Artz Yea	Raymond Ortiz	Braxton R. Coles	Mazen Abdulrazz
Patricia Campbella	Raghavender Nednur	Arthur Morris	Ravi Kaleyatodi
Russell Vunam	Reza Arti	Tim Vu :	T. Rebagay

Daniel Menendez
TIRZ 17:
Scott Bean, Executive Director

Lockwood, Andrews \& Newnam. Inc:	
Muhammad Ali	Ricky Gonzalez
Derek St. John	Brian Whiney

WBS NO. N-T17000-031B-7
CIP NO. T-1717
Prepared for

MEMORIAL CITY REDEVELOPMENT AUTHORITY TAX INCREMENT REINVESTMENT ZONE NO. 17 (TIRZ No. 17)

Prepared by

2925 Briarpark, Suite 400
Houston, Texas 77042
LOCKWOOD, ANDREWS \& NEWNAM, INC.
FIRM NO. 2614

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 1
1.1 Project Authorization. 1
1.2 Statement of the Problem$\ldots .1$
1.3 Project Location 1
1.4 Scope of Work. 2
1.5 Existing Condition 2
1.6 Town Hall Meeting 3
1.7 Findings from Phase I Preliminary Engineering and Analysis 3
1.7.1 Evaluation of Roadway Improvement Alternatives. 3
1.7.1.1 Sidewalks 3
1.7.1.2 Traffic Signals4
1.7.1.3 Right-of-way Acquisition 4
1.7.1.4 Traffic Control Plans 5
1.7.2 Evaluation of Drainage Improvements 5

1.7.3 Evaluation of Public Utilities Improvements| . .6 |
| :--- |
| .. |

1.7.3.1 Water Lines 6
1.7.3.2 Sanitary Sewer Lines 6
1.7.4 Evaluation of Landscaping Alternative 7
1.7.5 Street Lighting .7
1.7.6 Existing Tree Impacts7
1.7.7 Geotechnical Study
7
1.7.8 Environmental Site Assessment
7
7
1.7.9 Agency Coordination
1.7.9 Agency Coordination 8
1.9 Estimated Construction Cost 8
2.0 INTRODUCTION 9
2.1 Project Authorization. 9
2.2 Statement of the Problem 9
2.3 Project Location 10
2.4 Scope of Work 12
2.5 Existing Conditions 12
2.5.1 Roadway 12
2.5.2 Land Use 13
2.5.3 Drainage 13
2.5.4 Existing Water Lines 14
2.5.5 Existing Sanitary Sewer Lines. 14
2.5.6 Existing Private Utilities 15
2.5.6.1 Existing CenterPoint Energy Gas Facilities 15
2.5.6.2 Existing CenterPoint Energy Electric Facilities 15
2.5.6.3 Existing ATT Facilities 15
2.6 Existing Tree Impacts 16
2.7 Geotechnical Study 16
.8 Environmental Site Assessment 16
2.9 Agency Coordination 16
3.0 ROADWAY ASSESSMENT AND RECOMMENDATIONS 17
3.1 Design Criteria 17
3.2 Potential Improvement and Recommended Alternatives 17
3.3 Driveways and Pedestrian Facilities 18
.4 Right of Way Requirements. 19
3.5 Traffic Control Plan and Construction Sequencing. 19
3.6 Landscaping Alternatives22
3.7 Street Lighting. 22
3.8 Recommended Roadway Improvements 22
4.0 TRAFFIC ANALYSIS AND RECOMMENDATIONS 23
4.1 Background 23
.2 Field Investigation and Data Collection 23
4.2.1 Existing Roadway Geometry. 23
4.2.2 Existing Adjacent Land Use and Accessibility 24
4.2.3 Existing Traffic Signals 24
4.2.4 Existing Traffic Volumes 24
4.2.5 Existing Pedestrian Volumes 24
4.2.6 Existing Transit Service. 25
4.3 Methodology 25
4.4 Existing Condition Assessment 25
4.4.1 Intersection Delays 25
4.4.2 Crash Analysis.... 25
.5 Public Meetings 27
4.6 Analyzed Alternatives and Traffic Growth 27
4.6.1 No Build Condition 27
4.6.2 Build Condtion 27
4.6.3 Opening Year and Future Year Traffic Growth 28
4.7 Traffic Analysis - A.M. Peak Hour 28
4.7.1 2015 A.M. Peak - Existing Condition 28
4.7.2 2016 A.M. Peak - No Build Condition 28
4.7.3 2016 A.M. Peak - Build Condition 28
4.7.4 2030 A.M. Peak - No Build Condition 28
4.7.5 2030 A.M. Peak - Build Condition 29
4.8 Traffic Analysis - P.M. Peak Hour 35
4.8.1 2015 P.M. Peak - Existing Condition 32
4.8.2 2016 P.M. Peak - No Build Condition 32
4.8.3 2016 P.M. Peak - Build Condition 32
4.8.4 2030 P.M. Peak - No Build Condition32
4.8.5 2030 P.M. Peak - Build Condition 32
4.9 Conclusion and Recommendations 36
5.0 DRAINAGE ANALYSIS AND RECOMMENDATIONS 37
5.1 Background. 37
5.2 Scope 37
5.3 Design Criteria. 37
5.4 Existing Condition Analysis... 38
5.4.1 Analysis Extents 38
5.4.2 Model Schematic 38
5.4.3 Tailwater/Boundary Conditions 38
5.4.4 Hydrology 39
5.4.4.1 Rainfall 39
5.4.4.2 Infiltration and Losses 39
5.4.4.3 Drainage Areas 39
5.4.4.4 Impervious Cover 39
5.4.5 Hydraulics 39
5.4.6 Analysis Results 39
5.4.6.1 2-Year Event 39
5.4.6.2 100-Year Event 40
5.4.7 Existing System Assessment 40
5.5 Potential Drainage Impacts 41
5.6 Proposed System Design 42
5.7 Proposed Conditions Analysis. 43
5.7.1 Hydrology. 43
5.7.1.1 Drainage Areas 43
5.7.1.2 Impervious Cover 43
5.7.2 Hydraulics 43
5.7.2.1 Option I 43
5.7.2.2 Option II 44
5.7.2.3 Option III 44
5.7.2.4 Option IV 44
5.7.2.5 Option V 45
5.7.3 Alteernative Comparative Results 45
5.7.4 Recommended Drainage System 46
5.7.4.1 2-Year Event 46
5.7.4.2 100-Year Event 46
5.7.5 Cost Estimate Analysis. 47
5.8 Conclusion 47
6.0 PUBLIC AND PRIVATE UTILITIES ASSESSMENT AND RECOMMENDATIONS 48
6.1 Design Criteria 48
6.2 Regulatory Agencies48
6.3 Recommended Public Utility Improvements 48
6.3.1 Recommended Water Line Improvements. 49
6.3.2 Recommended Sanitary Sewer Improvements 49
7.0 CONCLUSION 52
LIST OF TABLES
Table 2.1 - Existing Private Utility Contacts 14
Table 2.2 - Existing Private Utilities for Memorial Drive15
Table 4.1 - Existing Roadway Geometry for Memorial Drive Cross-Streets 23
Table 4.2 - LOS Criteria for Signalized and Unsignalized Intersections 25
Table 4.3 - Number of Crashes at Memorial Drive Intersections by Crash Type in 2014 26
Table 4.4 - Annualized Growth Rate Calculations 28
Table 4.5 - Summary of MOE's during A.M. Peak Hour by Alternative 30
Table 4.6 - Summary of MOE's during P.M. Peak Hour by Alternative 34
Table 5.1 - Memorial Drive System Bondary Conduit Elevations 38
Table 5.2 - Alternative Comparative Results 45
Table 5.3 - Alternative Comparison Results Matrix 46
Table 5.4 - Memorial Drive Outfall Discharges47
LIST OF FIGURES
Figure 2.1-Memorial Drive Way Existing Typical Section 13
Figure 4.1 - Above-ground Conduit on Memorial Drive Overpass 24
Figure 4.2 - Crashes at Signalized/Unsignalized Intersections on Memorial Drive in 2014 26
Figure 5.1 - Memorial Drive Approximate Existing Roadway Profile 41

Figure 5.2 - Impact of Increase in Roadway Profile \qquad44

LIST OF EXHIBITS

Exhibit 1.1 - Project Location Map .. 1
Exhibit 1.2 - Memorial Drive between Beltway 8 and West Bough lane (looking west) 2
Exhibit 1.5 - Alternative I-20'-24' Median (Recommended) ... 5
Exhibit 2.1 - Project Vicinity Map .. 10
Exhibit 2.2 - TIRZ 17 Boundary Limits .. 11
Exhibit 2.3 - Memorial Drive North of Huntingwick (Looking Northwest) 13
Exhibit 3.1 - Alternative I Typical Section ... 19
Exhibit 3.2 - Alternative II Typical Section .. 20
Exhibit 3.3 - Alternative III Typical Section ... 21
Exhibit 6.1 - Proposed Sanitary Sewer Replacement

APPENDICES

APPENDIX A - Construction Cost Estimate

- Appendix A. 1 Construction Cost Estimate Recommended Project

APPENDIX B - 30\% Design Drawings

- Appendix B. 1 Plan and Profile Drawings

APPENDIX C - Drainage

- Exhibit 3.1 - Project/Analysis Extent
- Exhibit 3.2 - Existing System Results - 2 yr
- Exhibit 3.3 - Existing System Results - 100yr
- Exhibit 3.4 - Impervious Cover
- Exhibit 3.5 - Recommended System Results - $2 y r$
- Exhibit 3.6 - Recommended System Results - 100yr
- Exhibit 3.7 - Recommended System Results - 2 yr
- Exhibit 3.8 - Recommended System Results - 2 yr
- Exhibit 3.9 - No Adverse Impact - Proposed
- Figure 1 - 2-Year WSEL Profile - TCW System
- Figure 2 - 100-Year WSEL Profile - TCW System
- Figure 3 - TCW Outfall to IH 10 Discharges (2-yr)
- Figure 4 - TCW Outfall to IH 10 Discharges (100-yr)

APPENDIX D - Traffic

- Appendix D. 1 24-Hour Traffic Volumes
- Appendix D. 2 Turning Movement Counts
- Appendix D. 3 Synchro Summary Table
- Appendix D. 4 Site Photographs
- Appendix D. 5 Existing Traffic Signal Layouts
- Appendix D. 6 Proposed Traffic Signal Layouts
- Exhibit D. 1 Turning Movements by Approach (Existing Condition)
- Exhibit D. 2 Turning Movement Counts (2015 A.M. Peak Hour)
- Exhibit D. 3 Turning Movement Counts (2015 P.M. Peak Hour)
- Exhibit D. 4 Turning Movement by Approach (Proposed Condition)
- Exhibit D. 5 Turning Movement Counts (2016 A.M. Peak Hour-No Build)
- Exhibit D. 6 Turning Movement Counts (2016 P.M. Peak Hour-No Build)
- Exhibit D. 7 Turning Movement Counts (2016 A.M. Peak Hour-Build
- Exhibit D. 8 Turning Movement Counts (2016 P.M. Peak Hour-Build)
- Exhibit D. 9 Turning Movement Counts (2030 A.M. Peak Hour-No Build)
- Exhibit D. 10 Turning Movement Counts (2030 P.M. Peak Hour-No Build)
- Exhibit D. 11 Turning Movement Counts (2030 A.M. Peak Hour-Build)
- Exhibit D. 12 Turning Movement Counts (2030 P.M. Peak Hour-Build)

APPENDIX E - Roadway

- Appendix E. 1 Right-of-Way Exhibit - Corner Clips
- Appendix E. 2 Traffic Control Phasing Concept

APPENDIX F - Tree Inventory \& Conflicts

- Preliminary Tree Inventory- Findings and Recommendations

APPENDIX G - Geotechnical Investigation
APPENDIX H - Phase I Environmental Site Assessment
APPENDIX I - Questions/Responses from Public Meeting

1.0 Executive Summary

1.1 Project Authorization

Lockwood, Andrews \& Newnam, Inc. (LAN) was retained by the Tax Increment Reinvestment Zone No. 17 (TIRZ 17) to perform a Preliminary Engineering Report (PER) for Memorial Drive, between Beltway 8 Frontage Road and Tallowood Road. Memorial Drive is identified in the City of Houston (City) approved TIRZ17 Project Plan and Capital Improvement Plan (CIP No.T17000-031B-7).

1.2 Statement of the Problem

The objectives of the Memorial Drive Improvement project are as follows

1. Improve Safety \& Mobility

- Upgrade roadway to a curb and gutter concrete section with raised medians to improve safety, mobility and access management along the project corridor.
- Reconstruct roadway to meet current roadway geometric requirements to improve safety.
- Add left-turn bays at median openings for safe queuing.
- Upgrade traffic signals at BW 8 Frontage Road and West Bough Lane/Broken Bough Drive to meet current City of Houston standards.

2. Improve Drainage

- Install oversized reinforced concrete box storm sewers to reduce overland flows to neighboring areas and reduce area flooding

3. Improve Quality of Life

Promote a pedestrian-friendly environment by incorporating

> Continuous, wider sidewalks

Multi-use/shared-use paths

- Landscaping/trees within median and along curb

Pedestrian lighting

The PER is Phase I of the overall project development and will identify potential impacts associated with the implementation of the roadway reconstruction, pedestrian, traffic, drainage and utility improvements recommendations

1.3 Project Location

The study limits include Memorial Drive, between Beltway 8 northbound Frontage Road and Tallowood Road. The project is located in west Houston, Texas, just south east of the interchange of IH-10 (Katy Freeway) and the Sam Houston Tollway (Beltway 8) at the south-western limits of the TIRZ 17 boundary. See Exhibit 1.1 Project Location Map for more information.

Exhibit 1.1 - Project Location Map

1.4 Scope of Work

The project scope includes the following tasks: address the engineering components associated with the roadway reconstruction, perform an initial existing conditions assessment (vehicular and pedestrian), evaluate and develop recommended solutions for improving drainage and roadway conditions along Memorial Drive, between Beltway 8 Frontage Road and Tallowood Road.
Upon completion of this PER, and approval of the recommended project by the City and TIRZ 17, the Phase II detailed design project may commence. Phase II detailed design of the project will provide engineering services required to provide the necessary construction documents for the approved improvements of Memorial Drive based on recommendations in the PER.

1.5 Existing Conditions

ROADWAY \& TRAFFIC:

Centered within an existing 100^{\prime} right-of-way, existing Memorial Drive is generally an undivided 44foot asphalt roadway with a combination of open ditches and inconsistent concrete curb and gutter sections. The roadway cross section consists of two 11 -foot lanes in each direction, divided by a solid double yellow line. Discontinuous and inadequate 4 -foot wide sidewalks exist along Memorial Drive, within the project limits. Memorial Drive has two signalized intersections; at Beltway 8 Frontage Road and at Broken Bough Drive/West Bough Lane which do not meet current City standards. There are also eight un-signalized intersections at Old Oak Drive, Huntingwick Drive, Boheme Drive, Memorial Bend, Hollow Drive, Somerset Place, Legend Lane and Tallowood Road. The Pavement Condition Ratings (PCR) scores within the project limits vary mid-60's to mid-70's which means the existing pavement is in fair condition. The existing pavement markings appear to be in poor to fair condition.

Memorial Drive is currently classified in the 2014 City Major Thoroughfare and Freeway Plan (MTFP), as a major thoroughfare with adequate ROW width. The posted speed limit on Memorial Drive is 35 mph within the project limits.

LANDUSE:

Adjacent land use includes retail/commercial businesses, single-family homes and residential apartments. Major commercial businesses surround Memorial Drive from Beltway 8 Frontage Road to Broken Bough Drive/West Bough Lane including: Randall's grocery store, Walgreens, Chase Bank and several clothing retail stores and dining locations along the northern ROW between Beltway 8 Frontage

Road and Broken Bough Drive/West Bough Lane. Although Memorial Drive is centered within a 100foot wide ROW, there is evidence of commercial and residential ROW encroachment that has occurred over the years.

Exhibit 1.2 Memorial Drive between Beltway 8 and West Bough lane (looking west)

DRAINAGE:

The Memorial Drive Drainage System is primarily part of the W153-00-00 watershed and is generally drained by road side ditches and storm sewers extending along the project alignment draining to W153-00-00. The western limits of the project from Broken Bough Drive/West Bough Lane to Beltway 8 drain to the Beltway 8 storm sewer trunkline before continuing downstream to Buffalo Bayou. A Regional Drainage Study performed in 2012, and then updated in 2014, documented significant drainage deficiencies within the TIRZ 17 boundaries. Significant structural flood damage was reported during the April 2009 rain event as well as the recent May 2015 rain event.

The existing Memorial Drive Drainage System does not meet the minimum City 2-year or 100-year drainage criteria. Even though the 2 -year HGL does not get above the inlets/edge of pavement (EOP), the lateral systems on West Bough Lane and the northern commercial areas cannot drain effectively
causing overland flow to enter the Memorial Drive ROW, which in turn cause additional ponding problems. The 100-year WSEL gets above inlet/EOP elevation for the entire length of Memorial Drive between Broken Bough Drive/West Bough Lane and W153. This flooding is partially due to the limited capacity of the Memorial Drive drainage infrastructure and partially due to overflow from W153 itself. Early in the event, the roadside ditches and associated storm sewers and culverts become surcharged and overtop the EOP causing overland flow to leave the ROW. Furthermore, at the peak of the 100 year event, W153 becomes overwhelmed and overland flow enters the Memorial Drive ROW from W153 via the adjacent properties. This is exacerbated by the lack of capacity of the roadway drainage infrastructure and of a clear overland flow path, which puts the adjacent properties at risk of structural flooding

WATER LINES:

As for public utilities, there is a 12 -inch asbestos concrete (AC) water line, running west to east, along the southern ROW of Memorial Drive, from Beltway 8 northbound Frontage Road and ties into a 16inch ductile iron water line located along Memorial Drive south ROW, for the extent of the project. The 12 -inch AC water line was installed approximately 40 years ago, while the 16 -inch ductile iron pipe was installed approximately 20 years ago. The City does not have plans to upgrade the 16 -inch water line. Fire hydrants also exist along the project alignment.

SANITARY SEWER LINES:

There are several different diameter sizes for existing sanitary sewer lines located along the project limits. The City provided CCTV for the sanitary sewers along the majority of the Memorial Drive project limits. The following is a list of existing sanitary sewer lines located along the project:

- 15-inch gravity sanitary sewer line: Located along back-lot easements (outside TIRZ boundary)
- Parallel 10-inch and 12-inch gravity sewer lines: Located along the northern ROW of Memorial Drive, from Old Oaks Drive to Boheme Drive.
- 24-inch gravity sewer line: Crosses Memorial Drive into Boheme Drive.
- 48-inch gravity sewer line: Located along the northern ROW of Memorial Drive, from Boheme Drive, to the east side of Tallowood Road.

The City does not have plans to upgrade or replace any sanitary sewer line along the project limits. The CCTV footage revealed some serious damage to existing 8-inch service laterals that cross Memorial Drive at several locations. The CCTV also revealed severe joint cracks, joint offsets, breaks in PVC and
corrosive buildup in the $24^{\prime \prime}$ sanitary sewer crossing Memorial Drive at Boheme Drive. The majority of these lines were installed in the 1960-1970's with random spot repairs or portions of pipe replacement throughout the years. The CCTV also revealed the connecting manholes along the project limits to be in poor condition.

1.6 Town Hall Meeting

On April 14, 2015 a town hall meeting was held to present the proposed key roadway and drainage alternatives for the Memorial Drive project. The public was also given the opportunity to provide feedback, comments, and concerns. The comments with corresponding responses can be found in Appendix I. The comments were also posted on the TIRZ 17 website. In preparation of this PER, the public's comments were taken into careful consideration and every effort was made to accommodate the public's concerns.
1.7 Findings from Phase I Preliminary Engineering \& Analysis

1.7.1 Evaluation of Roadway Improvement Alternatives

Three roadway alignment alternatives were studied for the project. Alternative I was deemed to be the most reasonable and feasible alternative.

Alternative I proposes a 4-lane two-way traffic concrete curb and gutter roadway divided by a 20 -foot to 24 -foot raised median with left turn bays and 11 -foot lane widths. Median openings with left turn bays are also proposed at street intersections and key commercial/residential complex entrances. Standard 6 -foot wide concrete sidewalks are proposed along the northern ROW and a 10 -foot wide concrete shared use path is proposed along the southern ROW. This shared use path will connect to the future 8-foot wide path project currently being proposed by TxDOT, from the Hershey Park Parking lot to Memorial Drive. See Exhibit 1.3 for Typical Section. Refer to the Roadway Section of report for details on all three alternatives studied.

1.7.1.1 Sidewalks

The existing 4^{\prime} sidewalks do not meet currently City criteria. The sidewalks are discontinuos along the project alignment and are in need of replacement. To provide a more pedestrian friendly environment, 6 -foot wide sidewalks be installed along the northern Memorial Drive alignment. The sidewalks will be placed 4 -feet from the face of curb to allow for landscaping, lighting, and as a pedestrian buffer from vehicles. Along the southern Memorial Drive alignment, a 10 -foot wide concrete shared use path will connect to the future TXDOT Shared Use Path
along the beltway 8 northbound frontage road, from Terry Hershey Park to Memorial Drive. The path will be installed 5 -feet from the curb to allow for landscaping, lighting and as a buffer between the vehicles and the path users. ADA compliant wheel chair ramps will be installed both at signalized intersections and throughout the Memorial Drive alignment.

1.7.1.2 Traffic signals

The existing traffic signals at the intersections of Memorial Drive at Broken Bough Drive/West Bough Lane and at northbound and southbound Beltway 8 Frontage Road will be replaced and upgraded to meet current City of Houston standards.

1.7.1.3 Right-of-way Acquisition

No major additional right-of-way will be required with the exception of a 25 -foot X 25 -foot corner clip at the northeast corner of Memorial Drive and Beltway 8 northbound Frontage Road and a 20 foot X 20 -foot corner clip at the northwest corner of Memorial Drive and West Bough Lane. A total of 1,025 square feet of right-of-way acquisition is needed. A preliminary proposed right-of-way exhibit can be found in Appendix E.

$$
\frac{\text { ROADWAY ALTERNAT IVE I }}{20^{\prime}-24^{\prime} \text { MEDIAN (RECOMMENDED) }}
$$

Exhibit 1.3 Alternative

Typical Section

1.7.1.4 Traffic Control Plans

Traffic control plans for the project will require two main phases during construction to minimize disruption to the adjacent residents and businesses along Memorial Drive. Phase I will include the installation of storm sewer boxes and pavement. One lane in each direction will be maintained at all times, along with a continuous left turn lane to allow for continuous driveway access to all of the businesses and residences. Temporary asphalt will be required along the north side of Memorial Drive to achieve the three lane configuration. Phase II will include the construction of the northern half of Memorial Drive. The same three lane configuration will also be maintained at all times. The proposed median curbs will be installed after Phase II is completed to allow for the three lane configuration. Per City of Houston, the contractor's work zone will have to adhere to the 800 -foot rolling closure rule. The conceptual construction phasing can be found in Appendix E.

1.7.2 Evaluation of Drainage Improvements

The existing memorial Drive drainage system does not meet the minimum City's 2-year and 100year drainage criteria. The flooding outside the roadway right-of-way puts the adjacent properties at risk of structural flooding, as already seen in the 2009 and 2015 rain events

In considering the optimal drainage alternative for the project, one must also consider the effect any design decisions have upon the hydraulic impacts to the receiving systems; either in terms of increased flows downstream or increased Water Surface Elevations (WSEL's) upstream.

Two primary drivers were considered in the development of the proposed design. Firstly, it should meet or exceed, as best as is possible, the basic roadway drainage design criteria for the City of Houston. Secondly, there was a directive by TIRZ 17 to explore the possibility of maximizing storm water detention within the project limits.

Based on constructability, available ROW, conflicts with other utilities, future maintenance and overall project cost, it was determined that dual $10^{\prime} \times 10^{\prime}$ Reinforced Concrete Boxes (RCB 's) were the largest practical sub-surface storm sewers that could be used.
There are additional goals of maximizing benefit to the adjacent community and to reduce overland flows to neighboring areas. Finally, improvements to Memorial Drive are recommended to be designed such as to accommodate future regional solutions to the challenging stormwater problems within the W151 and W153 watersheds

Considering all of the potential design constraints, five drainage improvement options were developed. Note that all of these options assume the basic $2-10^{\prime} \times 10^{\prime}$ RCB's are utilized as the largest practical sub-surface storm sewers that can be provided:

1. Option I (Memorial Drive Improvements Only): Maintain the existing roadway elevation and the existing single $9^{\prime} \times 9^{\prime}$ RCB of the enclosed W153. Improve roadway drainage and attempt to pick up as much off-site drainage as possible. Detain increased runoff in the 2-10x10 RCB's using restrictors and allow the relief realized at the enclosed W 153 to improve the open section upstream.
2. Option II (Add $\mathbf{9}^{\prime} \mathbf{x} \mathbf{9}^{\prime} \mathbf{R C B}$): Similar to Option I but attempt to meet roadway ponding depth criteria by upsizing the enclosed W153 to reduce upstream WSEL's.
3. Option III (Raise Roadway Profile): Similar to Option II but increase the Memorial Drive roadway elevation to meet roadway ponding depth criteria and maintain the existing W153 WSEL by conveying the flow that used to overtop Memorial by upsizing the enclosed W153.
4. Option IV (Regional Detention): Explore the possibility of adding sub-regional detention south of IH-10 that can reduce the peak flow in W153 and therefore reduce the depth of the flow overtopping Memorial.
5. Option V (Regional Detention Add $\mathbf{9}^{\prime} \mathbf{x} \mathbf{9}^{\prime} \mathbf{R C B}$): Similar to Option IV but include additional conveyance under Memorial.

Option I is designed to meet the City's 2-year criteria and maximize the benefit of the drainage improvements while minimizing impacts to W153 and the adjacent properties. Installing dual 10-FTx10-FT RCB's under the roadway, and keeping the existing vertical profile of proposed Memorial Drive at or near the existing elevation proved to be the best option for the project. Restrictors are
proposed at the Beltway 8 outfall and the W153 outfall to maintain existing flow rates into these adjacent systems. The existing drainage patterns along Memorial Drive will not change. Storm water that currently flows west to the Beltway 8 drainage system will continue to do so. Storm water that currently flows east toward W153 will also continue to flow to W153. No additional storm water from the Beltway 8 system will be conveyed to W153. This option will also provide a 10 -year level of protection. The amount of total storage provided is approximately $12+\mathrm{ac}-\mathrm{ft}$.

The storm sewer infrastructure proposed for Option I include the following:

1. Memorial Drive from Beltway 8 northbound Frontage Road to West Bough Lane: 1,285LF of $1-10^{\prime} \times 10^{\prime}$ RCB
2. Underneath West Bough Lane: 100 LF $48^{\prime \prime}$ RCP
3. Memorial Drive from West Bough Lane to Boheme Drive.: 543LF of 2-10'x10' RCB, 122LF of 4-24" RCP
4. Memorial Drive from Boheme Dr. to W153-00-00: 1,349LF of 2-10'x10' RCB
5. Memorial Drive from W153-00-00 to Tallowood Rd.: 480.5LF of 2-10'x10' RCB
6. 3 Large Junction Boxes.
7. 32 Type B-B, 2 Type AZ2G and 1 Type C inlets to capture the runoff and associated $24^{\prime \prime}$ leaders to convey flows to the trunkline.
8. Approximately 4 ditch tie-in pipes to accept runoff from roadside ditches

1.7.3 Evaluation of Public Utilities Improvements

1.7.3.1 Water Lines

It is recommended that the existing 16 -inch ductile iron water line water line not be replaced. However, it is recommended to replace the existing 12-inch AC water line, due to its age and pipe material. All existing water line crossings are also recommended to be replaced due to the existing pipe material, depth of cover and conflicts with other proposed improvements. New fire hydrants will also be added to comply with City of Houston fire hydrant spacing requirements. Trenchless construction methods are anticipated for the proposed improvements See Appendix B for additional details on existing and proposed water lines.

1.7.3.2 Sanitary Sewer Lines

It is recommended that approximately 285 feet of the unreinforced concrete section of the existing 12 -inch sanitary sewer line, located between Huntingwick Drive and Boheme Road, be replaced due to the age and the existing pipe material. It is also recommended that approximately 381 feet of 10-inch gravity sanitary sewer, located between Huntingwick Drive and Boheme Road be replaced due to the age and the existing pipe material. The 48 -inch gravity sewer line located along the northern ROW of Memorial Drive from Boheme Drive to east of Tallowood Road is not recommended to be replaced at this time.

CCTV of all of the eight (8) lateral crossings depicted evidence of severe joint cracks, joint offsets, breaks in pipe and corrosive buildup. It is recommended that all eight sanitary sewer lateral lines be replaced due to their ages, varying from 30 to 60 years old, and condition of pipe.
There are three sanitary sewer force mains within the project limits. One 10-inch and one 6inch ductile iron pipe force mains were installed in the 1984. One 6 -inch cast iron pipe force main was installed in the 1970's. The 6 -inch ductile iron force main will need to be relocated to accommodate the proposed drainage improvements. The 6 -inch cast iron force is recommended to be replaced due to pipe material and age of line. Refer to Appendix B for additional details.

1.7.4 Evaluation of Landscaping Alternatives

High Level Amenities is proposed for the landscaping improvements to provide a pleasing aesthetic value to the area. The proposed improvements consist of the following:

- 10-foot multi use path and 6 -foot wide sidewalks with decorative pavers alternating with broom finished concrete;
- Additional tree and shrub plantings;
- Enhanced Pedestrian lighting along entire project limits.

1.7.5 Street Lighting

Existing standard City street lights exist along Memorial Drive on both sides of ROW from Beltway 8 Frontage Road to Broken Bough Drive/West Bough Lane. Existing lighting also exists for the remainder of the project, however, streets lights are mounted on existing electric wood poles.

Proposed street lighting shall be provided in areas that do not meet current City street light spacing, during the detailed design phase along the proposed Memorial Drive.

1.7.6 Existing Tree Impacts

Approximately 293 existing trees are located within the construction area of the project. Approximately 75 trees will need to be removed for the proposed improvements. 31 of the 75 trees are protected by the City of Houston's Street Tree Ordinance for a total of 359 replacement inches. Landscaping plans and tree protection plans will be necessary in Phase II to comply with the City Tree Ordinance. For additional information, a detailed tree inventory was performed by C.N. Koehl Urban Forestry and can be found in Appendix F.

1.7.7 Geotechnical Study

Aviles Engineering Corporation (AEC) performed the geotechnical investigation for the project. Aviles drilled 9 soil borings at the project site, each 25 -feet to 35 -feet in depth. Groundwater was encountered at one bore location, at a depth of 23 -feet. The existing pavement encountered was 1.5 -inches to 4 -inches of asphalt, on top of 8 -inches to 14 -inches of stabilized sand and crushed shell. The report recommends a rigid concrete pavement thickness of 11 -inches with an 8 -inch lime stabilized subgrade consisting of 7% lime by dry weight for Memorial Drive. The findings and recommendations are presented in the report entitled G178-14. A copy of this report can be found in Appendix G.

1.7.8 Environmental Site Assessment

A Phase I Environment Site Assessment (ESA) was conducted for the project area by Aviles Engineering Corporation (AEC). The findings are presented in the report entitled Phase IEnvironmental Site Assessment TIRZ 17 Reconstruction of Memorial Drive between West Sam Houston Parkway and Tallowood Road. Seven (7) RECs were identified which warrant further investigation. See Appendix \mathbf{H} for the full Phase I ESA report. A fault line was also found during the ESA I research but no evidence of a fault was found during AEC's site reconnaissance. It is recommended that a Phase II ESA be performed to further investigate the seven (7) REC's. A detailed fault study, by a qualified firm is also recommended for the project.

1.7.9 Agency Coordination

Contact with different entities will be required throughout the final design phase prior to the final design submittal. Coordination meetings will be scheduled with the City of Houston, City of Bunker

Hill Village, Harris County Toll Road Authority \& TxDOT, Harris County Flood Control District, and METRO, as needed throughout the design phase to coordinate design. Upon 60% and 90% completion, drawings will be submitted to the City of Houston for review and approval. Early coordination with private utility entities will also be conducted in design.

The total preliminary estimated construction cost for Alternative I is \$17,391,00; including a 15% contingency. (These costs do not include any right-of-way acquisition or private utility relocation costs). The detailed preliminary estimated construction costs can be found in Appendix A.

1.8 Recommended Projec

The recommended improvements include the following:

- A 4-lane two-way traffic concrete curb and gutter roadway divided by a 20 -foot to 24 -foot raised median with left turn bays and 11-foot lane widths.
- Median openings with left turn bays at all street intersections and key commercial/residential complex entrances.
- 6 -foot wide concrete sidewalks along the northern ROW and a 10 -foot wide concrete shared use path is proposed along the southern ROW.
- Dual $10^{\prime} \times 10^{\prime}$ RCB's
- 3 Large Junction Boxes.
- 32 Type B-B, 2 Type A and 1 Type C inlets
- 12-inch Water Line Replacement
- Installation of new Fire Hydrants
- Replacement of 6 -inch through 12 -inch gravity sanitary sewer lines
- Replacement of 6 -inch sanitary sewer force main.
- Landscaping Amenities
- Proposed Standard City of Houston Street Lighting
- Approximately 359 inches of Tree Replacement

See Appendix B for Proposed Design Drawings.

1.9 Estimated Construction Cost

2.1 Project Authorization
 2.0 Introduction

Lockwood, Andrews \& Newnam, Inc. (LAN) was retained by the Tax Increment Reinvestment Zone No. 17 (TIRZ 17) to perform a Preliminary Engineering Study for Memorial Drive from Beltway 8 northbound Frontage Road and Tallowood Road. In addition to the general mobility improvement, a second primary objective is to address drainage issues along Memorail and neighboring areas. Memorial Drive Draiange and Mobility Improvements project was identified in the City of Houston (City) approved TIRZ17 Project Plan and Capital Improvement Plan (CIP No. N- T17000-031B-7).

2.2 Statement of the Problem

The primary purpose of the Memorial Drive Drainage and Mobility Improvements project is to improve safety and mobility, drainage and quality of life, within the project limits of Beltway 8 Frontage Road and Tallowood Road. The existing asphalt roadway is in fair to poor condition and has exceeded its service life. Furthermore, Memorial Drive, within the project limits, lacks proper access management and adequate pedestrian facilities. Memorial Drive, within our project limits, does not meet the City of Houston's 2-year and 100-year storm event criteria. Neighboring areas experience overland flows and localized flooding.

The PER is Phase I of the overall project development and will identify the impacts associated with the implementation of the Roadway, pedestrian, drainage and utility recommendations.
The project objectives of the Memorial Drive Improvement project are as follows:

1. Improve Safety \& Mobility

- Upgrade roadway to a curb and gutter concrete section with raised medians to improve safety,
mobility and access management along the project corridor.
- Reconstruct roadway to meet current roadway geometric requirements to improve safety
- Add Left-turn bays at median openings for safe queuing
- Upgrade traffic signals at BW 8 Frontage Road and West Bough Lane/Broken Bough Drive will to meet current City standards

2. Improve Drainage

- Install oversized reinforced concrete box storm sewers to reduce overland flows to neighboring areas and reduce area flooding

3. Improve Quality of Life

- Provide pedestrian-friendly environment by incorporating the following:
- Continuous, wider sidewalks
- Multi-use/shared-use paths
- Landscaping/trees within median
- Pedestrian lighting

2.3 Project Location

The study limits include Memorial Drive from Beltway 8 northbound Frontage Road, east to Tallowood Road. The study limits are located in West Houston, Texas, approximately .75 miles south of the interchange of West Sam Houston Parkway (Beltway 8), and Interstate Highway 10 Katy at the southern limits of the TIRZ 17 boundary. The project is located within Council District G and Buffalo Bayou Watershed. The project location can be found on Key Map page 489G and 489H. See Exhibit 2.1 Project Vicinity Map for more information.

It is important to note the TIRZ 17 boundaries and the limits of the Memorial Drive improvements project. See Exhibit 2.2 for TIRZ 17 Boundaries.

EXHIBIT 2.2 TIRZ 17 Boundary Limits

Memorial Drive
Preliminary Engineering Report

The project scope includes the following tasks: address the engineering components associated with roadway reconstruction, perform an initial existing conditions assessment (vehicular and pedestrian),
evaluate and develop recommended solutions for improving the roadway, drainage and utilities existing conditions along Memorial Drive from Beltway 8 northbound Frontage Road to Tallowood Road.

A summary of the major tasks performed for the study are listed below:

- Perform Site Visits \& Data Collection
- Perform Topographic Survey
- Prepare a Geotechnical Study
- Prepare an Environmental Study
- Perform a Tree Inventory
- Investigation of Existing Public and Private Utilities
- Traffic Engineering and Planning
- Evaluation of Geometric Conditions
- Establish Roadway Baseline/Project Control
- Develop Existing and Proposed Roadway Sections
- Perform Project Drainage Analysis
- Develop 30\% Plan and Profile Sheets
- Roadway Impact Assessment and Develop Right-of-Way Exhibits
- Develop Conceptual Traffic Control Plan
- Prepare Cost Estimates

Upon completion of this PER Study, and approval of the recommended project by both the City of Houston and TIRZ 17, the Phase II detail design project development may commence. Phase II of the project will provide engineering services required to provide the necessary construction documents for the approved improvements of Memorial Drive from Beltway 8 northbound Frontage Road to Tallowood Road, based on recommendations in the PER. The scope of services for the Phase II detailed design includes the following tasks:

- Prepare plans, specifications and estimates construction documents
- Obtain approval from government agencies
- Coordinate with public and private utility owners
- Provide cost estimates
- Assist the Memorial City Redevelopment Authority (MCRA) in the bidding process

2.5 Existing Conditions

2.5.1 Roadway

Memorial Drive between Beltway 8 northbound Frontage Road and Tallowood Road is an existing undivided 44 -foot wide asphalt roadway section with two 11 -foot lanes in each direction and a combination of open ditch and curb and gutter sections. There are discontinuous 4-wide concrete sidewalks along both sides of Memorial Drive. The roadway is primarily centered within an existing 100-foot right of way. Memorial Drive is located approximately $3 / 4$ of a mile south of the Sam Houston Tollway and IH-10 intersection, within the southern-most TIRZ 17 boundary. Memorial Drive traverses primarily east-west and is classified as a major thoroughfare by the City. The posted speed limit along Memorial Drive is 35 mph . There are two significant alignment curves along Memorial Drive. Approximately 200-feet east of the Beltway 8 intersection the roadway curves to the southeast along an 1146-foot radius curve. Memorial Drive then runs northsouth for approximately 650 -feet then curves east along a 674 -foot radius. See Figure 2.1 Existing Memorial Drive Typical Section for additional information.

Figure 2.1 - Memorial Drive Existing Typical Section
Constructed in the early-1970's, the existing asphalt pavement ranges in thickness from 4.5 to 12 inches of asphaltic stabilized on top of 6 to 8 -inches of stabilized sand and crushed shell. Per the City GIMS data, the Pavement Condition Ratings (PCR) ranges from approximately 65 to 78.

However during the site visits there was evidence of significant cracking of the 1 -inch to 4 -inch asphalt overlay along the entire alignment. Also, the pavement has exceeded the typical useful service life of 20-years. Four-foot wide, discontinuous sidewalks exist along Memorial Drive within the project limits

Memorial Drive serves an average of approximately 16,230 vehicles per day per City Geographic Information System (GIMS).

Exhibit 2.3 Memorial Drive North of Huntingwick (Looking Northwest)

2.5.2 Land Use

Adjacent land use includes retail, commercial businesses, single-family and residential apartments. Major commercial businesses surround Memorial Drive from Beltway 8 Frontage Road to West Bough Lane including: Randall's grocery store, Walgreens, Chase Bank and several clothing retails stores and dinning places on the northern ROW between Beltway 8 Frontage Road and West Bough Lane. Although Memorial Drive is centered within a 100 -foot wide ROW, there is evidence of commercial and residential ROW encroachment that has occurred over the years due to the large amount of available real estate between the existing edge of pavement and ROW.

2.5.3 Drainage

The Memorial Drive System is primarily part of the W153-00-00 watershed and is generally drained by storm sewers and road side ditches extending along the project alignment draining to W153-00-00. The western limits of the project from Broken Bough Lane/West Bough Lane to Beltway 8 drain to the Beltway 8 storm sewer trunkline before continuing downstream to Buffalo Bayou. The project area was documented as having significant drainage deficiencies in the TIRZ 17 Regional Drainage Study (RDS) with reported flooding during the April 2009 and the more recent May 2015 rain event.

The existing Memorial Drive system does not meet the City's 2-year or 100-year capacity criteria. The HGL of the storm sewer system does not get above inlet/EOP elevations within the Memorial Drive ROW, however, the lateral systems on West Bough and in commercial areas north of Memorial Drive cannot drain effectively causing overland flow to enter the Memorial Drive ROW. Due to the fact that Memorial Drive generally slopes away from the Beltway to W153, the excess flow in the system west of West Bough flows in a southeasterly direction towards W153. The 100year WSEL gets above inlet/EOP elevation for the entire length of Memorial Drive between West Bough and W153. This flooding is partially due to the limited capacity of the Memorial Drive drainage infrastructure and partially due to overflow from W153 itself. The flooding outside the roadway ROW and overland flows puts the adjacent properties at risk of structural flooding.

2.5.4 Existing Water Lines

There are two water lines within the project limits. An existing 12 -inch AC water line that runs west to east is located along the southern ROW of Memorial Drive, from Beltway 8 northbound Frontage Road and was placed in service in 1976, approximately 40 years ago. The existing 12inch water line connects to an existing 16 -inch water line which continues east along the project limits. The existing 16 -inch ductile iron water line located along the southern ROW of Memorial Drive was placed in service in 1995, approximately 20 years ago. Fire hydrants also exist along the alignment.

2.5.5 Existing Sanitary Sewer Lines

Several different diameter sizes for existing sanitary sewers lines located within the project limits. A 15 -inch in diameter gravity sanitary sewer line is located along back-lot easements south of Memorial Drive from Beltway 8 northbound Frontage Road to Boheme Drive. The existing 15 -inch gravity sewer line was slipped line in 1995 using polyethylene pipe. A 10 \& 12-inch gravity sewer
lines are located along Memorial Drive northern ROW from Huntingwick Drive to Boheme Drive and from 150-feet south of Old Oaks Drive to Boheme Drive. Half of the 12-inch gravity sanitary sewer is made of polyethylene pipe due to the rehabilitation in 1999; however the other half is made of unreinforced concrete and was placed in service in 1960. The 10-inch gravity sanitary sewer is made of extra strength concrete and was placed in service in 1966, nearly 40 years ago. CCTV data was not available on this line and service connections are unknown.

A 48-inch gravity sewer line is located along Memorial Drive northern ROW from Boheme Drive to east of Tallowood Road. The 48 -inch gravity sanitary sewer is made of plastic-lined pipe in some sections while other sections are made of concrete. The entire line was placed in service in 1997 and multiple service connections are present throughout the line.

There are three sanitary sewer force mains within the project limits. One 10 -inch and one 6 -inch ductile iron pipe force mains were installed in the 1984. One 6 -inch cast iron pipe force main was installed in the 1970's. Refer to Appendix B for additional details and 30\% plan and profile sheets.

2.5.6 Existing Private Utilities

A number of private utility companies were contacted to identify what utilities exist within the project limits. See Table $\mathbf{2 . 1}$ for all private utility companies that were contacted.

Table 2.1-Existing Private Utility Contacts

AT\&T	Logix Communications LP
CenterPoint Energy Gas \& Electric	Netco Pipeline
Comcast	Phonoscope
Extenet Systems	TW Telecom
Level 3 Communications	Verizon Business

CenterPoint Energy (CPE) Electric/Gas and Southwestern Bell Company SBC, (also known as AT\&T) have existing private utilities located within the project right-of-way. Utility information was requested and obtained from both companies. CPE has underground gas lines, overhead electric lines and underground conduits extending within the project's right-of-way. AT\&T facilities include both underground cables, fiber optic cables, and duct banks. Texas One Call should be contacted at least 48 hours prior to excavation to locate all underground utilities. See Table 2.2 -Existing Private Utilities for additional information.

Table 2.2 - Existing Private Utilities for Memorial Drive

Owner	Type	Approximate Location	From	To
CPE	Underground Electric	North/South Side	Beltway 8 Frontage Rd	W. Bough/Broken Bough Lanes
CPE	$2^{\prime \prime}$ Gas Line	South Side	W. Bough/Broken Bough Lanes	200-ft South
CPE	$2^{\prime \prime}$ Gas Line	South Side	Boheme Drive	100-ft North of Rip Van Winkle
CPE	$4^{\prime \prime}$ Gas Line	South/West Side \& East bound lanes	$200-f t$ north of Old Oaks Road	Tallowood Road
CPE	$4^{\prime \prime}$ Gas Line	South/West Side \& West bound lanes	Boheme Drive	Rip Van Winkle
AT\&T	$2-4^{\prime \prime}$ G.I.P Conduits	South Side	Beltway 8 Frontage Rd	100-ft west
AT\&T	$2-4^{\prime \prime}$ G.I.P Conduits	South/East Side	Boheme Drive	80-ft North
AT\&T	$4-4^{\prime \prime}$ G.I.P Conduits	South Side	Beltway 8 Frontage Rd	100-ft west
AT\&T	$4-4^{\prime \prime}$ G.I.P Conduits \& Fiber Optic	South Side	W. Bough/Broken Bough Lanes	350-ft East
AT\&T	$14 / 12 / 10 / 8-4^{\prime \prime}$ Conduits	South Side	W. Bough/Broken Bough Lanes	Tallowood Road
AT\&T	Buried Cable	 Southbound Lanes	W. Bough/Broken Bough Lanes	Tallowood Road

2.5.6.1 Existing CenterPoint Energy Gas Facilities

At approximately 200 feet north of Old Oaks Drive, a 4-inch CenterPoint Energy (CPE) gas line runs parallel to Memorial Drive, the gas line continues to east of Tallowood Road. The 4-inch gas line is under existing and proposed pavement from Huntingwick Drive to Rip Van Winkle Drive. An existing 4-inch CPE gas line connects to the 4 -inch gas line in the middle of the roadway at Rip Van Winkle Drive and continues along Memorial Drive southern/western ROW to Boheme Drive. At the northeast corner of Hollow Drive and Memorial Drive, a 2-inch \& 4/3-inch CPE
gas line connects to the 4 -inch, the 2 -inch gas line continues north along Hollow Drive and the $4 / 3$-inch continues south along easements. A 4 -inch gas line connects to the 4 -inch gas line at Legend Lane and continues south along Legend Lane. A 4-inch CPE gas line exist perpendicular to Memorial Drive at Beltway 8 Frontage Road. A 2-inch CPE gas line exist perpendicular to Memorial Drive at West Bough Lane/Broken Bough lane and continues southeast along Memorial Drive for approximately 125 -feet, then continues northwest along Broken Bough Lane. An existing 2-inch CPE gas line exists along Memorial Drive western ROW at Boheme Drive and continues south along Memorial Drive for approximately 300 feet.

2.5.6.2 Existing CenterPoint Energy Electric Facilities and Lighting

Overhead electrical power lines exist along Memorial Drive. Limited lighting exists on the south side within the same street limits. Existing lighting mounted on utility wood poles primarily exist along the south/east of Memorial Drive, from Broken Bough Drive/West Bough Lane to Tallowood Road. The City's spacing requirements for street lighting is from 150-feet to 200-feet. The existing lighting spacing generally does not meet this standard. There are existing underground CPE electrical street lighting lines to support the existing street lighting.

2.5.6.3 Existing ATT Facillities

AT\&T has 4-4 inch G.I.P conduits and 2-4 inch conduits crossing perpendicular to Memorial Drive at Beltway 8 Frontage Road and continues east for approximately 300 feet connecting to an existing manhole. The AT\&T lines continue west of Memorial from the manhole. An existing AT\&T manhole exists at the south west corner of Memorial Drive and Broken Bough lane with several AT\&T conduits connecting at this location; existing 4-4 inch PVC conduits and fiber optics continue west along Memorial Drive for approximately 180 feet, existing 2-4 inch PVC and 4-4 inch PVC conduits \& fiber optic crossing north along West Bough lane, and existing 8-4 inch conduits running south along Memorial Drive southern/western ROW. AT\&T's existing 8-4 inch conduits continue south/east along Memorial Drive to a manhole approximately 100 feet north of Boheme Drive. At this manhole the three different conduits branch out; 2-4 inch G.I.P conduits crosses Memorial Drive and continues east, 2-4 inch PVC conduit continues south and then west along Boheme Drive and 10-4 inch PVC conduits continue south along Memorial Drive southern/western ROW. The existing 10-4 inch PVC conduits continue to approximately 780 feet where conduits increase to a 12-4 inch PVC conduit. Two 2-4 inch G.I.P conduits branch out of the 10-4 inch conduits. The 12-4 inch conduit continue south along Memorial Drive for
approximately 120 feet which two sets of 2-4" G.I.P conduits branch out and reduce the 12-4 inch conduits to $8-4^{\prime \prime}$ conduits. The $8-4^{\prime \prime}$ conduits continue east along Memorial Drive for approximately 600 feet and the conduits increase to 14-4 inch conduits. The 14-4 inch conduits continue east for approximately 200 feet and reduced to $8-4$ inch conduits by two sets of 2-4 G.I.P conduits branching out. The 8-4 inch conduits continue passed Tallowood Drive.

2.6 Existing Tree Impacts

Approximately 293 existing trees are located within the construction area of the project. 75 trees will be impacted by the proposed improvements resulting in 393 inches to be replaced along the project. For additional information, a detailed tree inventory was performed by C.N. Koehl Urban Forestry and can be found in Appendix F. Tree protection plans will be required during the Phase II detailed design

2.7 Geotechnical Study

Aviles Engineering Corporation performed the geotechnical investigation for the project. Aviles drilled 9 soil borings at the project site, each 25 -feet to 35 -feet in depth. Groundwater was encountered at a depth of 27 -feet. Groundwater was encountered at one bore location, at a depth of 23 -feet. The existing pavement encountered was 1.5 -inches to 4 -inches of asphalt, on top of 8 -inches to 14 -inches of stabilized sand and crushed shell. The report recommends a rigid concrete pavement thickness of 11inches with an 8 -inch lime stabilized subgrade consisting of 7% lime by dry weight for Memorial Drive. The findings and recommendations are presented in the report entitled G178-14. A copy of this report can be found in Appendix G.

2.8 Environmental Site Assessment

A Phase I Environment Site Assessment (ESA) was conducted for the project area by Aviles Engineering Corporation (AEC). The findings are presented in the report entitled Phase I-Environmental Site Assessment TIRZ 17 Reconstruction of Memorial Drive between West Sam Houston Parkway and Tallowood Road. Seven (7) RECs were identified which warrant further investigation. See Appendix H for the full Phase I ESA report. A fault line was found during the ESA I research but no evidence of a fault was found during AEC's sire reconnaissance. Based on ASTM E 1527-05 criteria, Phase II sampling is recommended to quantify possible contamination for the seven (7) REC's in the vicinity of the subject alignment, along with a fault study by a qualified firm.
2.9 Agency Coordination

Contact with different entities will be required throughout the final design phase prior to the final design submittal. Coordination meetings will be scheduled with the City of Houston, METRO, City of Bunker Hill Village, Harris County Toll Road Authority, TXDOT, and Harris County Flood Control District as needed to coordinate design. Upon 60% and 90% completion, drawings will be submitted to the City of Houston for review and approval. Early coordination with private utility entities will also be conducted in design.

3.0 Roadway Assessment and Recommendations

3.1 Design Criteria

The following publications were referenced for determining key design criteria in developing improvement alternatives for Memorial Drive from Beltway 8 frontage road to Tallowood Drive:

- City of Houston Department of Public Works and Engineering Infrastructure Design Manual, July 2015.
- City of Houston Department of Public Works and Engineering Standard Construction Details for Wastewater Collections Systems, Water Lines, Storm Drainage and Street Paving.
- City of Houston Department of Public Works and Engineering Standard Construction Specifications for Wastewater Collections Systems, Water Lines, Storm Drainage, Street Paving and Traffic, dated 2014
- American Association of State Highway and Transportation Officials (AASHTO): AASHTO Guide for Design of Pavement Structures.
- American Association of State Highway and Transportation Officials (AASHTO): A Policy on Geometric Design of Highways and Streets, 2011 (Green Book).
- Texas Manual on Uniform Traffic Control Devices, 2011.
- U.S. Department of Transportation Federal Highway Administration: Roundabouts: An Informational Guide, June 2000.

The geometric design criteria was established based upon the City Infrastructure Design Manual. The following is a summary of the geometric design parameters that will be incorporated in this project:

- Design Speed - 35 mph
- Vertical curves will be introduced when the algebraic difference in grades exceeds 1 percent
- Crest and sag vertical curves will be designed according to the guidelines in A Policy on Geometric Design of Highways and Streets by AASHTO
- Minimum grade along the outside gutter will be 0.30 percent.
- Minimum gradient around intersection turnouts will be 1 percent.
- Pavement headers will be used at the end of all concrete pavements
- Horizontal dowel bars shall be used when meeting existing concrete pavement that has no exposed steel.
- Minimum cross slope of pavement will be $1 / 4$ inch per foot.
- Sidewalks will conform to the latest requirements of the American with Disabilities Act.
- Expansion joints will be placed at a maximum of 80 feet.
- Construction joints will be used when pavement is wider than 24 feet in accordance with City requirements

3.2 Potential Improvement and Recommended Alternatives

Initial evaluations involved several alignment alternatives that included three different roadway cross sections options. Each Alternative includes the same cross section behind the curb, but with varying sized medians for each alternative.

Typical behind the curb amenities included:

- 10-foot wide concrete shared use path, five feet from the curb, along the south side of

Memorial Drive

- 6 -foot wide concrete sidewalk, four feet from the curb, along the north side of Memorial Drive - ADA compliant wheel chair ramps.

The following describes each alternative that was evaluated in this report

Alternative I:

Alternative I, the recommended alternative, proposes a 4-lane two-way traffic concrete curb and gutter roadway divided by a 20 -foot to 24 -foot raised median with left turn bays at all median openings and 11 -foot wide travel lanes. Access management, field reconnaissance, the latest City of Houston Infrastructure Design Manual (COH IDM) and comments from the public meeting were used to determine the optimal median openings locations. All median openings will have a minimum 100-foot long left turn bays, to create a safe queue location for left turn vehicles while not impacting the two through lanes. The pavement will be 11 -inches thick Portland cement, per the City IDM. Standard 6 -foot wide concrete sidewalks are proposed along the northern ROW and a 10-foot wide concrete shared use path is proposed along the southern ROW. This shared use path will connect to the future 8 -foot wide path project currently being proposed by TxDOT, from the Hershey Park Parking lot to Memorial Drive. To minimize major impacts to commercial and residential properties encroaching into City ROW, The proposed
median opening width varies from 20 -feet to 24 -feet. Narrower median widths were analyzed, but dismissed due to the following safety issues:

- Passenger cars having difficulty making u-turns in a single maneuver. This will lead to vehicles stopping and having to reverse in the active travel lane to complete the u-turn movement.
- Passenger cars waiting in the median opening will protrude in to the adjacent lane. (typical passenger car length is 19-feet, while pickup trucks tend to be longer). Refer to Exhibit 3.1 for Typical Section.

Alternative II:

Alternative II is very similar to Alternative I. The only difference is the median width. Alternative II proposes a 4-lane two-way traffic concrete curb and gutter roadway divided by a 30 -foot raised median with left turn bays at all median openings and 11 -foot wide travel lanes. As discussed previously, over the years, property owners have encroached into the City's 100 foot ROW, by means of extended parking lots and/or decorative fencing. The larger median extends the proposed curb, sidewalk and shared use path out closer to the ROW, negatively impacting some of the property owners. Refer to Exhibit $\mathbf{3 . 2}$ for Typical Section

Alternative III:

Alternative III proposes a 4-lane two-way traffic concrete curb and gutter sections with a 14foot wide continues center two-way left turn lane. There are numerous commercial and residential driveways, closely spaced, along the project. Due to the number of conflicting turning movements along the project, a continuous two-way left turn lane alternative is not a safe alternative. Additionally, Alternative III does not satisfy the quality of life objective. See Exhibit $\mathbf{3 . 3}$ for more details.

3.3 Driveways and Pedestrian Facilities

Driveways along the project alignment will be removed and replaced with standard City driveways. At some locations, the existing driveways must be replaced passed the right-of-way limits to provide a smooth transition and mitigate drainage impacts resulting from the change in grade. The final location of the driveways will be determined during detail design.

Pedestrian facilities will be added to meet ADA requirements along the entire project limits. The sidewalks will be 6 -foot in width on the north/east sides and the shared path will be 10 -foot in width along the south/west side, located a minimum of 4-feet behind the curb.

3.4 Right-of-Way Requirements

No additional right-of-way will be required in any of the roadway alternatives. However two corner clips will be required to accommodate proposed turning radii, continuous sidewalks, and traffic signal equipment. A 25 -foot $\times 25$-foot corner clip is required at the northeast corner of Memorial Drive at northbound beltway 8 frontage road. A 20-foot x 20-foot corner clip is required at the northwest corner of Memorial Drive at West Bough Lane. Refer to Appendix E for ROW acquisition details.

3.5 Traffic Control Plan and Construction Sequencing

The traffic control plan and construction sequencing for the recommended Alternate I will require two phases during construction to reduce impacts to adjacent properties and minimize construction time. The conceptual construction phasing plan can be found in Appendix E. Phase I will include the construction of the storm sewer, along the south side of Memorial Drive. There will be one 10 -foot lane in each direction with a continuous two way left turn lane so that access to commercial and residential properties are maintained. This will require approximately 10 -feet of temporary asphalt to be installed along the northern side of Memorial Drive.

Phase II will include the construction northern side of Memorial Drive including service connections. To maintain the same 3 lane configuration as Phase I, the proposed median curbs cannot be constructed until Phase II is completed, at which time one lane in each direction can be maintained on the newly constructed pavement. According to City's rolling closure rule, the contractor's work zone cannot exceed more than 800 feet at one time.

During detailed design, METRO will be contacted to coordinate the traffic control phases with their bus routes/bus stops.

Exhibit 3.2 Alternative II Typical Section

3.3 Alternative III Typical Section

3.6 Landscaping Alternative

Three alternatives for landscaping improvements were considered. The three levels of proposed improvements are as follows:

Level 1 - (High Level of Amenities)

- 6-foot wide sidewalks with decorative pavers alternating with broom finished concrete;
- 10-foot wide shared use path with broom finished concrete,
- Additional tree and shrub plantings;
- Enhanced Pedestrian lighting along entire project limits.

Level 2 - (Medium Level of Amenities)

- 6-foot wide sidewalks with decorative pavers alternating with broom finished concrete;
- Limited tree or shrub plantings
- No pedestrian lighting

Level 3 - (Low Level of Amenities, Minimum City Standard)

- City standard 5-foot wide broom finished concrete sidewalks
- No additional tree or shrub plantings
- No pedestrian lighting

To satisfy the quality of life objective, Level 1 - High Level Landscaping Amenities are recommended along Memorial Drive. This will provide a pleasing aesthetic value to the area.

3.7 Street Lighting

Existing standard City of Houston street lights exist along Memorial Drive. Proposed street lighting will be included during the detailed design phase along Memorial Drive from Beltway 8 Frontage Road to Tallowood Road.

3.8 Recommended Roadway Improvements

Roadway recommendations are based on Roadway geometrics, pedestrian facilities and recommendations from the drainage and traffic portions of this report. The impacts to right-of-way, trees, and underground utilities have also been considered. Alternative I, is the most reasonable and feasible alternative. It will provide improved mobility, safety and efficiency along the project alignment.

The recommended 6 'foot wide sidewalks and 10 -foor wide shared path will further satisfy the quality of life objective. Alternative I also coincides with the comments and concerns expressed by the public in the April 2015 Public Town Hall Meeting. Refer to Appendix B for 30\% Plan and Profile sheets depicting Alternative I.

4.0 Traffic Analysis and Recommendations

4.1 Background

This study analyzes the proposed improvements for Memorial Drive between the Beltway 8
Southbound (SB) frontage road and Tallowood Road. Proposed improvements along Memorial Drive include:

- Adding a 20ft-24ft median in the center of Memorial Drive
- Installing left turn bays with a minimum of 100 feet of storage capacity at most median openings
- Improving turn-radii at driveways and intersections
- Reconstructing traffic signals at Beltway 8 frontage roads and West Bough Lane
- Upgrading pedestrian ramps to meet Americans with Disabilities Act (ADA) requirements

4.2 Field Investigation and Data Collection

LAN collected data with respect to intersection geometry, striping, signage, land use, access management, and traffic control features during a field visit on February 5, 2015. Twenty-four-hour traffic volumes and turning movement counts (TMCs) were collected from January 13-21, 2015

4.2.1 Existing Roadway Geometry

Memorial Drive is a four-lane undivided road with a posted speed of 35 mph and is designated as a four-lane major thoroughfare in the 2013 City of Houston (COH) Major Thoroughfare and Freeway Plan (MTFP).
provides the existing roadway geometry for Memorial Drive cross-streets and driveways. A summary of lane configuration and turning movements by approach along Memorial Drive is shown in Appendix D

No designated on-street parking areas were observed along any portion of Memorial Drive. Pedestrian and bicycle facilities are limited to the discontinuous, inadequate sidewalks in both directions from the Beltway 8 to Tallowood Road. Bicycle traffic in the street shares the lane with vehicular traffic due to the absence of bicycle lanes.

The Beltway 8 northbound and southbound frontage roads run parallel to the Sam Houston Tollway mainlanes. Both of the Beltway 8 frontage roads are three lanes with a posted speed of 40 mph . These frontage roads intersect Memorial Drive and are separated by a $200-\mathrm{ft}$ at grade overpass over the Sam Houston Tollway mainlanes. Medians on each side of the
overpass separate the U-turn only lanes from Memorial Drive traffic. Nearby mainlane access from the Beltway 8 frontage roads is located approximately 800 feet south of Memorial Drive

Table 4.1: Existing Roadway Geometry for Memorial Drive Cross-Streets

Cross-Street	Lanes	Intersection Type	Posted Speed Limit
Beltway 8 FR (SB)	3	$4-l e g$	40 mph
Beltway 8 FR (NB)	3	$4-l e g$	40 mph
West Bough Lane	2	$4-l e g$	Not posted
Old Oaks Drive* $^{\text {Huntingwick Drive* }}$	2	T-intersection	Not posted
Boheme Drive*	2	T-intersection	Not posted
Memorial Bend* $_{\text {Hollow Drive* }}^{\text {Somerset Place* }}$	2	T-intersection	30 mph
Legend Lane*	2	T-intersection	Not posted
Tallowood Road*	2	T-intersection	Not posted

* Unsignalized intersection

4.2.2 Existing Adjacent Land Use and Accessibility

Adjacent land use includes Town \& Country Village, an upscale retail plaza located north of Memorial Drive between Beltway 8 and Broken Bough Drive/West Bough Lane. Major attractors in the plaza include Randall's, upscale restaurants, and Barnes \& Noble. Shared retail and dining buildings extend from Memorial Drive to as far north as City Centre. Primary access to Town \& Country Village is off Memorial Drive to the south, Beltway 8 to the west, Kimberley ane to the north, and Broken Bough Drive/West Bough Lane to the east. Primary truck access to the loading docks north of Randall's is off of West Bough Lane.

Many drivers continue along the Beltway 8 northbound frontage road to access City Centre or $\mathrm{H}-10$, each of which is located approximately half a mile north of Memorial Drive. Bendwood Park and Wildcat Way School are located on Kimberley Lane, north of Memorial Drive, and can be accessed from Memorial Drive via West Bough Lane. Bendwood Park contains playgrounds, basketball courts, a soccer field, picnic areas, and two tennis courts.

Boheme Drive serves as a cut-through street for vehicles to access the Beltway 8 frontage roads A small shopping and dining plaza is located on the south side of Boheme Drive, while local streets leading to residences are located on the north side of Boheme Drive. Both Hollow Drive and Frostwood Drive are two-lane local streets that serve residential areas. Single-family homes are located to the northeast and south of the area, with townhouses to the west of Boheme Drive.

Three major traffic generators are located about one mile north of the intersection of Memorial Drive and Gessner Road: Memorial City Mall, Memorial Hermann Medical Center, and IH-10. The intersection experiences lengthy vehicular queues heading southbound during the A.M. peak hour and northbound during the P.M. peak hour

4.2.3 Existing Traffic Signal

There are two existing signalized intersections with Memorial Drive in the study area

1. Beltway 8 FR (southbound) and Beltway 8 FR (northbound)
2. Broken Bough Drive//West Bough Lane

The intersection of Memorial Drive with the Beltway 8 frontage roads are controlled by one controller located in the southwest corner of Beltway 8 SB frontage road and Memorial Drive and uses VIVDS for vehicle detection for all approaches. Field observations confirmed three phase signal timing with a 120 -second cycle length, as signal timing plans were not available from TranStar.

Traffic signal timings were provided by Houston TranStar for Broken Bough/West Bough Lane and Memorial Drive. No offset is used for the intersection with a 120 -second cycle length, and video image vehicle detection system (VIVDS) is used for vehicle detection on all approaches. Left turns both northbound and southbound from Broken Bough Drive/West Bough Lane were permitted, while left turns on Memorial Drive eastbound and westbound were protected.

Existing traffic signal layouts can be found in Appendix D. Vegetation on the northwest corner of the intersection of Memorial Drive at the southbound Beltway 8 frontage road provides a visibility issue for pedestrians looking to cross the street at that corner. Additionally, an existing conduit is exposed atop the median separating the northbound U-turn lane and eastbound Memorial Drive through lanes, as seen in Figure 4.1.

Figure 4.1: Above-ground Conduit on Memorial Drive Overpass

4.2.4 Existing Traffic Volumes

24-hour tube counts and turning movement counts (TMCs) were collected for this study from on weekdays from Tuesday, January 13, 2015 and Wednesday, January 21, 2015. Data from the 24-hour counts turning movement count data is provided in Appendix D. TMCs were used to determine the weekday A.M. and P.M. peak hour periods, which were 7:30 A.M. - 8:30 A.M and 5:00 P.M. - 6:00 P.M, respectively. Turning movement counts for the AM and PM peak are depicted in Appendix D

4.2.2 Existing Pedestrian Volumes

Pedestrian volumes were collected as part of the TMCs recorded between January 13, 2015 and January 21, 2015 and can be found in Appendix D. At the Beltway 8 frontage roads, Broken Bough Drive/West Bough Lane, and Boheme Dive intersections, there was very little pedestrian activity. At each of these intersections, a maximum of 4 pedestrians were recorded
at each intersection during the AM and PM peak periods. At Hollow Drive intersection 5 pedestrians were recorded in the AM peak period and 9 pedestrians in the PM peak period

4.2.3 Existing Transit Service

METRO's new Reimagine Houston transit service plan was launched in August 2015. Transit service routes 161 (Wilcrest Express) and 162 (Memorial Express) travel within the study area limits and make several stops along the corridor. There are seven bus stops heading westbound on Memorial Drive and six bus stops heading eastbound on Memorial Drive. There are no existing bus shelters along Memorial Drive within the project limits. METRO will be contacted during the final design stage to coordinate new bus stop locations and routes in accordance with changes in roadway geometry on Memorial Drive.

4.3 Methodology

Methodology used for this traffic study is as follows:

- Site investigation and observation
- Collecting Average Daily Trips (ADTs) and TMCs at the study intersections
- Analyze existing and future conditions for access management and Level-of-Service (LOS)
- Mitigate substandard conditions
- Document analysis and findings and provide recommendations

4.4 Existing Condition Assessment

Existing condition assessment for intersection delays, crash analysis, and access management is presented in this section of the report. Highway Capacity Manual (HCM) Intersection Control Delays and HCM Intersection Level-of-Service (LOS) were determined for all intersections within the study area. Crash analysis and access management techniques were evaluated at locations with relatively high crash incidents.

4.4.1 Intersection Delays

Traffic simulation was completed using Synchro 9.0 and SimTraffic 9.0. Synchro is a macroscopic and traffic signal optimization program, and SimTraffic is a micro-simulation program.
Intersection and approach Level of Service (LOS) are based off control delay, measured in seconds per vehicle (sec/veh). Control delay is the portion of total delay attributed to the traffic control used at an intersection. Components of control delay are initial deceleration delay, queue move-up time, stopped delay, and final acceleration. The concept of Level of Service (LOS), as explained in the Highway Capacity Manual (HCM 2010), is similar to the
grading system in school - A is the best, F is the worst. Table 4.2 provides the LOS criteria for both unsignalized and signalized intersections.

Table 4.2: LOS Criteria for Signalized and Unsignalized Intersections

LOS	Control Delay (sec/veh)		LOS Description
	Signalized Intersection	Unsignalized Intersection	
A	≤ 10	≤ 10	Good progression and short cycle lengths, most vehicles do not stop
B	>10 and ≤ 20	>10 and ≤ 15	Good progression and / or short cycle length, more vehicles stop
C	>20 and ≤ 35	>15 and ≤ 25	Fair progression and / or longer cycle lengths, some cycle failures
D	>35 and ≤ 55	>25 and ≤ 35	Congestion becomes noticeable, high volume to capacity ratio
E	>55 and ≤ 80	>35 and ≤ 50	Limit of acceptable delay, poor progression, long cycles, and / or high volume to capacity ratio
F	>80	>50	Unacceptable to drivers, oversaturated conditions, volume greater than capacity, poor progression and long cycle lengths

LOS breakpoints and methodology for stop-controlled intersections are different than signalized intersections, as drivers expect different levels of performance from different kinds of transportation facilities. Drivers expect higher traffic volumes and delays at signalized intersections than at unsignalized intersections. The control delay threshold for any given LOS is less for an unsignalized intersection than it is for a signalized intersection. Additionally, is less for an unsignalized intersection than it is for a signalized intersection. Additionally, approaches and major-street left turns. In this report, the worst of the minor street approaches and major street left turns is reported in the results.

The City's Infrastructure Design Manual states that, "The need for mitigation is determined by using the qualitative measure Level-of-Service (LOS). The threshold of significance for transportation facilities on the area street systems is LOS D." LOS D is considered acceptable for this study

Existing Conditions A.M. and P.M. peak hour traffic models were developed using Synchro 9.0 for current year 2015. Existing Conditions models served as a calibration point to provide a baseline for comparing models for future years that evaluate no-build Conditions and proposed improvement alternatives. Intersection analysis results were quantified using two measures of effectiveness (MOEs): $95^{\text {th }}$-percentile queue lengths and LOS

4.4.2 Crash Analysis

A crash analysis was completed with 2014 accident data from the Houston Police Department. Detailed crash type data (i.e., high-speed, left-turn, involving pedestrians/cyclists, etc.) was not available. Crashes were identified in the following categories:

- Fatal
- Incapacitating
- Non-incapacitating
- Possible injury
- Non-injury
- Unknown severity

There were 27 total crashes at intersections along Memorial Drive in 2014, none of which were fatal. Three crashes occurred at unsignalized intersections (Boheme Drive and Hollow Drive), while the remainder occurred at signalized intersections.

Over half of the total crashes occurred at the northbound and southbound Beltway 8 frontage roads, with 9 and 14 crashes, respectively. Of the 27 crashes, 16 resulted in no injury to the driver or passengers, six involved non-capacitating injuries, and one was classified as nondriver or passengers, six involved non-capacitating injuries, and one was classified as intersections by crash type in 2014, the most recently available year of data, as well as graphical depiction in Figure 4.2.

Table 4.3: Number of Crashes at Memorial Drive Intersections by Crash Type in 2014
Table 4.3: Number of Crashes at Memorial Drive Intersections by Crash Type in 2014

Cross-Street	Fatal	Incapacitating	Non- Incapacitating	Possible Injury	Non- Injury	Unknown Severity
Total						
Beltway 8 FR (SB)	0	1	2	3	8	0
Beltway 8 FR (NB)	0	0	1	2	6	0
West Bough Lane	0	0	0	0	1	9
Boheme Drive	0	0	1	1	0	0
Hollow Drive	0	0	0	0	1	0
Tallowood Road	0	0	0	0	0	0
Total	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 6}$	$\mathbf{0}$

Figure 4.2: Crashes at Signalized/Unsignalized Intersections on Memorial Drive in 2014
Crash data obtained for this study was used to identify locations where access management may reduce opportunities for crashes in the future. Access management techniques are used in roadway design to preserve roadway efficiency and enhance traffic safety, including:

- Closing or modifying median openings to restrict turning movements
- Restricting turning movements by closing or modifying minor street or private driveways
- Adding or extending left-turn lanes
- Improving turn radii
- Constructing shared access between property owners
- Consolidating driveways where multiple driveways access the same property

Access management is the systematic control of location, spacing, design, and operation of driveways, medians, interchanges, and street connections to a roadway. Among the benefits associated with corridor access management are:

- Improved safety and operations on conflicting movements
- Reduced crash rates
- Reduced delay and congestion
- Improved aesthetics
- Opportunities to improve pedestrian and bicycle travel
4.5 Public Meetings

TIRZ 17 identified Memorial Drive as one of its key capital improvement projects to focus on in FY 2015, as it would make an immediate significant impact to the community. A part of April 14 1's ongoing efforts to keep the community informed, a public meeting was held on the public on the project and solicit input from the public. The event included a Powerpoint presentation, followed and pn the project's drainage and roadway recommendations. The informational stations were interactive to allow the participants to provide input and ask engineers questions. fermation gatherd from the mens ins ins . operations and traffic flow throughout the study area. See Appendix D for a list of public questions and responses.
4.6 Analyzed Alternatives and Traffic Growth

4.6.1 No-Build Condition

No Build conditions consisted of the existing roadway network modeled with design year traffic volumes for the A.M. and P.M. weekday peak hour conditions (using Year 2015 volumes from the recorded TMCs and growth rates from H-GAC travel demand forecasts to reflect future year conditions with no changes to roadway geometry.

The only pending or authorized building permit in the area provided by the City was Memorial Green, a future commercial/residential site just east of Legend Lane. Construction for the 83,041 ft^{2} building and parking garage began in August 2015.

The study area from the Traffic Impact Analysis (TIA) prepared for the Memorial Green Development was from West Bough Lane to Gessner Road. Site-generated traffic volumes as listed in the TIA were applied to the opening year 2016 networks from West Bough Lane to Tallowood Drive

City's Infrastructure Design Manual (IDM). A 24 -ft median was added along Memorial Drive and all mainlanes were set at 11 ft . Every median opening provided at least 100 ft of left-turn storage in both directions at all cross-streets, except for the following turning movements:

- SBL onto Memorial Drive at Town \& Country Village (east driveway)
- SBL onto Memorial Drive at Town \& Country Village (west driveway)
- WBL onto Memorial Drive at Huntingwick Drive

Huntingwick Drive was not provided median access to make left turns onto Memorial Drive due to the proximity to Old Oaks Drive and insufficient storage space. Existing left turning traffic will be required to turn right and make a U-turn further downstream in place of the leftturn movement. Proposed turning movements and lane configurations by approach are shown in Appendix D.

4.6.3 Opening Year and Future Year Traffic Growth

Alternatives were analyzed for projected existing 2015 conditions, opening year 2016, and future year 2030 conditions and were compared to no build Conditions for corresponding years. All scenarios were analyzed for both A.M. and P.M. peak hour traffic conditions. Ten scenarios were analyzed:

- 2015 A.M. Peak Hour - Existing
- 2016 A.M. Peak Hour - No Build
- 2016 A.M. Peak Hour - Build
- 2030 A.M. Peak Hour - No Build
- 2030 A.M. Peak Hour - Build
- 2015 P.M. Peak Hour - Existing
- 2016 A.M. Peak Hour - No Build
- 2016 A.M. Peak Hour - Build
- 2030 P.M. Peak Hour - No Build
- 2030 P.M. Peak Hour -- Build

Projected traffic volumes for opening year 2016 and future year 2030 were calculated using growth rates based upon travel demand forecasts furnished by the Houston-Galveston Area Council (H-GAC). Opening year and future Build and No Build volumes were by applying the average annualized growth rate of 0.84 percent over a 15 -year period, as seen in Table 4.4

4.6.2 Build Condition

The preferred alternative was modeled in the Build condition. All calculations and assumptions in the Build condition were made in accordance to the July 2015 update of the

4.7.1 2015 A.M Peak - Existing Condition

The intersections of Memorial Drive with the southbound and northbound Beltway 8 frontage roads operate at LOS D and LOS F, respectively, during the A.M. peak hour. This is due to a high number of vehicles using the frontage roads to access Sam Houston Tollway travelling to work each morning. Overall delay at the SB and NB frontage road intersections was 38.8 seconds and 71.0 seconds, respectively. All approaches on Beltway 8 SB frontage road operated at a LOS D or better, while the NB frontage road and WB Memorial approaches on operated at LOS F
The intersection of Broken Bough Drive/West Bough Lane at Memorial Drive operated at LOS D overall, but both cross street approaches operated at LOS F. Through traffic on Memorial Drive operated at LOS C and LOS B for the eastbound and westbound approaches, respectively.

All stop-controlled intersections in the study area performed at LOS D or better during the existing A.M. peak hour.

4.7.2 2016 A.M Peak - No Build Condition

In 2016, there is a decreased operational performance at seven of the eight unsignalized intersections along the corridor by at least one LOS letter, six of which were LOS E or worse.

4.7.3 2016 A.M Peak - Build Condition

In 2016, three of the eight unsignalized intersections along the corridor will perform at LOS E or less. The presence of left-turn medians resulted in four intersections with a higher LOS than their 2016 No Build condition counterpart. Eliminating left turns from Huntingwick Drive onto Memorial Drive improved that intersection's operational performance from LOS D to $\operatorname{LOS} B$.

4.7.4 2030 A.M Peak - No Build Condition

With traffic volumes projected to increase by 0.84 percent annually between 2015 and 2030, operational performance at both Beltway 8 frontage road intersections with Memorial Drive is expected to further deteriorate. Operational performance on Beltway 8 NB is expected to decrease from LOS D to LOS E during the 2030 A.M No Build peak hour. With no right-only lane, lengthy queues will also form in the southbound frontage road. The overall delay for the entire intersection was 71.3 seconds.

Traffic congestion was still unacceptable at the northbound frontage road intersection, with an overall intersection delay of 120.3 seconds and LOS F. Eastbound through traffic traveling over the Sam Houston Tollway overpass on Memorial Drive is expected to operate at LOS D with 51.9 seconds of average delay in the 2030 A.M. No Build peak hour.

Seven of the eight stop-controlled intersections decreased in operational performance to LOS E or LOS F, with only Hollow Drive performing as LOS D. The innermost lane along Memorial

Drive is a shared left-through movement along most of the corridor. Left-turning vehicles that were unable to turn left due to conflicting through movements resulted in delays and lower LOS at each of these intersections.

4.7.5 2030 A.M Peak - Build Condition

There was no traffic operational performance improvements at the intersection of Memorial and Beltway 8 frontage roads because no changes were made to the Sam Houston Tollway overpass. Intersection control delay at Beltway 8 SB and NB are expected to result in LOS E and LOS F, respectively, in the 2030 A.M. peak hour Build condition.

Due to the projected volumes, Synchro 9.0 results show that the traffic operational performance at nearly every stop-controlled intersection exceeds the City's acceptable LOS criteria. However, the Synchro 9.0 software does not consider the benefits associated with enhanced access management and safety improvements, such as adding new medians. Leftturn movements will be free to turn left from Memorial Drive onto minor streets without inhibiting through traffic as a result of the newly installed storage bays. This significantly reduces the number of potential conflict points, thus decreasing the likelihood of crashes when turning left across Memorial Drive.
Huntingwick Drive was not provided median access to make left turns onto Memorial Drive due to the proximity to the Old Oaks Drive intersection as well as insufficient storage space. Instead, drivers were required to turn right and make a U-turn further downstream in place o the left-turn movement. LOS increased from F to B at Huntingwick Drive but remained the hen Build condition improvements were successful at this location.

Intersection		2015 A．M．Peak－－Existing				2016 A．M．Peak－－No Build				2016 A．M．Peak－－Build				2030 A．M．Peak－－No Build				2030 A．M．Peak－－Build			
							砍			$\begin{aligned} & \text { ᄃ } \\ & \text { dì } \\ & \text { 륭 } \end{aligned}$	드출				$\begin{aligned} & \frac{5}{\tilde{W}} \\ & \text { on o } \\ & \text { 辰 } \end{aligned}$				$\begin{aligned} & \text { ᄃ } \\ & \text { ©in } \\ & \text { 克 } \end{aligned}$		
Memorial Drive ＠ Beltway 8 （Southbound）	EB	43.6	D	38.8	D	47.4	D	43.3	D	47.4	D	43.8	D	56.7	E	71.3	E	56.7	E	71.3	E
	WB	43.3	C			44.0	D			46.9	D			57.3	E			57.3	E		
	NB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
	SB	36.8	D			39.8	D			39.8	D			87.8	F			87.8	F		
Memorial Drive ＠ Beltway 8 （Northbound）	EB	36.3	D	71.0	F	37.4	D	71.9	E	37.4	D	71.7	E	51.9	D	120.3	F	51.9	D	119.5	F
	WB	102.2	F			109.0	F			103.4	F			112.3	F			106.8	F		
	NB	80.5	F			79.7	E			80.9	F			160.2	F			160.2	F		
	SB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
Memorial Drive Broken Bough Drive	EB	26.1	C	38.5	D	15.8	B	38.1	D	31.4	B	45.1	D	21.3	C	28.6	C	23.2	C	30.2	C
	WB	13.2	B			15.0	B			15.0	B			24.8	C			26.7	C		
	NB	134.9	F			159.2	F			159.2	F			56.9	E			56.9	E		
	SB	98.0	F			121.3	F			121.3	F			50.7	D			50.7	D		
Memorial Drive ＠ Old Oaks Drive	EB	－－－	－－－	2.4	D	－－－	－－－	3.0	E	－－－	－－－	2.3	E	－－－	－－－	6.3	F	－－－	－－－	3.9	F
	WB	32.9	D			46.7	E			39.8	E			108.7	F			72.0	F		
	NB	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	SB	1.3	－－－			1.4	－－－			0.7	－－－			1.9	－－－			0.7	－－－		
Memorial Drive Huntingwick Drive	EB	－－－	－－－	1.3	C	－－－	－－－	1.6	D	－－－	－－－	0.4	B	－－－	－－－	2.6	F	－－－	－－－	0.4	B
	WB	24.6	C			31.8	D			11.8	B			52.1	F			12.6	B		
	NB	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	SB	0.4	－－－			0.4	－－－			0.0	－－－			0.6	－－－			0.0	－－－		
Memorial Drive ＠ Boheme Drive	EB	21.9	C	3.5	C	98.8	G	17.2	F	80.7	F	13.9	F	298.2	F	50.5	F	225.5	F	38.0	F
	WB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
	NB	1.7	－－－			2.5	－－－			1.6	－－－			3.1	－－－			1.8	－－－		
	SB	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
Memorial Drive Memorial Bend	NE	－－－	－－－	0.6	D	－－－	－－－	0.9	E	－－－	－－－	0.6	D	－－－	－－－	11.1	E	－－－	－－－	0.9	E
	SE	0.0	－－－			－－－	－－－			0.1	－－－			0.4	－－－			0.1	－－－		
	NW	0.3	－－－			0.4	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	SW	34.8	D			48.0	E			27.6	D			40.6	E			39.3	E		

		2015 A．M．Peak－－Existing				2016 A．M．Peak－－No Build				2016 A．M．Peak－－Build				2030 A．M．Peak－－No Build				2030 A．M．Peak－－Build			
Intersection			$\begin{aligned} & \text { ᄃ } \\ & \text { ָin } \\ & \text { 京 } \end{aligned}$				$\begin{aligned} & \text { ᄃ } \\ & \text { ox } \\ & \text { 京 } \end{aligned}$			듳 흘 른				듳 흘 륭	$\begin{aligned} & \text { ᄃ } \\ & \text { 을 } \\ & \text { 京 } \end{aligned}$				$\begin{aligned} & \text { ᄃ } \\ & \text { ox } \\ & \text { 京 } \end{aligned}$		
Memorial Drive ＠ Hollow Drive	EB	0.1	－－－	0.3	C	0.2	－－－	0.4	C	0.1	－－－	0.4	C	0.3	－－－	0.7	D	0.1	－－－	0.6	D
	WB	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	NB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－	－－－		
	SB	18.4	C			23.8	C			23.5	C			32.8	D			32.8	D		
Memorial Drive ＠ Somerset Place	EB	0.0	－－－	1.6	C	0.0	－－－	2.7	E	0.0	－－－	2.0	D	0.0	－－－	5.8	F	0.0	－－－	3.5	F
	WB	1.0	－－－			2.2	－－－			1.0	－－－			3.0	－－－			1.1	－－－		
	NB	23.9	C			39.5	E			34.3	D			98.0	F			65.3	F		
	SB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
Memorial Drive ＠ Legend Lane	EB	0.0	－－－	0.9	D	0.0	－－－	1.2	E	0.0	－－－	1.0	E	0.0	－－－	2.3	F	0.0	－－－	1.7	F
	WB	0.6	－－－			0.8	－－－			0.3	－－－			1.1	－－－			0.3	－－－		
	NB	30.8	D			41.9	E			39.9	E			81.1	F			72.2	F		
	SB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
Memorial Drive ＠ Tallowood Road	EB	2.5	－－－	3.3	D	3.0	－－－	4.9	F	1.1	－－－	2.5	D	4.4	－－－	4.7	E	1.2	－－－	4.8	F
	WB	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	NB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
	SB	32.5	D			58.0	F			33.4	D			41.1	E			73.4	F		

4.8 Traffic Analysis - P.M. Peak Hour

The 2010 Highway Capacity Manual was used by Synchro 9.0 to report Measurement o Effectiveness (MOEs) at all cross-streets and major driveways in the study area during the P.M. peak hour. These metrics included:

- Approach LOS
- Approach control delay (sec)
- Overall intersection LOS
- Overall intersection delay (sec)

All traffic signal timings were optimized using the COH^{\prime} s standard cycle length and assumed future signal maintenance. Complete Synchro 9.0 output files are found in tables in Appendix D. Table 4.7 summarizes the MOEs for each intersection in the study area.

4.8.1 2015 P.M Peak - Existing Condition

Operational performance at all three signalized intersections was unacceptable in accordance with the City's Infrastructure Design Manual. The intersections of Memorial Drive at the northbound and southbound Beltway 8 frontage roads both operate at LOS E during the P.M peak hour. This is due to a high number of vehicles using the frontage roads to access Sam Houston Tollway as they return from work each evening. Overall delay at the SB and NB frontage road intersections was 71.4 seconds and 79.4 seconds, respectively. The intersection of Memorial Drive at Broken Bough Drive/West Bough Lane operated at LOS E overall with an average overall intersection delay of 59.3 seconds.
Only three of the stop-controlled intersections in the study area - Huntingwick Drive,
Memorial Bend Drive, and Somerset Place - performed at LOS D or better during the existing P.M. peak hour. The longest control delay for any left turning movement was 127.6 seconds for SB vehicles turning left out of Old Oaks Drive onto Memorial Drive.

4.8.2 2016 P.M Peak - No Build Condition

In 2016, the majority of the intersections oprerated at LOS F. Traffic operational performance decreased from LOS D to LOS E at Huntingwick Drive and LOS D to LOS F at Memorial Bend.

4.8.3 2016 P.M Peak - Build Condition

With traffic volumes projected to increase by 0.84 percent annually between 2016 and 2030 operational performance at both Beltway 8 frontage road intersections with Memorial Drive is expected to further deteriorate. Traffic congestion was still unacceptable at the northbound frontage road intersection, with an overall intersection delay of 82.3 seconds and LOS F.

Signal timing was optimized at all signalized intersections, resulting in acceptable operational performance at the intersection of Memorial Drive and Broken Bough Drive/West Bough Lane This signalized intersection is expected to experience 38.6 seconds of control delay and operate at LOS D in the 2016 P.M. Build condition, assuming optimal signal timing.
Seven of the eight stop-controlled intersections decreased in operational performance to LOS E or LOS F, with only Huntingwick Drive performing at LOS C. The Synchro 9.0 software does not consider the benefits associated with enhanced access management and safety
improvements, such as adding new medians. Left-turn movements will be free to turn left from Memorial Drive onto minor streets without inhibiting through traffic as a result of the newly installed storage bays. This significantly reduces the number of potential conflict points, thus decreasing the likelihood of crashes when turning left across Memorial Drive

4.8.4 2030 P.M Peak - No Build Condition

With traffic volumes projected to increase by 0.84 percent annually between 2015 and 2030, operational performance at both Beltway 8 frontage road intersections with Memorial Drive is expected to further deteriorate. All turning movements at the SB frontage road intersection are expected to operate at LOS E or worse and experience lengthy queues for both through and left turning movements. With no right-only lane, queues will likely reach over $1,000 \mathrm{ft}$ on the southbound frontage road. The overall delay for the entire intersection was 106.7 seconds.
Traffic congestion was still unacceptable at the northbound frontage road intersection, with an overall intersection delay of 107.8 seconds and LOS F. Eastbound through traffic heading over the Sam Houston Tollway overpass on Memorial Drive managed to operate at LOS D with 51.8 seconds of average delay in the 2030 P.M. No Buld peak hour. Both the approach.
All of the eight stop-controlled intersections decreased in operational performance to LOS F. The innermost lane along Memorial Drive is a shared left-through movement along most of the corridor. Left-turning vehicles that were unable to turn left due to conflicting through movements resulted in delays and unacceptable LOS at each of these intersections.

4.8.5 2030 P.M Peak - Build Condition

There was no traffic operational performance improvements at the intersection pf Memorial Drive and Beltway 8 frontage roads because no changes were made to the Sam Houston Tollway overpass. All approaches except westbound along Memorial Drive are expected to perform at LOS E or less in the 2030 P.M. peak hour Build condition.

Signal timing was optimized at all signalized intersections, resulting in acceptable operational performance at the intersection of Memorial Drive and West Bough Lane. This signalized intersection is expected to experience 46.7 seconds of control delay and operate at LOS D in the 2030 P.M. Build condition, assuming optimal signal timing.

Due to the projected volumes, Synchro 9.0 results show that the traffic operational performance at nearly every stop-controlled intersection exceeds the City's acceptable LOS criteria. However, the Synchro 9.0 software does not consider the benefits associated with enhanced access management and safety improvements, such as adding new medians. Leftturn movements will be free to turn left from Memorial Drive onto minor streets without inhibiting through traffic as a result of the newly installed storage bays. This significantly reduces the number of potential conflict points, thus decreasing the likelihood of crashe when turning left across Memorial Drive.
Huntingwick Drive was not provided median access to make left turns onto Memorial Drive due to insufficient storage space. Instead, drivers were required to turn right and make a Uturn further downstream in place of the left-turn movement. LOS improved from LOS F to LOS C at Huntingwick Drive but remained the same as in the 2030 No Build scenario for the remaining seven unsignalized intersections, suggesting the improvements were successful at is location

Table 4．7：Summary of MOEs during P．M．Peak Hour by Alternative

	$\begin{aligned} & \stackrel{5}{\tilde{N}} \\ & \text { oì } \\ & \frac{2}{2} \end{aligned}$	2015 P．M．Peak－－Existing				2016 P．M．Peak－－No Build				2016 P．M．Peak－－Build				2030 P．M．Peak－－No Build				2030 P．M．Peak－－Build			
Intersection			$\begin{aligned} & \text { ᄃ } \\ & \text { ©ì } 0 \\ & \text { 京 } \end{aligned}$				$\begin{aligned} & \text { 気 } \\ & \text { ìien on } \\ & \text { in } \end{aligned}$			들 흘 웅	$\begin{aligned} & \text { ᄃ } \\ & \text { ©in } \\ & \text { 京 } \end{aligned}$										
Memorial Drive ＠ Beltway 8 （Southbound）	EB	54.8	D	71.4	E	63.4	E	83.3	F	59.2	E	82.3	F	77.2	E	106.7	F	79.0	E	108.8	F
	WB	68.2	E			68.3	E			68.8	E			83.6	F			83.7	F		
	NB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
	SB	81.2	F			102.9	F			102.7	F			138.5	F			141.9	F		
Memorial Drive ＠ Beltway 8 （Northbound）	EB	35.5	D	79.4	E	34.5	C	90.3	F	34.3	C	91.0	F	43.4	D	107.8	F	48.8	D	113.8	F
	WB	101.8	F			137.4	F			139.5	F			183.1	F			192.8	F		
	NB	82.4	F			82.1	F			82.2	F			85.5	F			89.3	F		
	SB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
Memorial Drive ＠ Broken Bough Drive	EB	15.0	B	37.2	D	13.5	B	112.1	F	16.3	B	38.6	D	23.2	C	46.9	D	23.2	C	46.7	D
	WB	19.7	B			25.7	C			22.6	C			51.2	D			51.2	D		
	NB	52.5	D			370.3	F			55.9	E			38.0	D			38.0	D		
	SB	132.7	F			473.1	F			138.8	F			80.5	F			79.7	E		
Memorial Drive ＠ Old Oaks Drive	EB	－－－	－－－	5.1	F	－－－	－－－	5.2	F	－－－	－－－	4.3	F	－－－	－－－	17.7	F	－－－	－－－	13.0	F
	WB	127.6	F			196.6	F			110.1	F			447.1	F			340.1	F		
	NB	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	SB	1.5	－－－			1.7	－－－			0.0	－－－			2.3	－－－			0.6	－－－		
Memorial Drive ＠ Huntingwick Drive	EB	－－－	－－－	1.0	D	－－－	－－－	1.3	E	－－－	－－－	0.3	C	－－－	－－－	2.3	F	－－－	－－－	0.3	C
	WB	31.8	D			46.4	E			15.4	C			92.8	F			17.4	C		
	NB	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	SB	1.0	－－－			1.2	－－－			0.0	－－－			1.9	－－－			0.0	－－－		
Memorial Drive ＠ Boheme Drive	EB	75.8	F	8.6	F	143.2	F	12.8	F	359.3	F	24.4	F	440.9	F	32.8	F	1079.6	F	71.6	F
	WB	－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－			－－－	－－－		
	NB	5.4	－－－			5.7	－－－			2.0	－－－			6.7	－－－			2.4	－－－		
	SB	0.0	－－－			0.0	－－－			3.0	－－－			0.0	－－－			0.0	－－－		
Memorial Drive ＠ Memorial Bend	NE	－－－	－－－	0.6	D	－－－	－－－	0.9	F	－－－	－－－	0.5	F	－－－	－－－	1.9	F	－－－	－－－	0.9	F
	SE	1.0	－－－			1.3	－－－			0.4	－－－			2.4	－－－			0.4	－－－		
	NW	0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－			0.0	－－－		
	SW	34.2	D			55.9	F			52.8	F			124.7	F			98.7	F		

Table 4.7: Summary of MOEs during P.M. Peak Hour by Alternative (continued)

Intersection	$\begin{aligned} & \stackrel{5}{\tilde{N}} \\ & \text { 亯 } \\ & \frac{2}{4} \end{aligned}$	2015 P.M. Peak -- Existing				2016 P.M. Peak -- No Build				2016 P.M. Peak -- Build				2030 P.M. Peak -- No Build				2030 P.M. Peak -- Build			
																			들 을 芜		
	EB	0.6	---			1.1	---			0.2	---			1.5	---			0.3	---		
Memorial Drive	WB	0.0	---			0.0	---			0.0	---			0.0	---			0.0	---		
Hollow Drive	NB	---	---	0.7	E	---	---	6.7	F	---	---	1.5	F	---	---	4.8	F	---	---	3.8	F
	SB	46.5	E			148.8	F			135.5	F			385.7	F			331.2	F		
	EB	0.0	---			0.0	---			0.0	---			0.0	---			0.0	---		
Memorial Drive	WB	0.6	---	1.0	D	0.2	---		D	0.3	---	1.1	E	0.5	---	1.8	F	0.5	---	2.1	F
Somerset Place	NB	26.3	D	1.0	D	33.6	D	0.7	D	38.8	E	1.1	E	66.3	F	1.8	F	79.9	F	2.1	F
	SB	---	---			---	---			---	---			---	---			---	---		
	EB	0.0	---			0.0	---			0.0	---			0.0	---			0.0	---		
Memorial Drive	WB	0.8	---		E	2.1	---			0.1	---			0.1	---		F	0.1	---		
	NB	38.8	E	0.9	E	81.6	F	2.2	F	48.0	E	0.6	E	75.2	F	1.0	F	77.9	F	1.0	F
	SB	---	---			---	---			---	---			---	---			---	---		
	EB	3.1	---			4.1	---			1.3	---			7.2	---			1.6	---		
Memorial Drive	WB	0.0	---	3.7	F	0.0	---	8.8	F	0.0	---	49	F	0.0	---			0.0	---		
	NB	---	---	3.7	F	---	---	8.8	F	---	---	4.9	F	---	---	5.1	F	---	---	15.6	F
	SB	60.9	F			182.9	F			111.5	F			61.3	F			375.4	F		

4.9 Conclusion and Recommendations

Recommendations are based on the traffic operations analysis of existing and future conditions, as well as industry accepted access management practices. After analyzing the existing and future conditions, it was determined that the improvements identified in the year 2030 Build condition improves traffic flow and safety along Memorial Drive. The Build condition also improves the Approach and Intersection Delays more than the No Build condition. Furthermore, adding storage bays in the 24 -foot wide medians increases safety along the corridor and improves the flow of hrough traffic on Memorial Drive.

It was also recommended that the traffic signals at Beltway 8 northbound and southbound frontage roads and the Broken Bough Drive/West Bough Lane be replaced to meet current City criteria. The proposed signal improvements include new traffic signal poles and heads, ADA-compliant pedestrian wheel chair ramps, pedestrian push buttons and heads, and new controllers, with new conduit and wiring. Once the proposed traffic signal improvements are installed at the Broken Bough Drive/West Bough Lane intersection, it is recommended to be re-timed to improve cross treet delays. Due papacty Prorast, traffic signal layout improvements and an ith Beltway 8 frontage roads is mos costs associated with proposed signal design for these intersections are located in Appendix D

References

- Stanek, David and Ronald T. Milam. High Capacity Roundabout Analysis: Going Around in Circles. Presented at the Transportation Research Board National Roundabout Conference, Vail, CO, 2005
- Trafficware. Synchro Studio 7 User Guide, 2006
- East-West Mobility Improvement Study. Lockwood Andrews \& Newnam, Inc., 2006
- Highway Capacity Manual 2010. Transportation Research Board, 2011
- Traffic Impact Analysis City Centre V Office Building. Ward, Getz \& Associates, LLP. November 2013.
- Texas Transportation Institute. 2011. Pedestrian and Bicycle Study: State Highway 71 - Del Valle Area by Joan G. Hudson P.E. (Provided as part of the Technical Provisions).
- TxDOT, Traffic Operations Division. 2011. Traffic Signals Manual (revised April 2011). April, 1, 2011. 77 pp
- TxDOT, Traffic Operations Division. 2012. 2011 Texas Manual on Uniform Traffic Control Devices (revision 1). December 2012. 904 pp
- TxDOT, 2014(a). Preliminary Design Schematic for SH 71 (100\% Submittal). Produced by Atkins NA, Inc for TxDOT (sealed by Jerel L. Rackley, P.E. (\#98771) on May 6, 2012.
- TxDOT, 2014(b). Technical Provisions for SH 71 Toll Lanes from Presidential Blvd to East of SH 130 (Design-Build Project Execution Version). August 29, 2014. 464 pp.
- TxDOT (Traffic Operations Division) - Carol Thomas, 2014. E-mail message to Thomas Gerrity of Lockwood, Andrews \& Newnam with crash data at SH 71 (EBFR and WBFR) and Presidential Boulevard. October 8, 2014.

5.0 Drainage Analysis and Recommendations

5.1 Background

The primary drainage goal of the project is to improve the Memorial Drive conveyance system to meet City criteria. There are additional goals of maximizing benefit to the adjacent community and to reduce overland flows to neighboring areas. Finally, improvements to Memorial Drive are recommended to be designed such as to accommodate future regional solutions to the challenging stormwater problems within the W151 and W153 watersheds. To accomplish these goals, the installation of large reinforced concrete boxes was evaluated.

5.2 Scope

The purpose of the drainage portion of the PER is to identify the performance of the existing drainage infrastructure and document the system deficiencies, develop improvement alternatives to address the existing deficiencies and to accommodate the proposed roadway improvements, and address drainage impacts associated with the proposed improvements.

A summary of the tasks identified in the drainage scope of the PER are listed below and are described in more detail in later parts of this chapter:

- Analyze Overland Flow Patterns
- Prepare and Evaluate Existing Drainage Area Maps
- Existing Conditions Analysis
- Drainage Impact Analysis
- Proposed System Analysis
- Improvement Option Cost Estimates
- Proposed Conditions Storm Sewer Drainage Area Map Sheets
- 30% Plan and Profile Drawing Support - Drainage

5.3 Design Criteria

The design criteria for this project is based on City of Houston (City) standards which can be found in the City's Infrastructure Design Manual, dated July 2015. Storm Sewer design criteria can be found in Section 9.05 C of this manual

In accordance with City design standards, the first objective in the analysis of storm drainage along Memorial Drive is to evaluate the existing drainage system to identify, understand, and document existing drainage problems. After existing conditions are understood, improvement options can be designed that address the system deficiencies and meet the City design requirements. While requirements for final design submittals are extensive and include items such as velocity and inlet ponding width, two primary requirements are considered key when evaluating systems for preliminary engineering. For the 2-year event, the WSEL or HGL must be below the inlet gutter line elevation. For the extreme event or 100-year event, runoff must be conveyed through the storm sewer system and through overland sheet flow to a designated outfall location, and WSELs are to be maintained below the ROW line. The following criteria were used to evaluate Roadway cross-sections and then calculate the flow conveyed by the existing and proposed conditions:

- Streets shall be designed so that consecutive high points in the street will provide for a gravity flow of drainage to the ultimate outlet.
- The maximum depth of ponding at high points shall be 6 " above top of curb.
- The maximum depth of ponding at low points shall be 18 " above top of curb
- The maximum ponding elevation for the 100 -year event at any point along the street shall not be higher than the natural ground elevation at the right-of-way line, which may supersede the ponding depth criteria above.

Finally, an optimum detention solution was evaluated to determine maximum constructible storage volume within the proposed ROW, considering constructability and utility constraints. The cost of the optimal solution will be assessed and a recommendation will be made. Development of this alternative is consistent with the established TIRZ 17 mission statement that puts a priority on addressing drainage issues.

5.4 Existing Conditions Analysis

5.4.1 Analysis Extents

For drainage analysis and description purposes the drainage study area (Memorial Drive between Beltway 8 and Tallowood Road) is herein described as the "Memorial Drive System". The Memorial Drive System is primarily part of the W153-00-00 watershed and is generally drained by storm sewers and road side ditches extending along the project alignment draining to W153-00-00. However, the western limits of the project from West Bough Lane to Beltway 8 do not drain to W153-00-00 but rather drain to the Beltway 8 storm sewer trunkline before continuing downstream to Buffalo Bayou.

The project area was documented as having significant drainage deficiencies in the TIRZ 17 Regional Drainage Study (RDS) with reported flooding during the April 2009 and the more recent May 2015 rain events.
The analysis was done in two phases and for different purposes. The primary PER analysis discussed in this report is based on the RDS Update Infoworks Integrated Catchment Model (ICM). This model was used to gain insight into the overland flow issues and obtain a preliminary quantification of the impacts of the proposed roadway and drainage improvements. A secondary HouStorm analysis was developed in order to more accurately evaluate the inlets and smaller conveyance storm sewers per City criteria. The analysis extent can be seen in Appendix C: Exhibit 3.1 - Project/Analysis Extent and encompasses a sub-area of the original RDS update model extent. It contains the Memorial Drive System and the potentially impacted areas north and south of Memorial Drive and upstream and downstream of the W153 crossing. Results from the HouStorm analysis are presented in this report in subsequent sections.

5.4.2 Model Schematic

The existing model network was developed using City GIMS data and record drawings supplemented by survey within the project corridor, LiDAR, and information derived from field visits. The primary data source within the project corridor was from survey and available record drawings

5.4.3 Tailwater/Boundary Conditions

As described previously, the western limit of the Memorial Drive System west of West Bough Lane drains to the Beltway 8 storm sewer trunkline which in turn drains to Buffalo Bayou. The eastern limit of the system outfalls to the W153 system via a $48^{\prime \prime}$ storm sewer on the south side of Memorial. The $48^{\prime \prime}$ line connects to an existing $9^{\prime} \times 9^{\prime} \mathrm{W} 153$ cross culvert. The roadside ditch flow on the north side of Memorial is conveyed by a second $48^{\prime \prime}$ storm sewer; however, the connectivity of this line could not be verified by the surveyor or during a subsequent field visit by the engineer. For the purpose of the PER it has been assumed that the $48^{\prime \prime}$ line is connected to the $48^{\prime \prime}$ line on the south side. This assumption is supported by the lack of an additional connection to the existing $9^{\prime} \times 9^{\prime}$ W153 crossing. As the RDS Update model is an integrated catchment model that covers the entire TIRZ 17 analysis extent, the tailwaters for the Memorial Drive System are essentially the backwater calculations from the ultimate RDS Update model boundary's from Buffalo Bayou. The boundary conditions are time varying WSEL's based on the effective HEC-RAS and HEC-HMS models. The 2-year and 100-year hydrographs for each location were extracted from the HEC-HMS model and the 2-year and 100-year WSEL's developed using rating curves extracted from the W100-00-00 HEC-RAS model for the appropriate outfall location. As the Beltway 8 storm sewer is a 1D element, the levels are applied to the 1D outfall nodes, however, W153 is modeled in the 2D surface therefore the tailwater from W100 is modeled using a 2D Boundary Water Level Line. (see Table 5.1: Memorial Drive System Boundary Condition Elevations) For the rest of the 2D surface boundary condition, a free flow normal depth is assumed around the perimeter of the 2D analysis extent.

Table 5.1: Memorial Drive System Boundary Condition Elevations

	Peak WSEL	
Location	2 year	100 year
Beltway-8 Outfall	55.51	67.45
W153 Outfall	54.47	66.40

5.4.4 Hydrology

The hydrology methodology is unchanged from the original TIRZ 17 RDS and the subsequent update. A detailed description of the hydrologic methodology is contained in the TIRZ 17 RDS and RDS Update reports and is summarized below.

5.4.4.1 Rainfall

Rainfall totals for Region 2 as detailed by the Tropical Storm Alison Recovery Project (TSARP) white papers were used for all synthetic storm events.

5.4.4.2 Infiltration and losses

Total subcatchment runoff volume was determined using initial abstractions for impervious surfaces and Green \& Ampt infiltration for pervious surfaces. The Green \& Ampt parameters were set to the Buffalo Bayou values as recommended in the TSARP white paper.

5.4.4.3 Drainage Areas

Drainage area boundaries were delineated utilizing 2008 LiDAR data in combination with field visit verification. Drainage area size varies throughout the model. Drainage areas for inlet level analysis within public ROW in the primary study area are generally less than one acre in size and represent the area contributing to individual inlets. The slope for each drainage area was calculated using GIS tools and the 2008 LiDAR data. Additionally, a drainage width parameter for each drainage area was assigned based on its physical dimensions. During the HouStorm analysis, these drainage areas were broken down further to determine runoff at the inlet level. The overall drainage areas and the inlet level assignments can be seen in the accompanying plan set within the appendices.

5.4.4.4 Impervious Cover

In the original RDS and RDS update model, percent impervious values were calculated for each drainage area based on aerial imagery and land use data available from the Harris County Appraisal District (HCAD) and HCFCD. Aerials dated 2014 were checked and it was determined that no notable increases in impervious cover have occurred. Consequently the RDS values were used "as-is"

5.4.5 Hydraulics

Infoworks ICM uses a combined 1-Dimensional and 2-Dimensional hydrodynamic (1D/2D) analysis to evaluate both the sub-surface storm sewer capacity and the overland sheet flow and ponding. As the HGLs derived using this software account for both sub-surface and surface hydraulics, and account for the sub-surface and surface storage, it is considered a better estimate of water surface elevations during a frequency storm event within the study area relative to those derived from the City's HouStorm software which is based on the rational method.

5.4.6 Analysis Results

5.4.6.1 2-Year Event

The model of existing conditions shows that the storm sewer system west of West Bough is surcharged throughout its length. The HGL of the storm sewer does not get above inlet/EOP (Edge of Pavement) elevations within the Memorial Drive ROW, however, the lateral systems on West Bough and in commercial areas north of Memorial cannot drain effectively causing overland flow to enter the ROW. The 2-year WSEL of the roadside ditches of Memorial between Old Oaks Drive and Huntingwick Drive gets above the EOP elevation, violating the minimum City criteria. This problem is exacerbated by the high point on Memorial at Boheme Drive which causes the water to pond and then overflow beyond the roadway ROW to the west. There is more ponding between Rip Van Winkle Drive and W153. (see Appendix C: Exhibit 3.2. - Existing System Results $\mathbf{2 y r}$). It can be surmised that the existing system does not meet the City of Houston 2year capacity criteria.

The combined surface and sub-surface existing 2 -year peak discharge on the south side of Memorial is 200.5 cfs. The combined surface and sub-surface existing 2-year peak discharge from Memorial Drive to the Beltway-8 system is 60.9 cfs. (see Table 3.6: Memorial Drive Outfall Discharges). The figures in this table will be referenced in future sections of this report to ensure existing conditions flows are maintained for the proposed conditions.

5.4.6.2 100-Year Event

The model of existing conditions shows that the storm sewer system west of West Bough is surcharged throughout its length with the HGL above inlet/EOP elevation near the intersection with West Bough. The lateral systems on West Bough and in commercial area on the north cannot drain effectively resulting in ponding and overland flow which enters the Memorial Drive ROW. Due to the fact that Memorial generally slopes away from the Beltway to W153, the excess flow in the system west of West Bough flows in a southeasterly direction towards W153. The 100-year WSEL gets above inlet/EOP elevation for the entire length of Memorial Drive between West Bough and W153 leaving the ROW at several locations. This flooding is partially due to the limited capacity of the Memorial Drive drainage infrastructure and partially due to overflow from W153 itself. Early in the event the roadside ditches and associated storm sewers and culverts become surcharged and overtop the EOP causing overland flow to leave the ROW into Huntingwick Drive and Rip Van Winkle Drive. Due to the high point on Memorial at Boheme Drive the water ponds and then overflows beyond the ROW to the west. Flow is also conveyed beyond the ROW near the Memorial Drive Townhouses and back to Memorial Drive near the Prosperity Bank property. At the peak of the 100-year event, W153 becomes overwhelmed and overland flow enters the Memorial Drive ROW from W153 via the adjacent properties. This is exacerbated by the lack of capacity of the roadway drainage infrastructure to convey the 100-year event and of a clear overland flow path. (see Appendix C: Exhibit $\mathbf{3 . 4}$ - Existing System Results 100yr). It can be surmised that the existing system does not meet the City of Houston 100-year capacity criteria.

The combined surface and sub-surface existing 100-year peak discharge on the south side of Memorial is 1078.2 cfs . The combined surface and sub-surface existing 100-year peak discharge from Memorial Drive to the Beltway-8 system is 71.6 cfs. (see Table 3.6: Memorial Drive Outfall Discharges).

In terms of drainage, Memorial Drive needs to be assessed from two separate but complimentary standpoints. Firstly, the lateral drainage systems (storm sewer and roadside ditches) need to have adequate capacity and meet City of Houston criteria if possible. Secondly, the roadway crossing at W153 should meet HCFCD criteria if possible.

The existing lateral drainage infrastructure does not meet the current City 2-year design criteria in that the 2-year hydraulic grade line is in excess of the gutter/EOP elevations in several locations throughout the system. Additionally, the existing system does not meet the 100 -year criteria; the 100-year flow leaves the road ROW throughout the system and does not have a well-defined overland flow path for flows in excess of the design capacity.

The crossing at W153 is defined by HCFCD as a non-flood control feature and does not meet the criteria for either Culverts or Channel Enclosures in that it does not have capacity to convey the 1% exceedance probability storm without overtopping the roadway. Roadway overtopping at this crossing was documented during the April 2009 and May 2015 event.
The causes of these drainage problems cannot exclusively be attributed to the roadway drainage infrastructure itself, as the roadside ditches and the associated culverts and stretches of storm sewer are not grossly undersized. Rather, any of the individual drainage problems on or proximate to Memorial Drive can be attributed to one or more of the following issues:

- Memorial Drive Vertical Profile: Memorial Drive east of the Beltway has been in its current horizontal alignment since the 1950's. The roadway is generally built up above natural ground from the Beltway to Old Oaks Drive where it starts to cut below the natural ground. The crossing at W153 is not perched but is generally flat as with the approaches on-grade with the surrounding topography. There is a notable highpoint at Boheme Drive which forms in a "bowl" in the area to the north near Old Oaks Drive and Huntingwick Drive (see Figure 3.2: Memorial Drive Approximate Existing Roadway Profile). The current vertical profile does not promote cascading flow to the outfall.

Figure 5.1: Memorial Drive Approximate Existing Roadway Profile

- Overland Flow Path for 100-year: The original open channel alignment of W153 south of Memorial Drive generally follows the current horizontal alignment of Somerset Place. The natural overland flow path of W153 has therefore been "filled-in" and consequently no longer has a clear path to follow when it becomes inundated. Flow from W153 which overtops Memorial Drive during the extreme event when the capacity of the $9^{\prime} \times 9^{\prime}$ crossing is exceeded is primarily split between Somerset Place and Legend Lane.
- W153 Crossing at Memorial: W153 is currently enclosed within a $9^{\prime} \times 9^{\prime}$ RCB storm sewer for a distance of approximately 1000 ft and outfalls back to an open channel just east of the tennis courts on Somerset Place. The culverts do not have adequate capacity to convey the 100-year event. This constriction exacerbates any capacity issues of the open channel section upstream due to the resulting backwater effect.
- Undersized Drainage Infrastructure on Memorial Drive: The analysis demonstrates that the roadside ditches and storm sewers do not have 100-year capacity. Site visits and
communication with the City indicates that many of the culverts within the roadside ditches have become partially obstructed therefore the capacity problems could be worse than demonstrated by the analysis.

5.5 Potential Drainage Impacts

A number of potential impacts were investigated as part of the Memorial Drainage System analysis. These include:

- Increased Impervious Cover - In road improvement projects pervious areas can be replaced by impervious areas causing the volume of runoff to be increased. The proposed Memorial Drive is wider than existing in terms of the distance from curb to curb and includes wider sidewalks and mixed use paths. The potential for impact in terms of an increase in impervious cover was analyzed. The net change in impervious cover is an increase of 0.2 acres. (see Appendix C: Exhibit 3.5 - Impervious Cover (Existing vs Proposed)). The proposed 2-10'x10' storm sewer trunkline is considerably oversized in terms of the roadway drainage in order to allow potential drainage improvements to areas outside of the project limits. Consequently there will be more than enough additional storage in order to maintain existing discharge rates.
- Impacts to W153: W153 and the associated 9'x9' culvert under Memorial Drive serves as an outfall for the Memorial Drive drainage system east of West Bough. Any improvements to the conveyance downstream of Memorial have the potential to impact the already overburdened W 153 if adequate mitigation is not provided. The proposed drainage system maintains or reduces the existing flow leaving the project limits. This will be accomplished with restrictors to the $9^{\prime} \times 9^{\prime}$ box that limit the proposed discharge to the existing conditions.
- Impacts to Beltway-8 Frontage Road: The storm sewer system under the Beltway-8 Frontage Road serves as an outfall for Memorial Drive drainage west of West Bough. Any improvements to the conveyance have the potential to impact the TxDOT system if adequate mitigation is not provided. The proposed drainage system maintains or reduces the existing flow leaving the project limits including the outfall to Beltway-8.
- Changes in overland flow: Changes to the vertical profile of the proposed Memorial Drive may result in changes to any associated overland flow paths. These overland flows may impact surface drainage or be intercepted by sub-surface systems that were not impacted before. Of
specific concern are the areas upstream and downstream of the W153 crossing at Memorial. As discussed previously, Memorial Drive is overtopped by channel flows not contained by W153 upstream of Memorial or conveyed by the enclosed W153 under Memorial. With this in mind it was proposed that the proposed vertical alignment be maintained at existing as much as is possible given other geometric design constraints.

5.6 Proposed System Design

Three primary drivers were considered in the development of the proposed design. Firstly, it should meet or exceed, as best as is possible, the basic roadway drainage design criteria for the City of Houston. Secondly, there was a directive by TIRZ 17 to explore the possibility of efficiently and responsibly maximizing stormwater detention within the project limits. This was with a view to improving overall drainage conditions for property adjacent to Memorial Drive. Thirdly, the proposed system should be designed in such a way as to work with a future regional detention improvement.

In order to develop the design, the first undertaking was to determine how much volume can be placed within the limits of the proposed roadway ROW. The two main constraints in this regard (ignoring cost) are the available vertical depth and horizontal width. The available depth is a function of: the receiving infrastructures flowline elevation; the proposed vertical alignment of the roadway; any conflicting infrastructure; and the required cover depth for the proposed storm sewer. The available width is a function of: the available ROW; any conflicting infrastructure; constructability issues; and future maintenance access. It was determined; given all of these factors, that $2-10^{\prime} \times 10^{\prime} R C B^{\prime}$ s were the largest practical sub-surface storm sewers that could be used.

Given that there is excess hydraulic capacity being placed in the proposed drainage system for storage purposes, the proposed 2-year hydraulic design is measured by the ability of each of the storm sewer system elements being able to handle the local runoff while meeting ponding width and depth requirements. This storm inlet and pipeline analysis was done using HouStorm to size the connecting elements.
The only other consideration for the proposed design is the extreme event. It is not entirely clear as to what criteria should be used at the crossing as there are many issues to consider:

- Firstly, when considered as a crossing, the HCFCD criteria for Culverts or Channel Enclosures would seem to apply. This would require that the crossing should have capacity to convey
the 1% exceedance probability storm. The enclosed W 153 extends for $1,000 \mathrm{ft}$ beyond the limits of the roadway construction therefore there is no way to improve the conveyance downstream within the limits of the project itself. Extending the improvements beyond the ROW is considered in this report.
- Per the roadway drainage criteria, the maximum ponding and overland flow paths for extreme events are applicable. W153 is not a FEMA studied or mapped stream, therefore it is not technically a special flood hazard area. The City criteria therefore states that the maximum ponding depth for the 100-year event must be less than $6^{\prime \prime}$ at high points in the roadway and $18^{\prime \prime}$ at low points. Additionally the ponding elevation must be less than the natural ground elevation at the ROW. As discussed previously, the existing W153 stream flows overtop Memorial Drive therefore in order to meet the City ponding criteria the roadway elevation would need to be increased. An estimate was made of the proposed roadway elevation required in order to meet the ponding criteria at the W153 crossing. The existing 100-year WSEL is approximately 68.5^{\prime} therefore the proposed roadway elevation must be $6^{\prime \prime}$ below at approximately 68^{\prime}. This would necessitate raising the roadway vertical profile almost a foot which would potentially have a damming effect and increase WSEL's on the upstream side of the W153 crossing. Raising the profile of memorial at W153 results in multiple geometric and safety challenges that make this alternative not feasible.
In considering either or both of these criteria one must also consider the effect any design decisions have upon the hydraulic impacts to the receiving systems either in terms of increased flows downstream or increased WSEL's upstream. It is certainly possible to add increased capacity to the enclosed portion of W153 either by adding a parallel barrel down Somerset Place or perhaps creating a new conveyance route down Legend Lane to the east. Both would potentially result in increased flow in W153 downstream of Summerset Place.

Considering all of the potential design constraints, five drainage improvement options were developed:
6. Option 1 (Memorial Drive Improvements Only): Maintain the existing roadway elevation and the existing single $9^{\prime} \times 9^{\prime}$ RCB of the enclosed W153. Improve roadway drainage and attempt to pick up as much off-site drainage as possible. Detain increased runoff in the 2-10x10 RCB's
using restrictors and allow the relief realized at the enclosed W153 to improve the open section upstream.
7. Option 2 (Add $\mathbf{9}^{\prime} \mathbf{x} \mathbf{9}^{\prime}$ RCB): Similar to Option 1 but attempt to meet roadway ponding depth criteria by upsizing the enclosed W153 to reduce upstream WSEL's.
8. Option 3 (Raise Roadway Profile): Similar to Option 2 but increase the Memorial Drive roadway elevation to meet roadway ponding depth criteria and maintain the existing W153 WSEL by conveying the flow that used to overtop Memorial by upsizing the enclosed W153.
9. Option 4 (Regional Detention): Explore the possibility of adding sub-regional detention south of IH-10 that can reduce the peak flow in W153 and therefore reduce the depth of the flow overtopping Memorial.
10. Option 5 (Regional Detention Add $9^{\prime} \mathbf{x} \mathbf{9}^{\prime} \mathbf{R C B}$): Similar to Option 4 but include additional conveyance under Memorial.

Note that all of these options assume the basic $2-10^{\prime} \times 10^{\prime}$ RCB's are utilized as the largest practical sub-surface storm sewers that can be provided.

5.7 Proposed Conditions Analysis

All of the proposed options were modeled by updating the existing conditions Infoworks ICM model. This 2D model was used for preliminary design and for estimation of impacts only. Further refinement of the design is anticipated after the technical review committee (TRC) meeting. Subsequently, the detailed design elements of the HouStorm analysis will be incorporated into the 2D model for a detailed impact and mitigation analysis that will finalize outfall sizes and be incorporated into an impact study that will be prepared for HCFCD and TxDOT review and approval.

5.7.1 Hydrology

The existing conditions model was used as the basis for the proposed conditions model. The methods used to develop the hydrologic parameters for the proposed model are outlined below:

5.7.1.1 Drainage Areas

The drainage area delineations from the existing system were maintained for use in the proposed model.
5.7.1.2 Impervious Cover

An analysis was done to determine how the proposed roadway affects the impervious cover within the project limits. The existing roadway, sidewalks and driveways constitute 7.9 acres of the 11.2 acres of the existing ROW resulting in a percent impervious of 71%. The proposed roadway, sidewalks and driveways constitute 8.1 acres of the same area thereby resulting in a proposed percent impervious of 72\%. (see Appendix C: Exhibit 3.5-Impervious Cover) Such a small increase in impervious cover will have a negligible increase in runoff volume and therefore wasn't considered in the 2D preliminary analysis model.

5.7.2 Hydraulics

As discussed previously, the five options were modeled in the Infoworks ICM model in order to determine feasibility and to allow the selection of a recommended option. The following discusses the general findings of each model, however, a detailed discussion of the results is provided for the recommended option only.

5.7.2.1 Option 1 (Memorial Drive Improvements Only)

Option 1 is designed to maximize the benefit of the drainage improvements while eliminating impacts to W153 and the adjacent properties. As discussed previously 2$10^{\prime} \times 10^{\prime}$ RCB's are the largest conduits that can practically be placed within the proposed ROW. Restrictors were placed at strategic locations throughout the length of Memorial in order to maintain the HGL as high as possible for as long as possible so as to maximize the effective storage. Restrictors at the outfalls to the W153 and Beltway-8 systems were optimized to ensure the proposed outfall discharges remain at the existing flow rates. The storm sewer infrastructure proposed for Option 1 (see Appendix C: Exhibit 3.5. Recommended System Schematic) includes the following:

1. Memorial Dr from Beltway 8 to West Bough Ln: 1285 LF of $1-10^{\prime} \times 10^{\prime}$ RCB
2. Underneath West Bough Ln: 100 LF 48" RCP
3. Memorial Dr from West Bough Ln to Boheme: 543LF of 2-10'x10' RCB, Siphon: 122LF of 4-24" RCP
4. Memorial Dr from Boheme to W153-00-00: 1349LF of 2-10'x10' RCB
5. Memorial Dr from W153-00-00 to Tallowood: 480.5LF of 2-10'x10' RCB
6. 3 Large Junction Boxes.
7. 32 Type B-B, 2 Type AZ2G and 1 Type C inlets to capture the runoff and associated $24^{\prime \prime}$ leaders to convey flows to the trunkline.
8. Approximately 4 ditch tie-in pipes to accept runoff from roadside ditches.

5.7.2.2 Option 2 (Add 9'x9' RCB

This option builds on the drainage improvements of Option 1 in order to attempt to meet City criteria for the 100-year by reducing the W153 WSEL upstream of Memorial Drive. This is done by adding additional conveyance to the enclosed potion of W153. There is a limitation on how much open area can be constructed at the headwall on north side of Memorial Drive at W153. This is due to the combined limitation of the existing ROW and the conflicting sanitary sewer. Analysis of the available headwall open area led to the conclusion that the conveyance could be doubled. The capacity of the enclosed W153 was therefore increased by adding an additional $9^{\prime} \times 9^{\prime}$ RCB barrel parallel to the existing one. While this did reduce the upstream WSEL, there was an increase in the flow where the W153 enclosure outfalls to the W153 open channel. Attempts were made to restrict the outfall of the Memorial Drive system to mitigate these increased flows. The model demonstrated that there is not enough storage capacity in the Memorial Drive improvements to offset the increase in flows. The depth of flow across Memorial was reduced from 1.68^{\prime} to 1.61^{\prime}, deeper than the allowed $6^{\prime \prime}$

5.7.2.3 Option 3 (Raise Roadway Profile)

This option builds on Option 2 and is intended to meet City criteria for the 100-year by increasing the elevation of Memorial Drive until the ponding depths are within criteria guidelines. Increasing the roadway elevation will have the effect of damming the current overland flow path across Memorial Drive which is why it was implemented with the increased W153 conveyance of Option 2. A proposed 2D hydraulic surface model was developed by updating the existing surface with a proposed increased vertical alignment which was developed based on an approximate roadway crossing elevation of 68'. The model output (Figure 3.3: Impact of Increase in Roadway Profile) shows that the increase
in the roadway elevation leads to a significant increase in the ponding (blue) upstream of Memorial Drive compared to the existing extents (red).

Figure 5.2: Impact of Increase in Roadway Profile

The additional capacity added to the enclosed portion of W153 is not sufficient to convey the flow originally conveyed across the top of Memorial. This is in spite of the fact that the outfall from the Memorial Drainage system was restricted further in order to prevent flow impacts to W153. All of this would suggest that additional subsurface capacity is required to prevent this increase in upstream flooding. Unfortunately, due to space limitations on the upstream headwall for the Memorial/W153 crossing, adding additional capacity is not possible. Moreover, even if it was possible, there is not enough excess storage capacity in the Memorial Drive drainage system to mitigate the increase in flow that would be realized downstream of W153.

5.7.2.4 Option 4 (Regional Detention)

Options 1-3 are not able to achieve the desired reduction in ponding depth across Memorial Drive at W153. To further reduce the depth of ponding would take subregional detention measures to reduce the flows at Memorial and W153. Such detention
is being considered by TIRZ 17. Option 4 incorporates the sub-regional detention solution currently being explored by TIRZ 17 to determine how the system operates with reduced flows at W153. The analysis demonstrates a considerable reduction of between 300 to 400 cfs in the W153 flows within the vicinity of Memorial Drive. This flow reduction is accompanied by a WSEL reduction of approximately 0.25^{\prime} in the ponding overtopping Memorial.

5.7.2.5 Option 5 (Regional Detention Add 9'x9' RCB)

Option 5 incorporates all of the improvements of option 4 but also includes additional conveyance within the enclosed portion of W153. This was done in order to attempt to maximize the benefit from the regional solution with regard to the Memorial and W153 crossing.

The model output shows a considerable reduction of between 300 to 400 cfs in the W153 flows within the vicinity of Memorial Drive. This flow reduction is accompanied by a WSEL reduction of approximately 0.25^{\prime} in the ponding overtopping Memorial.

5.7.3 Alternative Comparitive Results

The pros and cons of each of the options were discussed briefly in the previous sections. As none of the options solves all of the design goals or meets the desired criteria, the option that has the best comparative outcome should be recommended. Comparative results were analyzed (see Table 5.2: Alternative Comparison Results) and a matrix of pros and cons developed (see Table 5.3: Alternative Comparison Results Matrix). It can be seen that Options 1, 4 and 5 all have the best performance in that they meet the most of the comparative criteria (5 out of 7). All of these options use the base design of Option 1 as Options 4 and 5 were used to determine if increasing the capacity of the enclosed portion of W153 is beneficial if a sub-regional detention system is implemented. Doubling the capacity of the crossing does not give a significant increase in the conveyance downstream for the 100-year event. Option 2 which includes adding additional capacity to the enclosed portion of W153 is next best option however it has impacts to W 153 downstream. Option 3 which includes raising the roadway profile is the least preferred option as it has impacts upstream and downstream of the Memorial
crossing and is not constructible in terms of geometric design criteria within the current ROW. The illogical scenario of resulting impacts both upstream and downstream is a result of additional flow obstruction upstream (unable to adequately increase sub-surface conveyance), and timing downstream.

Given that there is not significant benefit in adding additional conveyance to W153, even with a sub-regional detention solution, and that without the sub-regional detention the additional $9^{\prime} \times 9^{\prime}$ RCB causes impacts to W153 downstream, Option 1 is recommended. The recommended improvements in Option 1 will be fully leveraged with the construction of a regional detention project.

Table 5.2: Alternative Comparison Results

Option	Description	100-yr Peak Flow (cfs)				$100-\mathrm{yr}$ WSEL (ft)			
		W153 N	Memorial Crown	w153s	W153 OF	W153N	Memorial Crown	W153S	W153 OF
Ex	Existing Conditions	932	932	1087	1133	68.82	68.67	68.42	66.41
1	Memorial Drive Improvements Only	$\begin{gathered} 921 \\ (-11) \end{gathered}$	$\begin{gathered} 865 \\ (-67) \end{gathered}$	$\begin{gathered} 1070 \\ (-18) \end{gathered}$	1136 (3) (3)	$\begin{gathered} 68.72 \\ (-0.10) \end{gathered}$	$\begin{gathered} 68.57 \\ (-0.10) \end{gathered}$	$\begin{gathered} 68.31 \\ (-0.11) \end{gathered}$	$\begin{aligned} & 66.42 \\ & (0.00) \end{aligned}$
2	Add 9'x9' RCB	$\begin{aligned} & 952 \\ & (21) \end{aligned}$	$\begin{gathered} 890 \\ (-42) \end{gathered}$	$\begin{aligned} & 1186 \\ & (99) \end{aligned}$	$\begin{gathered} 1276 \\ (143) \end{gathered}$	$\begin{gathered} 68.77 \\ (-0.06) \end{gathered}$	$\begin{gathered} 68.60 \\ (-0.07) \end{gathered}$	$\begin{aligned} & 68.34 \\ & (-0.08) \end{aligned}$	$\begin{gathered} 66.39 \\ (-0.02) \end{gathered}$
3	Raise Roadway Profile	$\begin{gathered} 573 \\ (-358) \end{gathered}$	$\begin{gathered} 243 \\ (-689) \end{gathered}$	$\begin{gathered} 764 \\ (-323) \end{gathered}$	$\begin{gathered} 985 \\ (-147) \end{gathered}$	$\begin{aligned} & 70.30 \\ & (1.47) \end{aligned}$	$\begin{gathered} 66.98 \\ (-1.69) \end{gathered}$	$\begin{array}{r} 66.61 \\ (-1.81) \end{array}$	$\begin{aligned} & 66.43 \\ & (0.02) \end{aligned}$
4	Regional Detention	$\begin{gathered} 764 \\ (-167) \end{gathered}$	$\begin{gathered} 627 \\ (-305) \end{gathered}$	$\begin{gathered} 700 \\ (-387) \end{gathered}$	$\begin{aligned} & 1061 \\ & (-72) \\ & \hline \end{aligned}$	$\begin{aligned} & 68.55 \\ & (-0.28) \end{aligned}$	$\begin{gathered} 68.40 \\ (-0.27) \end{gathered}$	$\begin{aligned} & 68.40 \\ & (-0.01) \end{aligned}$	$\begin{aligned} & 66.42 \\ & (0.01) \end{aligned}$
5	$\begin{array}{c\|} \text { Regional } \\ \text { Detention Add } \\ 9^{\prime} \times 9^{\prime} \text { RCB } \\ \hline \end{array}$	$\begin{gathered} 800 \\ (-131) \end{gathered}$	$\begin{gathered} 732 \\ (-200) \end{gathered}$	$\begin{gathered} 593 \\ (-494) \end{gathered}$	$\begin{aligned} & 1114 \\ & (-18) \end{aligned}$	$\begin{gathered} 68.57 \\ (-0.26) \end{gathered}$	$\begin{gathered} 68.42 \\ (-0.25) \end{gathered}$	$\begin{gathered} 68.18 \\ (-0.24) \end{gathered}$	$\begin{array}{r} 66.40 \\ (-0.02) \end{array}$

Table 5.3: Alternative Comparison Results Matrix

	option								
1	Memorial Drive Improvements Only	1. 2-10' $\times 10^{\prime}$ RCB under Memorial 2. Maintain existing roadway vertical profile	\checkmark	\checkmark	x	\times	\checkmark	\checkmark	\checkmark
2	Add ${ }^{\prime} \mathrm{x}^{\prime} \mathrm{s}^{\prime} \mathrm{RCB}$	1. 2-10' $\times 10^{\prime}$ RCB under Memorial 2. Maintain existing roadway vertical profile 3. Add additional conveyance at W153 crossing	\checkmark	\checkmark	x	\times	\checkmark	\checkmark	x
3	Raise Roadway	1. $2 \cdot-10^{\prime} \times 10^{\prime}$ RCB R under Memorial 2. Raise roadway vertical profile at W153 3. Add additional conveyance at W153 crossing	x	\checkmark	x	\checkmark	\times	x	\times
4	Regional Detention	1. 2-10'x10' RCB under Memorial 2. Maintain existing roadway vertical profile 3. Provide 135 ac -ft of sub-regional storage	\checkmark	\checkmark	x	x	\checkmark	\checkmark	\checkmark
5	$\begin{gathered} \text { Regional } \\ \text { Detention Add } \\ 9^{\prime} \times 9^{\prime} \text { RCB } \end{gathered}$		\checkmark	\checkmark	x	x	\checkmark	\checkmark	\checkmark

5.7.4 Reccomended Drainage System - Option 1 - Analysis Results

 5.7.4.1 2-Year EventThe model of the recommended option shows that the 2-year WSEL of the Memorial Drive storm sewer is well below the inlet elevation for the entire length of the proposed improvements therefore it meets the City of Houston 2-year capacity criteria.
The flooding and overland flow in the 2D surface reflects the improvements to the drainage system (see Appendix C: Exhibit 3.7 - Proposed System Results 2yr). It can be seen that there is no flooding within the limits of the proposed improvements. A reduction in the existing flood depth and extents can be seen for a considerable distance outside these limits.

The combined surface and sub-surface proposed 2-year peak discharge on the south side of Memorial is 188.3 cfs . This is less than the existing peak discharge of 200.5 cfs therefore there is no negative impact to the W153 system. The combined surface and sub-surface proposed 2-year peak discharge from Memorial Drive to the Beltway-8 system is 45.8 cfs . This is less than the existing peak discharge of 60.9 cfs therefore there is no negative impact to the Beltway 8 system. (see Table 3.6: Memorial Drive Outfall

Discharges).

5.7.4.2 100-Year Event

The model of the recommended option shows that the 100-year WSEL is generally at or below the top of curb elevation for the entire length of the proposed improvements to Memorial Drive. Due to the incapacity of the open channel upstream of Memorial Drive and of the enclosed portion downstream, W153 backs up and overflows into and across the Memorial Drive ROW. This overflow occurs significantly at the W153 crossing itself, and at Rip Van Winkle, Huntingwick and Old Oaks Drive.

As the ponding depths exceed those stated, it does not meet the City of Houston 100year criteria. The flooding and overland flow in the 2D surface does however reflect the improvements to the overall drainage system (see Exhibit 3.8: Proposed System Results $\mathbf{1 0 0} \mathbf{y r}$). It can be seen that there is significant reduction of the extent and depth of flooding to properties and streets adjacent to the proposed improvements, especially at the upper end of Memorial Drive away from W153. Other minor reductions can be seen around W153; however, complete removal of those areas from flooding will require interventions that are beyond the scope of this project.

The combined surface and sub-surface proposed 100-year peak discharge on the south side of Memorial is 1066.2 cfs . This is less than the existing peak discharge of 1078.2 cfs therefore there is no negative impact to the W153 system. The combined surface and sub-surface proposed 100-year peak discharge from Memorial Drive to the Beltway8 system is 63.8 cfs . This is less than the existing peak discharge of 71.6 cfs therefore there is no negative impact to the Beltway 8 system. (see Table 5.4: Memorial Drive Outfall Discharges and Appendix C: Exhibit 3.9. - No Adverse Impact.

Table 5.4: Memorial Drive Outfall Discharges

	2 year			100 year		
Location	Existing	Proposed	Difference	Existing	Proposed	Difference
Beltway-8 Outfall	60.9	45.8	-15.1	71.6	63.8	-7.7
W153 Outfall	200.5	188.3	-12.2	1078.2	1066.2	-12.0

5.7.5 Cost Estimate

The estimated cost for the drainage elements of the recommended design is approximately $\$ 9.0 \mathrm{M}$. This cost is driven by the significant length of the large underground storage boxes.

5.8 Conclusion

Five drainage options were considered in detail for the proposed Memorial roadway reconstruction, all of which attempted to optimize storage and improve the existing drainage problems. Option 1 is recommended as it brings the roadway into compliance with City criteria, and will provide a 10-year level of protection with the exception of the noted areas influenced by W153 overtopping Memorial. Existing drainage flow patterns along Memorial Drive will not change. The Beltway 8 drainage system will not be re-routed and no additional water from the Beltway 8 system will be conveyed to W153. The project will match or lower flow rates to the receiving systems and will have no adverse impact up to and including the 100-year event

The amount of total storage provided is approximately $12+\mathrm{ac}-\mathrm{ft}$. This estimate will be refined during detailed design.

6.0 Public and Private Utilities Assesment and Recommendations

6.1 Design Criteria

The design criteria for the water lines along Memorial Drive are based upon the following:

- City of Houston Department of Public Works and Engineering Infrastructure Design Manual, latest edition.
- City of Houston Department of Public Works and Engineering Standard Construction Details for Wastewater Collections Systems, Water Lines, Storm Drainage and Street Paving, latest edition.
- City of Houston Department of Public Works and Engineering Standard Construction Specifications for Wastewater Collections Systems, Water Lines, Storm Drainage and Street Paving, latest edition.
- Input from City of Houston Waste Water department personnel

6.2 Regulatory Agencies

The design of the proposed water lines will comply with the Texas Commission on Environmental Quality criteria. In all cases where the water lines parallel or cross sanitary sewer lines, appropriate separation will be maintained, or required protection will be provided.

6.3 Recommended Public Utility Improvements

Information on existing water and sanitary sewer lines within the project limits were obtained from survey data, record drawings, and the City of Houston Geographic Information \& Management System (GIMS). See Appendix B for 30\% Plan and Profile sheets for more information.

6.3.1 Recommended Water Line Improvement

There is one continuous waterline within the project limits that runs along the south side of Memorial Drive and seven waterlines that run perpendicular to Memorial Drive. The existing water line starts as a 12 -inch diameter line at east of Beltway 8 Frontage Road, then increases and to a 16 -inch diameter line approximately 80 -feet east of the intersection. The 16 -inch water line continues east along Memorial Drive for the extents of the project.

12-Inch Water Line:

The existing 12-inch asbestos concrete (AC) water line located within the project limits was placed in service in 1969, nearly 40 years ago. It is recommended that this existing water line be replaced due to the age and the existing pipe material. Also, the 12 -inch water line is located between two 16 -inch water lines causing reductions in the flow (bottleneck). A new, parallel 16 -inch water line will be installed, and all service connections transferred, before the existing 12 -inch water line is abandoned in place. Trenchless construction methods are anticipated for the proposed $16-$ inch water line. See Appendix B for additional details on existing and proposed water lines.

16-Inch Water Line:

The existing 16 -inch ductile iron water line located along the southern ROW of Memorial Drive was placed in service in 1995, nearly 20 years ago. Per available record drawings, the 16 -inch water line is ductile iron pipe with steel offsets. According to the City, there are currently no plans for upsizing or replacing the existing 16 -inch ductile iron water line. Therefore, it is recommended that the 16 -inch existing water line not be replaced.

Water Line Crossings:

There are seven waterlines that run perpendicular to Memorial Drive within the project limits, and are described below:

1. 16-inch diameter cast iron water line: Placed in service in 1969, just over 45 years ago, crossing at Memorial Drive at Beltway 8 Frontage Road.
2. 8 -inch diameter steel water line: Placed in service in 1995. Crosses at Broken Bough Drive/W. Bough Lane.
3. 12-inch diameter polyvinyl chloride water line: Placed in service in 2010 at Old Oaks Drive.
4. 8-inch diameter polyvinyl chloride water line: Placed in service in 1995 at Huntingwick Drive.
5. 8-inch diameter polyvinyl chloride water line: Placed in service in 1995 at Rip Van Winkle Drive
6. 8-inch diameter steel water line: Placed in service in 1995 at Hollow Drive
7. 8-inch diameter polyvinyl chloride/steel water line: Placed in service in 1992 at Tallowood Road

It is recommended for all crossings to be replaced due to the existing pipe material, depth of cover, conflicts with proposed improvements and to eliminate any future water line replacement projects impacts the future roadway. All proposed water line connections along perpendicular streets will be installed away from the intersections to eliminate any disruption when other city projects are proposed. Trenchless construction methods are anticipated for the proposed water line crossings.

A City Capital Improvements Project (CIP) Water line Replacement project, "Water Line Replacement in Memorial Bend and Briar Forest Area (WBS No. S-000035-0212-3)", is proposed within the adjacent streets of the project limits with an anticipated CIP construction year of FY17. The project's proposed small diameter water lines are proposed to connect to the existing 16-inch water line along Memorial Drive at Broken Bough Drive, Boheme Drive and Legend Lane. Coordination will be required during design to eliminate potential conflicts. If Memorial Drive is constructed first, stub-outs will be provided to eliminate any connections within the new pavement along Memorial Drive.

The current fire hydrant spacing does not meet current City standards for commercial usage. Memorial Drive is a combination of retail, business, single and multi-family development. Furthermore, some of the existing fire hydrants will be impacted by the proposed roadway and/or sidewalks. It is recommended new fire hydrants be added to accommodate the proposed improvements as well as to comply with City's fire hydrant spacing requirements. Whenever possible, the existing fire hydrants will be salvaged and re-installed to reduce overall costs. In addition to replacing water line crossings and adding fire hydrants, it is recommended that existing unmetered water lines or fire lines be metered. The proposed meters, 3 -inches and larger, will need to be located inside an easement per current City Design Manual.

There are four separate sanitary sewer lines within the project limits that run parallel to Memorial Drive and ten sanitary sewer lines that run perpendicular to Memorial Drive. The City's Wastewater Operations Department was contacted to request information, including CCTV, age, and condition of the line. The City provided the available data and 2014 CCTV footage.

15-inch Sanitary Sewer:

There is an existing 15 -inch diameter gravity sanitary sewer made of polyethylene pipe within the project limits. This line was rehabilitated in 1999 and is located in back-lot sanitary sewer easements of properties south of the Memorial Drive right-of-way, between Beltway 8 Frontage Road and Boheme Drive. The number of service connections present throughout the line is unknown. It is recommended that the existing sanitary sewer line be not be replaced due to the age, existing pipe material and location of sanitary sewer line.

12-Inch Sanitary Sewer:

There is a 12 -inch diameter gravity sanitary sewer that runs along the north/east ROW of Memorial Drive between 150 feet south of Old Oaks Drive and Boheme Drive. 290 feet is made of polyethylene pipe due to the rehabilitation in 1999; however the other 285 feet is made of unreinforced concrete (URC) pipe and was placed in service in 1960. Multiple service connections are present throughout the line. It is recommended that the only the 285 feet of unreinforced concrete section of the existing sanitary sewer line be replaced due to the age, pipe material and current condition of pipe. CCTV footage of the URC pipe identified infiltration in at least two locations, lateral protruding along with infiltration in the annular space and deterioration of pipe. It is also recommended for both manholes between the URC pipes be rehabilitated or replaced. Both manholes were made of brick and also show signs of deterioration. Based on the size, depth and location of the line), open cut method is the recommended method of replacement. Refer to Appendix B for additional details.
6.3.2 Recommended Sanitary Sewer Improvements

10-Inch Sanitary Sewer:

There is a 10-inch diameter gravity sanitary sewer that runs along the north/east ROW of Memorial Drive between Huntingwick Drive and Boheme Drive. This existing sanitary sewer line is parallel to the existing 12 -inch sanitary sewer line. This sanitary sewer line is made of extra strength concrete and was placed in service in 1966, nearly 40 years ago. CCTV data was not available for this line and service connections are unknown due to the access manholes being buried under the existing roadway asphalt over lay. CCTV was performed in a manhole close to the downstream of the 10 -inch sanitary sewer and it identified the line to be in service. It is recommended that this existing sanitary sewer line be replaced due to the age and the existing pipe material. It is also recommended to CCTV the line during detailed design, which may require an on-call contractor to locate, uncover and adjust the buried manholes. Based on the size, depth and location of the line, open cut methods is the recommended method of replacement. During detailed design, further CCTV investigation will be required and the existing 10-inch and the 12inch line (from Huntingwick to Boheme Drive), may be combined into one single sanitary sewer. Refer to Appendix B for additional details.

48-innch Sanitary Sewer:

There is a 48 -inch diameter gravity sanitary sewer line that runs along the east and north right-ofway of Memorial Drive between Boheme Drive and Tallowood Road. Half of the line is made of plastic-lined pipe and the other half is made of concrete. The entire line was placed in service in 1997 and multiple service connections are present throughout the line. It is not recommended that this existing sanitary sewer line be replaced due to the age and the existing pipe material. However one of its manholes (WDP04052) is currently buried and should be exposed and adjusted during construction.

Sanitary Sewer Crossings:

There are ten sanitary sewer lines that cross perpendicular to Memorial Drive within the project limits, and are described below:

1. 8 -inch diameter extra strength pipe: Placed in service in the 1950's
2. 24 -inch diameter concrete pipe: Placed in service in the 1968.
3. 8 -inch diameter unreinforced concrete pipe: Placed in service in 1969.

Sanitary sewer lines 4 through 7 crossings are made of unreinforced concrete and other unknown materials, installed in the 1960's.

CCTV footage for three 8-inch diameter unreinforced concrete lines revealed irregularities in each of the lines. The CCTV footage of the 24 -inch sanitary sewer identified deterioration of the pipe, and pipe gaskets were visible in several joints but infiltration did not appear on the CCTV footage. The entire 24 -inch RCP was not able to be fully televised due to a 15 -inch PVC pipe between the 24-inch sanitary creating a reducer and blocking the flow. It appears that repairs were performed on the 24 -inch sanitary sewer.
In addition, the existing sanitary sewer crossings will be in conflict with proposed storm sewer improvements. It is recommended that these existing gravity sanitary sewer lines be replaced due to their ages, varying from 30 to 60 years old, existing pipe material, and potential future conflicts.
There are three sanitary sewer force mains within the project limits:

1. 10 -inch ductile iron force main: Installed in 1984.
2. 6 -inch ductile iron force main: Installed in 1984
3. 6 -inch cast iron force main: Installed in the 1970's

The 6 -inch ductile iron force main will need to be relocated to accommodate the proposed drainage improvements. The 6 -inch cast iron force is recommended to be replaced due to pipe material and age of line.

All sanitary sewer line replacements will maintain full capacity with a new pipe of the same diameter installed in the same alignment using open-cut methods. It is also recommended that 10 manholes be replaced due to the age, and existing conditions seen in CCTV footage. See Exhibit $\mathbf{6 . 1}$ for recommended sanitary sewer replacement and refer to Appendix B for additional details.

EXHIBIT 6.1 Proposed Sanitary Sewer Replacement

Memorial Drive
Preliminary Engineering Report

7.0 Conclusion

Based on the results from the preliminary roadway geometric evaluation and condition assessment, traffic analysis, drainage analysis, and utility assessments and in order to satisfy the three main project objectives: Improve safety and Mobility, Improve Drainage, and Improve Quality of Life, the following improvements are recommended: Impacts of each alternative to right-of-way, pedestrian amenities, tree inventories, and underground utilities have also been considered.

1. Improve Safety \& Mobilit

- Upgrade roadway to a curb and gutter concrete section, including two (2) 11-foot wide lanes with a 20 -foot to 24 -foot wide raised median raised median from Beltway 8 Northbound Frontage road to Tallowood Road.
- Reconstruct roadway to meet City's current roadway geometric requirements
- Add left-turn bays at median openings.
- Upgrade traffic signals at BW 8 Frontage Road and West Bough Lane/Broken Bough Drive to meet current City of Houston standards.

2. Improve Drainage

- Meet the City's 2-year design criteria and eliminate frequent street flooding/ponding
- Improve the 10-year level of protection
- Install 1~10'x10' reinforced concrete box storm sewer from Broken Bough Drive/West Bough Lane - Install 2~10'x10' reinforced concrete box storm sewers from Broken Bough Drive/West Bough Lane to W153; with restrictors at the W153 outfalls.
- Provide approximately $12+$ ac- ft of total storage.

The existing drainage patterns along Memorial Drive will not change. The Beltway 8 drainage system will not be re-routed and no additional water from the Beltway 8 system will be conveyed east to W153.

This project will match or lower flow rates to the receiving systems and will have no adverse impac up to and including the 100-year event.

3. Improve Quality of Life

- Install continuous, 6^{\prime} wide concrete sidewalks along the northern ROW
- Install 10-foot wide concrete multi-use/shared path along the southern ROW
- Install decorative pavers within sidewalks
- Plant additional trees and shrubs within median and along curb
- Install standard street lighting and pedestrian lighting along the entire project limits

Due to the age, material, and proposed conflicts, all of the 8 -inch and 10 -inch water lines and water line crossings are recommended to be replaced.

Due to pipe deterioration, age, proposed conflicts, and pipe material, the majority of the existing small diameter sanitary sewers lines are recommended to be replaced.

The total preliminary estimated construction cost for the project, including a 15% contingency, is $\$ 17,390,500$. These costs do not include any right-of-way acquisition or private utility relocation costs The detailed preliminary estimated construction costs can be found in Appendix A.

Phase II design will commence upon approval of the recommended project by the City and TIRZ 17.

No.	Section	Description	Units	Quantity	Unit Cost	Total
General						
1	01502	Mobilization	LS	1	\$ 250,000.00	\$ 250,000.00
2	01555	Traffic Control and Regulation	LS	1	\$ 250,000.00	\$ 250,000.00
3	01270	Uniformed Police Officers	HR	6,000	\$ 42.00	\$ 252,000.00
4	01555	Portable Concrete Low Profile Traffic Barrier Installed	LF	4,000	\$ 40.00	\$ 160,000.00
5	01555	Portable Concrete Low Profile Traffic Barrier Moved \& Reset	LF	4,000	\$ 7.00	\$ 28,000.00
6	01555	Portable Concrete Low Profile Traffic Barrier Removed	LF	4,000	\$ 10.00	\$ 40,000.00
7	01562	Tree Replacement	LS	1	\$ 145,000.00	\$ 145,000.00
8	01562	Tree Protection	LS	1	\$ 30,000.00	\$ 30,000.00
9	01570		LF	660	\$ 10.00	\$ 6,600.00
10	02922	Sodding	SY	6,950	\$ 6.00	\$ 41,700.00
11	01570	Filter Fabric Fence	LF	9,600	\$ 4.00	\$ 38,400.00
		General Items Subtotal				\$ 1,241,700.00
Storm						
12	02082	Type-C Manhole on Box storm sewer-Complete in Place	EA	48	\$3,300.00	\$158,400.00
13	02082	Type-C Manhole	EA	25	\$4,500.00	\$112,500.00
14	02082	Adjust Inlet/Manhole to Grade	EA	7	\$2,000.00	\$14,000.00
15	02821	Reinforced Concrete Box Wall Penetration	EA	1	\$3,700.00	\$3,700.00
16	02221	Remove and Dispose of 4-inch Diameter Storm Sewer	LF	5	\$7.00	\$35.00
17	02221	Remove and Dispose of 12-inch Diameter Storm Sewer	LF	34	\$13.00	\$442.00
18	02221	Remove and Dispose of 15-inch Diameter Storm Sewer	LF	20	\$13.50	\$270.00
19	02223	Remove and Dispose of 18-inch Diameter Storm Sewer	LF	1,566	\$13.75	\$21,532.50
20	02221	Remove and Dispose of 24 -inch Diameter Storm Sewer	LF	3,201	\$14.00	\$44,814.00
21	02221	Remove and Dispose of 30-inch Diameter Storm Sewer	LF	647	\$17.50	\$11,322.50
22	02221	Remove and Dispose of 36-inch Diameter Storm Sewer	LF	1,362	\$20.00	\$27,240.00
23	02221	Remove and Dispose of 42-inch Diameter Storm Sewer	LF	71	\$21.00	\$1,491.00
24	02221	Remove and Dispose of 48-inch Diameter Storm Sewer	LF	730	\$22.00	\$16,060.00
25	02221	Remove and Dispose of 9-foot by 9-foot Diameter Storm Sewer	LF	30	\$40.00	\$1,200.00
26	02221	Remove headwall	EA	5	\$350.00	\$1,750.00
27	02221	Remove and Dispose of existing inlets,all types	EA	94	\$350.00	\$32,900.00
28	02221	Remove and Dispose of existing manholes,all types	EA	2	\$460.00	\$920.00
29	02260	Trench Safety System	LF	8,597	\$2.00	\$17,194.00
30	02631	24-inch diameter Storm Sewer by Tunnel Boring Machine	LF	488	\$850.00	\$414,800.00
31	02631	24 -inch diameter Storm Sewer by Open-Cut-Complete in Place	LF	1,924	\$100.00	\$192,400.00
32	02631	42 -inch diameter Storm Sewer by Open-Cut-Complete in Place	LF	85	\$160.00	\$13,600.00
33	02631	48 -inch diameter Storm Sewer by Tunnel Boring Machine	LF	100	\$1,000.00	\$100,000.00
34	02631	PreCast 8-foot \times 8-foot Storm Sewer by Open-Cut-Complete in Place	LF	100	\$1,000.00	\$100,000.00
35	02631	PreCast 10-foot $\times 10$-foot Storm Sewer by Open-Cut-Complete in Place	LF	7,475	\$1,000.00	\$7,475,000.00
36	02631	End Caps	EA	8	\$2,000.00	\$16,000.00
37	00001	Junction Box with Riser	EA	3	\$20,000.00	\$60,000.00
38	02633	Type A Inlet	EA	2	\$2,500.00	\$5,000.00
39	02633	Type BB Inlet	EA	33	\$2,750.00	\$90,750.00
40	02633	Type C Inlet w/ Ext	EA	1	\$3,000.00	\$3,000.00
41	02670	Type AZ2G Inlet	EA	1	\$4,000.00	\$4,000.00
		Storm Items Subtotal				\$8,940,321.00

MEMORIAL DRIVE MOBILITY AND DRAINAGE IMPROVEMENTS PROJECT
 CONSTRUCTION COST ESTIMATE
 (PER)

Paving								
77	02741	Temporary Asphalt	SY	6,500	\$	80.00	\$	520,000.00
78	02221	Remove and Dispose of Reinforced Concrete Pavement with or without Asphalt Overlay	SY	28,116	\$	6.00	\$	168,696.00
79	02221	Remove and Dispose of Driveways (all materials,all thicknesses)	SY	4,614	\$	5.00	\$	23,070.00
80	02221	Remove and Dispose of Sidewalks (all materials,all thicknesses)	SY	3,344	\$	6.00	\$	20,064.00
81	02315	Roadway Excavation	CY	5,000	\$	10.00	\$	50,000.00
82	02221	Remove Concrete Curb, all heights	LF	3,706	\$	1.50	\$	5,559.00
83	02771	Concrete Curb 6"	LF	18,459	\$	4.00	\$	73,836.00
84	02337	Lime/Fly-Ash Stabilized Subgrade,8-inch	SY	38,656	\$	4.00	\$	154,624.00
85	02336	Lime for Lime Stabilized Subgrade	Ton	625	\$	175.00	\$	109,375.00
86	02754	7 inch High Early Strength concrete Driveway, including excavation and base	SF	3,351	\$	8.50	\$	28,483.50
87	02751	11-inch reinforced concrete pavement	SY	29,451	\$	60.00	\$	1,767,060.00
88	02752	Board Expansion Joint with Load Transfer Device	LF	4,000	\$	11.00	\$	44,000.00
89	02752	Horizontal Dowels, all lengths	EA	40	\$	10.00	\$	400.00
90	02752	Saw-cut concrete pavement(all depths)	LF	400	\$	12.00	\$	4,800.00
91	02775	ADA Accessible Wheelchair Ramps	SY	180	\$	250.00	\$	45,000.00
92	02775	ADA Detectable Warning Pavers	EA	18	\$	200.00	\$	3,600.00
93	02775	41/2" Thick Concrete Sidewalk (10 feet)	SF	36,407	\$	7.00	\$	254,849.00
94	02775	4 1/2" Thick Concrete Sidewalk (6 feet)	SF	22,131	\$	7.00	\$	154,917.00
95	02319	Borrow	CY	0	\$	2.00	\$	-
\square Paving Items Subtotal							\$	3,428,333.50

Traffic Signal - Beltway 8							
95	416	DRILL SHAFT (TRF SIG POLE) (24 IN)	LF	66	\$130.00	\$	8,580.00
96	416	DRILL SHAFT (TRF SIG POLE) (30 IN)	LF	24	\$160.00	\$	3,840.00
97	416	DRILL SHAFT (TRF SIG POLE) (36 IN)	LF	42	\$250.00	\$	10,500.00
98	618	CONDT (PVC) (SCHD 80) (2")	LF	120	\$10.00	\$	1,200.00
99	618	CONDT (PVC) (SCHD 80) (2") (BORE)	LF	700	\$10.00	\$	7,000.00
100	618	CONDT (PVC) (SCHD 80) (3")	LF	600	\$15.00	\$	9,000.00
101	618	CONDT (PVC) (SCHD 80) (4")	LF	20	\$14.00	\$	280.00
102	618	CONDT (PVC) (SCHD 80) (4") (BORE)	LF	1,000	\$19.00	\$	19,000.00
103	620	ELEC CONDR (NO. 8) BARE	LF	2,500	\$0.90	\$	2,250.00
104	620	ELEC CONDR (NO. 4) INSULATED	LF	1,600	\$1.60	\$	2,560.00
105	624	GROUND BOX TY D (162922) W/APRON	EA	11	\$1,500.00	\$	16,500.00
106	680	INSTALL HWY TRF SIG (SYSTEM)	EA	1	\$5,000.00	\$	5,000.00
107		Optical Detector Unit	EA	6	\$625.00	\$	3,750.00
108		Phase Selector	EA	1	\$2,300.00	\$	2,300.00
109		Optical Detector Cable	LF	3,000	\$1.80	\$	5,400.00
110		Controller Cabinet 340 ITS	EA	1	\$20,000.00	\$	20,000.00
111		Model 2070L Controller	EA	1	\$2,700.00	\$	2,700.00
112		Battery Backup System	EA	1	\$5,700.00	\$	5,700.00
113		WIMAX	EA	1	\$4,500.00	\$	4,500.00
114	6007	REMOVING TRAFFIC SIGNALS	EA	1	\$3,500.00	\$	3,500.00
115	681	TEMP TRAF SIGNALS	EA	1	\$25,000.00	\$	25,000.00
116	682	VEH SIG SEC (12 IN) LED (GRN)	EA	17	\$175.00	\$	2,975.00
117	682	VEH SIG SEC (12 IN) LED (GRN ARW)	EA	4	\$175.00	\$	700.00
118	682	VEH SIG SEC (12 IN) LED (YEL)	EA	17	\$175.00	\$	2,975.00
119	682	VEH SIG SEC (12 IN) LED (YEL ARW)	EA	4	\$175.00	\$	700.00
120	682	VEH SIG SEC (12 IN) LED (RED)	EA	17	\$175.00	\$	2,975.00
121	682	VEH SIG SEC (12 IN) LED (RED ARW)	EA	4	\$175.00	\$	700.00
122	682	PED SIG SEC (LED) (COUNTDOWN)	EA	16	\$460.00	\$	7,360.00
123	682	BACK PLATE (12 IN) (3 SEC) ALUM	EA	21	\$76.00	\$	1,596.00
124	684	TRF SIG CBL (TY A) (14 AWG) (3 CONDR)	LF	3,600	\$1.00	\$	3,600.00
125	684	TRF SIG CBL (TY A) (14 AWG) (5 CONDR)	LF	3,900	\$1.40	\$	5,460.00
126	684	TRF SIG CBL (TY A) (14 AWG) (7 CONDR)	LF	4,200	\$1.50	\$	6,300.00
127	686	INS TRF SIG PL AM(S) 1 ARM (32')	EA	2	\$4,700.00	\$	9,400.00
128	686	INS TRF SIG PL AM(S) 1 ARM (36')	EA	1	\$5,000.00	\$	5,000.00
129	686	INS TRF SIG PL AM(S) 1 ARM (48')	EA	1	\$6,500.00	\$	6,500.00
130	686	INS TRF SIG PL AM(S) 2 ARM(40-36')	EA	1	\$12,000.00	\$	12,000.00
131	687	PED POLE ASSEMBLY	EA	11	\$900.00	\$	9,900.00
132	6002	VIVDS PROCESSOR SYSTEM	EA	1	\$8,000.00	\$	8,000.00
133	6002	VIVDS CAMERA ASSEMBLY	EA	6	\$1,500.00	\$	9,000.00
134	6002	VIVDS COMMUNICATION CABLE (COAXIAL)	LF	1,900	\$2.00	\$	3,800.00
135	8835	PED DETECT PUSH BUTTON (APS)	EA	14	\$1,600.00	\$	22,400.00
		Traffic Signal - Beltway 8 Items Subtotal				\$	279,901.00

MEMORIAL DRIVE MOBILITY AND DRAINAGE IMPROVEMENTS PROJECT

CONSTRUCTION COST ESTIMATE
(PER)

NOTES:

1. ALL A RCP are class iti unless otherwise
2. SEE STORM SEWER LATERALS SHEETS FOR
3. SEE WATER R INFORMATION. SAN SWR SHEETS FOR MORE
4. PROPOSED HGL CALCULATED FOR POST-PROJECT
CONTIONS USING NFOWORSS SD.
5. SEE ROADWAY HORIZONTAL GEOMETRY SHEETS FOR
MORE INFORMATION.
6. SEE STORM SEWER HORIZONTAL GEOMETRY SHEETS
7. ALL EXISTING STORM SEWER MO BE REMOVED

- x see driveway tableation \& detalls sheet

LEGEND:
\Longrightarrow ExISTING TRAFFIC FLOM
\longrightarrow Proposed traffic flow

interim review only
ocument incomplete; not intended

Seriol No. 81591
Eime No.f-62014
MEMORIAL CITY
REDEVELOPMENT AUTHORITY
Q1 $\begin{aligned} & \text { Lockwood, Andrews } \\ & \text { \& Newnam, Inc. }\end{aligned}$ a leo a dalr com MEMORIAL DRIVE
M-TITOOO-031B-4
PVMT \& STM PLAN IMPROVEMENTS
SHEET 13 OF 24
2STA

CITY OF HOUSTON	
5.5.8006	Wance
	${ }^{\text {recum }}$
FLE No.s	
odaminc scales:	arr mon cos
SHEET: of xx	

Date Eegan:
1 Iasan015

Date Began:
$1 / 13 / 2015$

Date Began:
$1 / 1312015$

$\underset{\substack{\text { Date Beann } \\ 1 \text { 1razolis }}}{ }$

$\underset{\substack{\text { Date Eegan } \\ 113 \text { R2015 }}}{ }$

Appendix D. 2
Turning Movement Counts

Pasadena, Texas, United States 77503
(281) 487-5417 denniscox@cjhensch.com

Turning Movement Data Plot

Count Name: Memorial Dr at Beltway 8 SBFR Site Code:
Start Date: $01 / 21 / 2015$ Page No: 2

Count Name: Memorial Dr at Beltway 8 SBFR Site Code:
Start Date: $01 / 21 / 2015$
Start Date: 01/21/2015
Page No: 3

Start Time	Turning Movement Peak Hour Data (7:30 AM)																					
	Beltway 8 SBFR Southbound						Memorial Dr Westbound					Beltway 8 SBFR Northbound					Memorial Dr Eastbound					Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total						
7:30 AM	31	342	31	9	0	413	39	98	0	0	137	0	0	0	0	0	268	96	0	0	364	914
7:45 AM	37	365	36	5	0	443	42	119	0	0	161	0	0	0	0	0	266	85	0	0	351	955
8:00 AM	31	329	24	5	0	389	35	122	0	0	157	0	0	0	0	0	270	72	0	0	342	888
8:15 AM	35	397	47	7	0	486	37	112	0	0	149	0	0	0	0	0	209	74	0	0	283	918
Total	134	1433	138	26	0	1731	153	451	0	0	604	0	0	0	0	0	1013	327	0	0	1340	3675
Approach \%	7.7	82.8	8.0	1.5	-	.	25.3	74.7	0.0	-	-	NaN	NaN	NaN	-	-	75.6	24.4	0.0	-	-	-
Total \%	3.6	39.0	3.8	0.7	-	47.1	4.2	12.3	0.0	-	16.4	0.0	0.0	0.0	-	0.0	27.6	8.9	0.0	-	36.5	-
PHF	0.905	0.902	0.734	0.722	-	0.890	0.911	0.924	0.000	-	0.938	0.000	0.000	0.000	.	0.000	0.938	0.852	0.000	-	0.920	0.962
All Vehicles (no classification)	134	1433	138	26	-	1731	153	451	0	-	604	0	0	0	-	0	1013	327	0	-	1340	3675
\% All Vehicles (no classification)	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	-	-	100.0	-	-	-	-	-	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-	-	-	0	.	-
\% Pedestrians	.	.	.	-	-	-	-	-	.	-	.	-	.	.	-	-	-	-

Turning Movement Peak Hour Data Plot (7:30 AM)

Count Name: Memorial Dr at Beltway 8 SBFR
Site Code:
Start Date: $01 / 21 / 2015$
Page No
Start Date: 01/21/2015
Page No: 5

Start Time	Turning Movement Peak Hour Data (5:00 PM)																					
	Beltway 8 SBFR Southbound						Memorial Dr Westbound					Beltway 8 SBFR Northbound					Memorial Dr Eastbound					Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
5:00 PM	19	408	66	5	0	498	75	288	0	0	363	0	0	0	0	0	195	92	0	0	287	1148
5:15 PM	27	483	61	3	0	574	58	253	0	0	311	0	0	0	0	0	155	94	0	0	249	1134
5:30 PM	27	402	69	1	0	499	74	296	0	0	370	0	0	0	0	0	202	85	0	0	287	1156
5:45 PM	26	471	70	1	0	568	47	254	0	0	301	0	0	0	0	0	163	69	0	0	232	1101
Total	99	1764	266	10	0	2139	254	1091	0	0	1345	0	0	0	0	0	715	340	0	0	1055	4539
Approach \%	4.6	82.5	12.4	0.5	-	-	18.9	81.1	0.0	-	-	NaN	NaN	NaN	-	.	67.8	32.2	0.0	-	-	-
Total \%	2.2	38.9	5.9	0.2	-	47.1	5.6	24.0	0.0	-	29.6	0.0	0.0	0.0	-	0.0	15.8	7.5	0.0	-	23.2	-
PHF	0.917	0.913	0.950	0.500	-	0.932	0.847	0.921	0.000	-	0.909	0.000	0.000	0.000	-	0.000	0.885	0.904	0.000	-	0.919	0.982
All Vehicles (no classification)	99	1764	266	10	.	2139	254	1091	0		1345	0	0	0	-	0	15	340	0	-	1055	39
\% All Vehicles (no classification)	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	-	-	100.0	-	-	-	-	-	100.0	100.0	-	-	100.0	100.0
Pedestrians	.	.	.	-	0	.	-	.	-	0	.	-	.	.	0	.	-	.	.	0	.	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Count Name: Memorial Dr at Beltway 8 SBFR Site Code:
Start Date: $01 / 21 / 2015$ Page No: 6

Turning Movement Peak Hour Data Plot (5:00 PM)

${ }^{2} 4$

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
Count Name: Memorial Dr at Beltway 8 NBFR Site Code:
Start Date: $01 / 21 / 2015$
Sal Page No: 2

Turning Movement Data Plot

Count Name: Memorial Dr at Beltway 8 NBFR
Site Code:
tart Date: 01/21/2015
Start Date: 01/21/2015
Page No: 3

Start Time	Betway 8 NBFR Southbound					Turning Movement Peak Hour Data (7:30 AM)											Memorial Dr Eastbound					Int. Total
	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	
7:30 AM	0	0	0	0	0	91	37	0	0	128	45	543	35	2	0	625	89	186	0	0	275	1028
7:45 AM	0	0	0	0	0	129	47	0	0	176	44	485	39	1	0	569	115	218	0	0	333	1078
8:00 AM	0	0	0	0	0	100	26	1	0	127	45	517	31	4	0	597	97	172	0	0	26	993
8:15 AM	0	0	0	0	0	106	36	0	0	142	52	465	46	4	0	567	82	179	1	0	262	971
Total	0	0	0	0	0	426	146	1	0	573	186	2010	151	11	0	2358	383	755	1	0	1139	4070
Approach \%	NaN	NaN	NaN	-	-	74.3	25.5	0.2	-	-	7.9	85.2	6.4	0.5	-	-	33.6	66.3	0.1	-	-	.
Total \%	0.0	0.0	0.0	-	0.0	10.5	3.6	0.0	-	14.1	4.6	49.4	3.7	0.3	-	57.9	9.4	18.6	0.0	-	28.0	-
PHF	0.000	0.000	0.000	-	0.000	0.826	0.777	0.250	.	0.814	0.894	0.925	0.821	0.688	.	0.943	0.833	0.866	0.250	-	0.855	0.944
All Vehicles (no classification)	0	0	0	-	0	426	146	1	-	573	186	2010	151	11	-	2358	383	755	1	-	1139	4070
\% All Vehicles (no classification)	-	-	-	-	-	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0
Pedestrians	-	-	-	0	.	-	-	-	0	.	-	-	-	-	0	-	-	-	-	0	-	.
\% Pedestrians	-	.				-	-	-	-		-	-	-	-				-	-	-	-	

quweㅇ
C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Pasadena, Texas, United States 77503
(281) 487-5417 denniscox@cjhensch.com

Turning Movement Peak Hour Data Plot (7:30 AM)

Count Name: Memorial Dr at Beltway 8 NBFR Site Code:
Start Date: $01 / 21 / 2015$ Page No: 4

Count Name: Memorial Dr at Beltway 8 NBFR
Site Code:
Start Date: $01 / 21 / 2015$
Page No: 5

Start Time	Turning Movement Peak Hour Data (5:00 PM)																					
	Betway 8 NBFR Southbound					Memorial DrWestbound					Beltway 8 NBFRNorthbound						Memorial Dr Eastbound					Int. Total
	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	
5:00 PM	0	0	0	0	0	260	33	0	0	293	73	468	35	2	0	578	60	128	0	0	188	1059
5:15 PM	0	0	0	3	0	292	24	0	0	316	48	383	55	1	0	487	61	148	0	1	209	1012
5:30 PM	0	0	0	0	0	255	18	0	2	273	69	433	45	4	0	551	60	142	0	0	202	1026
5:45 PM	0	0	0	0	0	273	37	0	0	310	59	420	36	3	0	518	63	148	0	0	211	1039
Total	0	0	0	3	0	1080	112	0	2	1192	249	1704	171	10	0	2134	244	566	0	1	810	4136
Approach \%	NaN	NaN	NaN	-	-	90.6	9.4	0.0	-	.	11.7	79.9	8.0	0.5	-	-	30.1	69.9	0.0	-	-	.
Total \%	0.0	0.0	0.0	\cdots	0.0	26.1	2.7	0.0	-	28.8	6.0	41.2	4.1	0.2	-	51.6	5.9	13.7	0.0	-	19.6	-
PHF	0.000	0.000	0.000	-	0.000	0.925	0.757	0.000	.	0.943	0.853	0.910	0.777	0.625	.	0.923	0.968	0.956	0.000	-	0.960	0.976
All Vehicles (no classification)	0	0	0	-	0	1080	112	0	-	1192	249	1704	171	10	-	2134	244	566	0	-	810	4136
\% All Vehicles (no classification)	-	-	-	-	-	100.0	100.0	-	-	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	3	-	-	-	-	2	.	-	-	-	-	0	-	-	-	-	1	-	-
\% Pedestrians	-	-		100.0		-	-	-	100.0		-	-	-	-	-			-	-	100.0	-	

Count Name: Memorial Dr at Beltway 8 NBFR Site Code:
Start Date: $01 / 21 / 2015$ Page No: 6

Turning Movement Peak Hour Data Plot (5:00 PM)

${ }_{c}^{\text {chten }}$ d

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
$(281) 487-5417$
Count Name: Memorial Dr at W Bough Ln Site Code:
Start Date: $01 / 21 / 2015$ Page No: 2

Turning Movement Data Plot

Count Name: Memorial Dr at W Bough Ln
Site Code:
Start Date: $01 / 21 / 2015$
Page No: 3

Start Time	w Bough Ln Southbound						$\underset{\text { Temorial Dr }}{\text { Turning Movement Peak Hour Data }} \underset{\text { Broken Bough Dr }}{\text { (7:30 AM) }}$												Memorial Dr Eastbound						
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Apppl } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	$\underset{\text { Topal }}{\text { App }}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Ped	App.	Int. Total
7:30 AM	16	1	10	0	0	27	1	110	22	0	0	133	6	6	0	0	0	12	18	185	0	0	0	203	375
7:45 AM	11	0	14	0	1	25	1	147	30	0	0	178	18	6	1	0	0	25	37	177	3	0	0	217	445
8:00 AM	19	2	11	0	0	32	3	118	34	0	0	155	9	16	2	0	0	27	26	142	6	0	0	174	388
8:15 AM	41	9	18	0	0	68	0	110	23	0	0	133	9	13	1	0	0	23	33	164	4	0	0	201	425
Total	87	12	53	0	1	152	5	485	109	0	0	599	42	41	4	0	0	87	114	668	13	0	0	795	1633
Approach \%	57.2	7.9	34.9	0.0	-	\cdot	0.8	81.0	18.2	0.0	-	-	48.3	47.1	4.6	0.0	-	-	14.3	84.0	1.6	0.0	-	-	.
Total \%	5.3	0.7	3.2	0.0	-	9.3	0.3	29.7	6.7	0.0	.	36.7	2.6	2.5	0.2	0.0	.	5.3	7.0	40.9	0.8	0.0	-	48.7	-
PHF	0.530	0.333	0.736	0.000	-	0.559	0.417	0.825	0.801	0.000	.	0.841	0.583	0.641	0.500	0.000	.	0.806	0.770	0.903	0.542	0.000	-	0.916	0.917
All Vehicles (no classification)	87	12	53	0	-	152	5	485	109	0	-	599	42	41	4	0	-	87	114	668	13	0	-	795	1633
\% All Vehicles (no classification)	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	.	1	-	-	.	.	-	0	-	-	-	-	-	0	-	-	.	-	-	0	-	-
\% Pedestrians	-	-	-	-	100.0	-	.	-	-	-	-	-	-	-	.	-	-	-	.	-	-	-	-	.	-

Ancona

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) 487-5417
Count Name: Memorial Dr at W Bough Ln
Site Code:
Start Date: $01 / 21 / 2015$
Page No: 4

Turning Movement Peak Hour Data Plot (7:30 AM)

Count Name: Memorial Dr at W Bough Ln
Site Code:
Start Date: $01 / 21 / 2015$
Page No: 5
Start Date: 01
Page No: 5

Start Time	w Bough Ln Southbound						Turning Movement Peak Hour Data (5:00 PM) Memorial Dr Broken Bough Dr Westbound Northbound												Memorial Dr Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{gathered} \text { Toppial } \\ \text { To } \end{gathered}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds		Left	Thru	Right	U-Turn	Peds	App.	
5:00 PM	43	8	22	0	0	73	0	292	49	0	0	341	4	14	4	0	1	22	7	140	3	0	0	150	586
5:15 PM	65	6	27	0	1	98	0	244	35	0	0	279	9	9	2	0	0	20	29	132	7	0	0	168	565
5:30 PM	52	8	12	0	1	72	0	265	55	0	0	320	3	8	1	0	0	12	20	154	4	0	0	178	582
5:45 PM	47	11	14	0	0	72	0	246	42	0	0	288	3	11		0	0	17	19	127	3	0	0	149	526
Total	207	33	75	0	2	315	0	1047	181	0	0	1228	19	42	10	0	1	71	75	553	17	0	0	645	2259
Approach \%	65.7	10.5	23.8	0.0	-	-	0.0	85.3	14.7	0.0	.	-	26.8	59.2	14.1	0.0	-	-	11.6	85.7	2.6	0.0	-	-	-
Total \%	9.2	1.5	3.3	0.0	-	13.9	0.0	46.3	8.0	0.0	-	54.4	0.8	1.9	0.4	0.0	-	3.1	3.3	24.5	0.8	0.0	-	28.6	-
PHF	0.796	0.750	0.694	0.000	.	0.804	0.000	0.896	0.823	0.000	.	0.900	0.528	0.750	0.625	0.000	.	0.807	0.647	0.898	0.607	0.000	.	0.906	0.964
All Vehicles (no classification)	207	33	75	0	-	315	0	1047	181	0	-	1228	19	42	10	0	-	71	75	553	17	0	-	645	2259
\% All Vehicles (no classification)	100.0	100.0	100.0	-	-	100.0	-	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	-	2	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-	-

Ancona

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Count Name: Memorial Dr at W Bough Ln Site Code:
Start Date: $01 / 21 / 2015$ Page No: 6

Turning Movement Peak Hour Data Plot (5:00 PM)

Start Time	Thru	Right		Peds	App. Total	Alicmong C. J. Hensch \& Associates Inc. 5215 Sycamore Ave. Pasadena, Texas, United States 77503 (281) 487-5417 denniscox@cjhensch.com				App. Total	Left	Right	Count Name: Memorial Dr at Boheme Dr Site Code: Start Date: 01/15/2015 Page No: 1			
			Memorial Dr Southbound U-Turn			Turn	Thru	vement Memorial D Northbound U-Turn	Peds				Boheme Dr Eastbound U-Turn	Peds	App. Total	lnt. Total
6:30 AM	75	1	0	0	76	4	32	0	0	36	1	16	0	1	17	129
6:45 AM	109	1	0	0	110	7	58	0	0	65	3	21	0	0	24	199
Hourly Total	184	2	0	0	186	11	90	0	0	101	4	37	0	1	41	328
7:00 AM	101	4	0	0	105	10	71	0	0	81	2	32	0	0	34	220
7:15 AM	134	2	0	0	136	7	88	0	0	95	11	53	0	0	64	295
7:30 AM	177	1	0	0	178	11	120	0	0	131	10	74	0	0	84	393
7:45 AM	165	4	0	0	169	29	144	0	0	173	6	42	0	0	48	390
Hourly Total	577	11	0	0	588	57	423	0	0	480	29	201	0	0	230	1298
8:00 AM	172	9	0	0	181	14	155	0	0	169	6	31	0	0	37	387
8:15 AM	196	16	0	0	212	19	125	0	0	144	3	29	0	0	32	388
** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	368	25	0	0	393	33	280	0	0	313	9	60	0	0	69	775
4:00 PM	132	9	0	0	141	31	240	0	0	271	8	26	0	0	34	446
4:15 PM	150	11	0	0	161	33	272	0	0	305	2	25	0	2	27	493
4:30 PM	144	13	0	0	157	43	272	0	0	315	1	19	0	0	20	492
4:45 PM	162	11	0	0	173	52	301	0	0	353	7	20	0	1	27	553
Hourly Total	588	44	0	0	632	159	1085	0	0	1244	18	90	0	3	108	1984
5:00 PM	160	10	0	0	170	61	307	0	0	368	4	27	0	0	31	569
5:15 PM	154	16	0	0	170	69	329	0	0	398	8	24	0	0	32	600
5:30 PM	161	14	0	0	175	55	300	0	0	355	3	26	0	0	29	559
5:45 PM	180	12	0	0	192	72	325	0	0	397	3	36	0	1	39	628
Hourly Total	655	52	0	0	707	257	1261	0	0	1518	18	113	0	1	131	2356
Grand Total	2372	134	0	0	2506	517	3139	0	0	3656	78	501	0	5	579	6741
Approach \%	94.7	5.3	0.0	-	-	14.1	85.9	0.0	-	-	13.5	86.5	0.0	-	-	-
Total \%	35.2	2.0	0.0	-	37.2	7.7	46.6	0.0	-	54.2	1.2	7.4	0.0	-	8.6	-
All Vehicles (no classification)	2372	134	0	-	2506	517	3139	0	-	3656	78	501	0	-	579	6741
\% All Vehicles (no classification)	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	5	-	-
\% Pedestrians	-	-	-	-	.	-	-	-	-	-	-	-	-	100.0	-	-

$\mathrm{q}_{4}=\mathbf{x}$

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
$(281) 487-5417$
Count Name: Memorial Dr at Boheme Dr Site Code:
Start Date: $01 / 15 / 2015$ Page No: 2

Turning Movement Data Plot

Count Name: Memorial Dr at Boheme Dr
Site Code:
Start Date: $01 / 15 / 2015$
Start Date: 0
Page No: 3

9

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$
Count Name: Memorial Dr at Boheme Dr Site Code:
Start Date: $01 / 15 / 2015$ Page No: 4

Turning Movement Peak Hour Data Plot (7:30 AM)

Count Name: Memorial Dr at Boheme Dr
Site Code:
Start Date: $01 / 15 / 2015$
Page No: 5
Start Date: 0
Page No: 5

9

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Count Name: Memorial Dr at Boheme Dr Site Code:
Start Date: $01 / 15 / 2015$ Page No: 6

Turning Movement Peak Hour Data Plot (5:00 PM)

${ }_{c}^{\text {chtein }}$

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503

Count Name: Memorial Dr at Hollow Dr Site Code: Page No: 2

Count Name: Memorial Dr at Hollow Dr
Site Code:
Site Code:
Start Date: $01 / 21 / 2015$
Page No: 3
Start Date: 0
Page No: 3

Start Time	Turning Movement Peak Hour Data (7:30 AM)															
	Hollow Dr Southbound					Memorial Dr Westbound					Memorial Dr Eastbound					int. Total
	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	
7:30 AM	0	3	0	1	3	145	6	1	0	152	0	255	0	0	255	410
7:45 AM	0	4	0	0	4	191	3	4	0	198	1	221	0	1	222	424
8:00 AM	0	2	0	0	2	162	12	3	0	177	0	207	0	0	207	386
8:15 AM	2	4	0	0	6	109	2	3	0	114	1	243	0	0	244	364
Total	2	13	0	1	15	607	23	11	0	641	2	926	0	1	928	1584
Approach \%	13.3	86.7	0.0	-	.	94.7	3.6	1.7	-	-	0.2	99.8	0.0	-	-	-
Total \%	0.1	0.8	0.0	-	0.9	38.3	1.5	0.7	-	40.5	0.1	58.5	0.0	-	58.6	-
PHF	0.250	0.813	0.000	-	0.625	0.795	0.479	0.688	-	0.809	0.500	0.908	0.000	-	0.910	0.934
All Vehicles (no classification)	2	13	0	-	15	607	23	11	-	641	2	926	0	-	928	1584
\% All Vehicles (no classification)	100.0	100.0	.	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	.	-	100.0	100.0
Pedestrians	-	-	-	1	-	-	-	-	0	-	.	-	-	1	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	-	-	-	-	-	100.0	-	-

qumes

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Count Name: Memorial Dr at Hollow Dr
(281) 487-5417 denniscox@cjhensch.com

Turning Movement Peak Hour Data Plot (7:30 AM)

Count Name: Memorial Dr at Hollow Dr
Site Code:
Start Date: $01 / 21 / 2015$
Start Date: 01/21/2015
Page No: 5

Start Time	Turning Movement Peak Hour Data (4:45 PM)															
	Hollow Dr Southbound					Memorial Dr Westbound					Memorial Dr Eastbound					Int. Total
	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	u-Turn	Peds	App. Total	
4:45 PM	1	4	0	0	5	354	3	1	0	358	1	167	0	0	168	531
5:00 PM	4	2	0	2	6	384	1	0	0	385	1	211	0	0	212	603
5:15 PM	0	0	0	1	0	362	6	0	0	368	3	193	0	0	196	564
5:30 PM	1	0	0	1	1	365	2	6	1	373	0	225	0	0	225	599
Total	6	6	0	4	12	1465	12	7	1	1484	5	796	0	0	801	2297
Approach \%	50.0	50.0	0.0	-	.	98.7	0.8	0.5	.	-	0.6	99.4	0.0	-	-	-
Total \%	0.3	0.3	0.0	-	0.5	63.8	0.5	0.3	-	64.6	0.2	34.7	0.0	-	34.9	-
PHF	0.375	0.375	0.000	-	0.500	0.954	0.500	0.292	-	0.964	0.417	0.884	0.000	-	0.890	0.952
All vehicles (no classification)	6	6	0	-	12	1465	12	7	-	1484	5	796	0	-	801	2297
$\%$ All Vehicles (no classification)	100.0	100.0	.	.	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	.	-	100.0	100.0
Pedestrians	-	-	-	4	-	-	-	-	1	-	.	-	-	0	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	100.0	-	-	-	-	-	-	-

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281)
Count Name: Memorial Dr at Hollow Dr Site Code:
Start Date: $01 / 21 / 2015$ Page No: 6

Turning Movement Peak Hour Data Plot (4:45 PM)

$\mathrm{q}_{4}=\mathbf{x}$

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
$(281) 487-5417$
Count Name: Memorial Dr at Benignus Rd Site Code:
Start Date: $01 / 13 / 2015$ Page No: 2

Count Name: Memorial Dr at Benignus Rd
Site Code:
Site Code: :
Start Date: 01/13/2015
Start Date: 0
Page No: 3

qumes

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$
Count Name: Memorial Dr at Benignus Rd Site Code:
Start Date: $01 / 13 / 2015$ Page No: 4

Turning Movement Peak Hour Data Plot (7:30 AM)

Count Name: Memorial Dr at Benignus Rd
Site Code:
Site Code: Start Date: 01/13/2015
Start Date: 01/13/2015
Page No: 5

Start Time	Turning Movement Peak Hour Data (5:00 PM)															
	Southbound St. Southbound					Westoound St.					Eastbound St. Eastbound					int. Total
	Left	Right		Peds	App. Total	Thru	Right	$\begin{aligned} & \text { Westboun } \\ & \text { U-Turn } \end{aligned}$	Peds	App. Total	Left	Thru		Peds	App. Total	
5:00 PM	22	50	0	0	72	325	13	0	0	338	19	159	0	0	178	588
5:15 PM	26	35	0	0	61	357	12	0	0	369	5	146	0	0	151	581
5:30 PM	27	42	0	0	69	351	22	0	1	373	8	181	0	0	189	631
5:45 PM	27	28	0	0	55	345	23	0	0	368	11	129	0	0	140	563
Total	102	155	0	0	257	1378	70	0	1	1448	43	615	0	0	658	2363
Approach \%	39.7	60.3	0.0	-	.	95.2	4.8	0.0	.		6.5	93.5	0.0	.	.	-
Total \%	4.3	6.6	0.0	-	10.9	58.3	3.0	0.0	.	61.3	1.8	26.0	0.0	\cdots	27.8	-
PHF	0.944	0.775	0.000	-	0.892	0.965	0.761	0.000	-	0.971	0.566	0.849	0.000	-	0.870	0.936
All vehicles (no classitication)	102	155	0	-	257	1378	70	0	-	1448	43	615	0	-	658	2363
\% All Vehicles (no classification)	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	0	-	-	-	-	1	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-

qumes

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Count Name: Memorial Dr at Benignus Rd Site Code:
Start Date: $01 / 13 / 2015$ Page No: 6

Turning Movement Peak Hour Data Plot (5:00 PM)

Start Time	Left	Right			App. Total	C. J. Hensch \& Associates Inc. 5215 Sycamore Ave. Pasadena, Texas, United States 77503 (281) 487-5417 denniscox@cjhensch.com				App. Total	Left	Thru	ount Name: Memorial Dr at Frostwood Dr ite Code: tart Date: 01/21/2015 age No: 1			
			Fostwood Dr Southbound			TU	R M Right	emen Memorial Westboun U-Turn	Peds				Memorial Dr Eastbound U-Turn	Peds	App. Total	Int. Total
6:30 AM	1	5	0	2	6	53	2	0	0	55	21	81	0	0	102	163
	0	6	0	0	6	69	1	0	0	70	16	96	0	0	112	188
Hourly Total	1	11	0	2	12	122		0	0	125	37	177	0	0	214	
7:00 AM	2	12	0	2	14	53	1	0	0	54	20	145	0	0	165	233
7:15 AM	5	15	0	0	20	76	4	0	0	80	42	213	0	0	255	355
7:30 AM	4	17	0	0	21	113	4	0	0	117	42	242	0	0	284	422
7:45 AM	3	19	0	0	22	178	4	0	0	182	21	208	0	0	229	433
Hourly Total	14	63	0	2	77	420	13	0	0	433	125	808	0	0	933	1443
8:00 AM	3	14	0	0	17	162	6	0	0	168	23	204	0	0	227	412
8:15 AM	4	14	0	0	18	85	3	0	0	88	38	204	0	0	242	348
** BREAK ${ }^{\text {*** }}$	-	-	-	-	-	-	-	-	-	-	-	-	.	-	-	-
Hourly Total	7	28	0	0	35	247	9	0	0	256	61	408	0	0	469	760
4:00 PM	6	36	0	0	42	224	4	0	0	228	14	150	0	0	164	434
4:15 PM	1	45	0	0	46	215	5	0	0	220	15	145	0	0	160	426
4:30 PM	7	65	0	0	72	209	1	0	0	210	12	157	0	0	169	451
4:45 PM	2	45	0	0	47	284	2	0	0	286	7	147	0	0	154	487
Hourly Total	16	191	0	0	207	932	12	0	0	944	48	599	0	0	647	1798
5:00 PM	2	68	0	2	70	275	5	0	0	280	23	166	0	0	189	539
5:15 PM	8	89	0	0	97	255	3	0	0	258	18	184	0	0	202	557
5:30 PM	6	71	0	0	77	249	5	0	0	254	16	192	0	0	208	539
5:45 PM	9	61	0	2	70	272	2	0	0	274	19	149	0	0	168	512
Hourly Total	25	289	0	4	314	1051	15	0	0	1066	76	691	0	0	767	2147
Grand Total	63	582	0	8	645	2772	52	0	0	2824	347	2683	0	0	3030	6499
Approach \%	9.8	90.2	0.0	.	-	98.2	1.8	0.0	-	.	11.5	88.5	0.0	-	-	-
Total \%	1.0	9.0	0.0	-	9.9	42.7	0.8	0.0	-	43.5	5.3	41.3	0.0	-	46.6	-
All vehicles (no classification)	63	582	0	-	645	2772	52	0	-	2824	347	2683	0	-	3030	6499
\% All Vehicles (no classification)	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	8	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-

${ }_{c}^{\text {chtein }}$

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503

ount Name: Memorial Dr at Frostwood Dr Site Code: Page No: 2

Count Name: Memorial Dr at Frostwood Dr
Site Code:
Start Date: $01 / 21 / 2015$
Start Date: 01/21/2015
Page No: 3

Start Time	Turning Movement Peak Hour Data (7:15 AM)															
	Frostwood Dr Southbound					Memorial Dr Westbound					Memorial Dr Eastbound					Int. Total
	Left	Right		Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	
7:15 AM	5	15	0	0	20	76	4	0	0	80	42	213	0	0	255	355
7:30 AM	4	17	0	0	21	113	4	0	0	117	42	242	0	0	284	422
7:45 AM	3	19	0	0	22	178	4	0	0	182	21	208	0	0	229	433
8:00 AM	3	14	0	0	17	162	6	0	0	168	23	204	0	0	227	412
Total	15	65	0	0	80	529	18	0	0	547	128	867	0	0	995	1622
Approach \%	18.8	81.3	0.0	-	-	96.7	3.3	0.0	-	-	12.9	87.1	0.0	-	-	-
Total \%	0.9	4.0	0.0	-	4.9	32.6	1.1	0.0	-	33.7	7.9	53.5	0.0	-	61.3	-
PHF	0.750	0.855	0.000	-	0.909	0.743	0.750	0.000	-	0.751	0.762	0.896	0.000	-	0.876	0.936
All Vehicles (no classification)	15	65	0	-	80	529	18	0	-	547	128	867	0	-	995	1622
$\%$ All Vehicles (no classification)	100.0	100.0		-	100.0	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

qumes

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Count Name: Memorial Dr at Frostwood Dr Site Code:
Start Date: 01/21/2015 Page No: 4

Turning Movement Peak Hour Data Plot (7:15 AM)

Count Name: Memorial Dr at Frostwood D
Site Code:
Start Date: $01 / 21 / 2015$
Page No: 5
Start Date: 01
Page No: 5

Start Time	Turning Movement Peak Hour Data (5:00 PM)															
	Frostwood Dr Southbound					Memorial Dr Westbound					Memorial Dr Eastbound					Int. Total
	Left	Right		Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	
5:00 PM	2	68	0	2	70	275	5	0	0	280	23	166	0	0	189	539
5:15 PM	8	89	0	0	97	255	3	0	0	258	18	184	0	0	202	557
5:30 PM	6	71	0	0	77	249	5	0	0	254	16	192	0	0	208	539
5:45 PM	9	61	0	2	70	272	2	0	0	274	19	149	0	0	168	512
Total	25	289	0	4	314	1051	15	0	0	1066	76	691	0	0	767	2147
Approach \%	8.0	92.0	0.0	-	-	98.6	1.4	0.0	-	-	9.9	90.1	0.0	-	-	-
Total \%	1.2	13.5	0.0	-	14.6	49.0	0.7	0.0	-	49.7	3.5	32.2	0.0	-	35.7	-
PHF	0.694	0.812	0.000	-	0.809	0.955	0.750	0.000	-	0.952	0.826	0.900	0.000	-	0.922	0.964
All Vehicles (no classification)	25	289	0	-	314	1051	15	0	-	1066	76	691	0	-	767	2147
$\%$ All Venicles (no classification)	100.0	100.0			100.0	100.0	100.0	-	-	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	4	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Count Name: Memorial Dr at Frostwood Dr Site Code:
Start Date: $01 / 21 / 2015$ Page No: 6

Turning Movement Peak Hour Data Plot (5:00 PM)

${ }_{c}^{\text {chten }}$ d

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
$(281) 487-5417$
Count Name: Memorial Dr at Gessner Rd Site Code:
Start Date: $01 / 13 / 2015$ Page No: 2

Turning Movement Data Plot

Count Name: Memorial Dr at Gessner Rd
Site Code:
Site Code:
Start Date: 01/13/2015
Start Date: 01/13/2015
Page No: 3

Turning Movement Peak Hour Data (7:30 AM)

Start Time	Gessner Dr Southbound						Turning Movement Peak Hour Data (7:30 AM)												Memorial Dr Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Apppi } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	$\begin{gathered} \text { App. } \\ \text { Total } \end{gathered}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Apppi } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App.	
7:30 AM	19	157	10	0	0	186	17	76	31	0	0	124	34	253	19	0	0	306	40	119	53	0	0	212	828
7:45 AM	16	233	20	0	4	269	19	88	39	0	5	146	33	248	12	0	2	293	35	122	60	0	4	217	925
8:00 AM	20	169	13	0	0	202	7	115	25	0	0	147	45	227	5	0	1	277	26	105	37	0	0	168	794
8:15 AM	21	168	8	0	0	197	4	44	29	0	0	77	32	239	9	1	0	281	34	99	50	0	0	183	738
Total	76	727	51	0	4	854	47	323	124	0	5	494	144	967	45	1	3	1157	135	445	200	0	4	780	3285
Approach \%	8.9	85.1	6.0	0.0	-	-	9.5	65.4	25.1	0.0	-	-	12.4	83.6	3.9	0.1	-	-	17.3	57.1	25.6	0.0	-	-	-
Total \%	2.3	22.1	1.6	0.0	-	26.0	1.4	9.8	3.8	0.0	-	15.0	4.4	29.4	1.4	0.0	-	35.2	4.1	13.5	6.1	0.0	-	23.7	-
PHF	0.905	0.780	0.638	0.000	-	0.794	0.618	0.702	0.795	0.000	-	0.840	0.800	0.956	0.592	0.250	-	0.945	0.844	0.912	0.833	0.000	-	0.899	0.888
All Vehicles (no classification)	76	727	51	0	-	854	47	323	124	0	.	494	144	967	45	1	.	1157	135	445	200	0	-	780	3285
\% All Vehicles (no classification)	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0
Pedestrians	-	-	-	-	4	-	-	-	-	-	5	-	-	-	-	-	3	-	-	-	-	-	4	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	\cdot	-	-	100.0	\cdot	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-

9

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,

Turning Movement Peak Hour Data Plot (7:30 AM)

Count Name: Memorial Dr at Gessner Rd Site Code:
Start Date: $01 / 13 / 2015$ Page No: 4

Count Name: Memorial Dr at Gessner Rd
Site Code:
Start Date: 01/13/2015
Start Date: 01
Page No: 5

Start Time	Gessner Dr Southbound						Turning Movement Peak Hour Data (5:00 PM)												Memorial Dr Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{gathered} \text { App. } \\ \text { Total } \end{gathered}$	Left	Thru	Right	U-Turn	Peds	${ }_{\text {Appal }}^{\text {Appal }}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Appi } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	$\underset{\substack{\text { Appal } \\ \text { Total }}}{\text { at }}$	
5:00 PM	31	244	46	0	0	321	19	185	23	0	0	227	53	228	30	1	0	312	24	103	36	0	0	163	1023
5:15 PM	28	286	50	0	0	364	23	173	27	0	0	223	44	214	37	0	0	295	28	86	45	1	0	160	1042
5:30 PM	35	217	41	0	0	293	20	197	28	0	0	245	52	217	16	0	0	285	31	113	35	0	0	179	1002
5:45 PM	33	265	53	0	0	351	26	165	20	0	0	211	41	235	15	0	0	291	25	92	29	0	0	146	999
Total	127	1012	190	0	0	1329	88	720	98	0	0	906	190	894	98	1	0	1183	108	394	145	1	0	648	4066
Approach \%	9.6	76.1	14.3	0.0	-	.	9.7	79.5	10.8	0.0	-	.	16.1	75.6	8.3	0.1	-		16.7	60.8	22.4	0.2	-	-	-
Total \%	3.1	24.9	4.7	0.0	-	32.7	2.2	17.7	2.4	0.0	.	22.3	4.7	22.0	2.4	0.0	.	29.1	2.7	9.7	3.6	0.0	-	15.9	-
PHF	0.907	0.885	0.896	0.000	-	0.913	0.846	0.914	0.875	0.000	.	0.924	0.896	0.951	0.662	0.250	-	0.948	0.871	0.872	0.806	0.250	-	0.905	0.976
All Vehicles (no classification)	127	1012	190	0	-	1329	88	720	98	0	-	906	190	894	98	1	-	1183	108	394	145	1	-	648	4066
\% All Vehicles (no classification)	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	-	-	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	100.0	-	100.0	100.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	\cdot	-	\cdot	\cdot	\cdot	-	\cdot	-	.	\cdot	\cdot	-	-	-	\cdot	-	-	-	\cdot	-

${ }^{9} 9$

C. J. Hensch \& Associates Inc.
5215 Sycamore Ave.

Pasadena, Texas, United States 77503
(281) $487-5417$,
Pasadena, Texas, United States 77503
(281) 487-5417 denniscox@cjhensch.com

Turning Movement Peak Hour Data Plot (5:00 PM)

Count Name: Memorial Dr at Gessner Rd Site Code:
Start Date: $01 / 13 / 2015$ Page No: 6

Appendix D. 3
Synchro Summary Table
1

	4	\rightarrow		7			4	\dagger	\％		$\frac{1}{*}$	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$
Lane Configurations		4忡	「	＊	44						¢性				
Volume（vph）	0	1013	327	153	451	0	0	0	0	134	1433	138			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width（ft）	11	11	11	11	11	11	11	11	11	11	11	11			
Storage Length（ft）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（ft）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.985				
Flt Protected				0.950							0.996				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Flt Permitted				0.950							0.996				
Satd．Flow（perm）	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								20				
Link Speed（mph）		35			35			35			35				
Link Distance（ft）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.91	0.90	0.73			
Adj．Flow（vph）	0	1078	385	168	490	0	0	0	0	147	1592	189			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	1078	385	168	490	0	0	0	0	0	1928	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（ft）		11			11			0			0				
Link Offset（ft）		0			0			0			0				
Crosswalk Width（ft）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split（s）		40.7	40.7	19.3						60.0	60.0		36.0	24.0	60.0

2015 AM Peak 7：30 am 12／17／2014 Existing
Synchro 9 Report
LAN Employee

Lanes，Volumes，Timings
10：SB BW8 WSR U－Turn／SB BW8 WSR

Splits and Phases：10：SB BW8 WSR U－Turn／SB BW8 WSR

	$\stackrel{ }{*}$	\rightarrow		7	4	4		\uparrow	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	65	${ }^{6} 6$	${ }^{68}$
Lane Configurations	7	¢ \uparrow			螈			*44	「						
Volume (vph)	383	755	0	0	426	146	186	2010	151	0	0	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width (tt)	11	11	11	11	11	11	11	11	11	11	11	11			
Lane Utill. Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.960				0.850						
Flt Protected	0.950							0.996							
Satd. Flow (prot)	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Flt Permitted	0.950							0.996							
Satd. Flow (perm)	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd. Flow (RTOR)					33				91						
Link Speed (mph)		35			35			35			35				
Link Distance (t)		225			208			132			141				
Travel Time (s)		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.83	0.87	0.92	0.92	0.83	0.78	0.89	0.93	0.82	0.92	0.92	0.92			
Adj. Flow (vph)	461	868	0	0	513	187	209	2161	184	0	0	0			
Shared Lane Traffic (\%)															
Lane Group Flow (vph)	461	868	0	0	700	0	0	2370	184	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width(t)		11			11			0			0				
Link Offset(ft)		0			0			0			0				
Crosswalk Width(t)		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split (s)	36.0				24.0		60.0	60.0	60.0				19.3	40.7	60.0
Total Lost Time (s)	6.5				6.5			6.5	6.5						
Act Efft Green (s)	29.5	53.5			17.5			53.5	53.5						
Actuated g/C Ratio	0.25	0.45			0.15			0.45	0.45						

2015 AM Peak 7:30 am 12/17/2014 Existing

Lanes, Volumes, Timings
13: NB BW8 ESR/NB BW8 ESR U-Turn
8/18/2015

	\checkmark	+	λ	m	k	5	\dagger	\nearrow	T	5	4	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	44		\%	44			\&			\uparrow	「
Volume (vph)	114	668	13	5	485	109	42	41	4	87	12	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	120		0	120		0	0		0	0		50
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.995			0.972			0.992				0.850
Flt Protected	0.950			0.950				0.976			0.961	
Satd. Flow (prot)	1711	3404	0	1711	3325	0	0	1743	0	0	1730	1531
Flt Permitted	0.950			0.950				0.465			0.631	
Satd. Flow (perm)	1711	3404	0	1711	3325	0	0	831	0	0	1136	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		5			40			2				106
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.77	0.90	0.54	0.42	0.82	0.80	0.58	0.64	0.50	0.53	0.33	0.74
Adj. Flow (vph)	148	742	24	12	591	136	72	64	8	164	36	72
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	148	766	0	12	727	0	0	144	0	0	200	72
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	20.0	75.0		20.0	75.0		25.0	25.0		25.0	25.0	25.0

2015 AM Peak 7:30 am 12/17/2014 Existing
Synchro 9 Report LAN Employee

Lanes, Volumes, Timings
22: Broken Bough

	\cdots	\backslash	λ	\cdots	k	厄	\%	\ngtr	-	4	\nearrow	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Lost Time (s)	4.9	4.9		4.9	4.9			5.1			5.1	5.1
Act Effct Green (s)	13.8	82.1		9.5	71.4			19.9			19.9	19.9
Actuated g/C Ratio	0.12	0.68		0.08	0.60			0.17			0.17	0.17
v/c Ratio	0.76	0.33		0.09	0.36			1.04			1.06	0.21
Control Delay	70.3	17.5		49.4	12.6			134.9			131.6	4.5
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Delay	70.3	17.5		49.4	12.6			134.9			131.6	4.5
LOS	E	B		D	B			F			F	A
Approach Delay		26.1			13.2			134.9			98.0	
Approach LOS		C			B			F			F	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 100 (83\%), Referenced to phase 2:NWT and 6:SET, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.06												
Intersection Signal Delay: 38.5					sectio	OS: D						
Intersection Capacity Utilization 47.0\%				ICU Level of Service A								
Analysis Period (min) 15												

2015 AM Peak 7:30 am 12/17/2014 Existing

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln

Intersection							
HCM Control Delay, s	32.9					0	1.3
HCM LOS	D						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT		
Capacity (veh/h)	-	-	219	841	-		
HCM Lane V/C Ratio	-	-	0.421	0.08	-		
HCM Control Delay (s)	-	-	32.9	9.7	0.6		
HCM Lane LOS	-	-	D	A	A		
HCM 95th \%tile Q(veh)	-	-	1.9	0.3			

Intersection							
Int Delay, s/veh							
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Vol, veh/h	16	25	564	10	9	738	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	0	-	-	0	
Grade, \%	0	-	0	-	-	0	
Peak Hour Factor	40	69	77	83	56	84	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	40	36	732	12	16	879	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1209	372	0	0	745	0	
Stage 1	738	-	-	-	-	-	
Stage 2	471	-	-	-	-	-	
Critical Hdwy	6.84	6.94	-	-	4.14	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	-	-	2.22	-	
Pot Cap-1 Maneuver	175	625	-	-	859	-	
Stage 1	434	-	-	-	-	-	
Stage 2	594	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	169	625	-	-	859	-	
Mov Cap-2 Maneuver	169	-	-	-	-	-	
Stage 1	434	-	-	-	-	-	
Stage 2	573	-	-	-	-	-	
Approach	WB		NB		SB		
2015 AM Peak 7:30 am 12 LAN Employee							Synchro 9 Report Page 22

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr

Intersection						
HCM Control Delay, s	24.6			0	0.4	
HCM LOS	C					
	NBT	NBR	WBLn1	SBL	SBT	
Minor Lane/Major Mvmt	-	-	259	859	-	
Capacity (veh/h)	-	-	0.294	0.019	-	
HCM Lane V/C Ratio	-	-	24.6	9.3	0.2	
HCM Control Delay (s)	-	-	C	A	A	
HCM Lane LOS	-	-	1.2	0.1	-	

2015 AM Peak 7:30 am 12/17/2014 Existing

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive

Intersection					
HCM Control Delay, s	21.9			1.7	0
HCM LOS	C				
	NBL	NBT	EBLn1	SBT	SBR
Minor Lane/Major Mvmt	816	-	428	-	-
Capacity (veh/h)	0.097	-	0.51	-	-
HCM Lane V/C Ratio	9.9	0.6	21.9	-	-
HCM Control Delay (s)	A	A	C	-	-
HCM Lane LOS	0.3	-	2.8	-	-
HCM 95th \%tile Q(veh)					

Intersection							
Int Delay, s/veh 0.6							
Movement	WBL	WBR	SEL	SET	NWT	NWR	
Vol, veh/h	10	14	4	887	616	8	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	79	67	50	89	50	70	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	13	21	8	997	1232	11	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1752	622	1243	0	-	0	
Stage 1	1238		-	-	-	-	
Stage 2	514	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	77	430	556	-	-	-	
Stage 1	237	-	-	-	-	-	
Stage 2	565	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	75	430	556	-	-	-	
Mov Cap-2 Maneuver	75	-	-	-	-	-	
Stage 1	237	-	-			-	
Stage 2	547	-	-	-	-	-	
Approach	WB		SE		NW		
2015 AM Peak 7:30 am 12/17/2014 Existing LAN Employee							Synchro 9 Repor Page 26

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/17/2015

Intersection					
HCM Control Delay, s	34.8		0.3	0	
HCM LOS	D				
Minor Lane/Major Mvmt	NWT	NWR	WBLn1	SEL	SET
Capacity (veh/h)	-	-	154	556	-
HCM Lane V/C Ratio	-	-	0.218	0.014	-
HCM Control Delay (s)	-	-	34.8	11.6	0.2
HCM Lane LOS	-	-	D	B	A
HCM 95th \%tile Q(veh)	-	-	0.8	0	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	2	926	618	23	2	13
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	
Grade, \%	-	0	0	-	0	
Peak Hour Factor	50	91	79	48	25	81
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	4	1018	782	48	8	16
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	830	0	-	0	1323	415
Stage 1	-	-	-	-	806	
Stage 2	-	-	-	-	517	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	798	-	-	-	148	586
Stage 1	-	-	-	-	400	-
Stage 2	-	-	-	-	563	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	798	-	-	-	146	586
Mov Cap-2 Maneuver	-	-	-	-	146	-
Stage 1	-	-	-	-	400	-
Stage 2	-	-	-	-	556	-
Approach	EB		WB		SB	

2015 AM Peak 7:30 am 12/17/2014 Existing Synchro 9 Report
LAN Employee

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive

Intersection						
HCM Control Delay, s	0.1				18.4	
HCM LOS						
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)	798	-	-	-	293	
HCM Lane VIC Ratio	0.005	-	-	-	0.082	
HCM Control Delay (s)	9.5	0.1	-	-	18.4	
HCM Lane LOS	A	A	-	-	C	
HCM 95th \%tile Q(veh)	0	-	-	-	0.3	

Intersection						
Int Delay, s/veh 1.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	928	6	28	592	14	49
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	75	78	76	88	58
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1092	8	36	779	16	84
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1100	0	1557	550
Stage 1	-	-	-	-	1096	-
Stage 2	-	-	-	-	461	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	630	-	103	479
Stage 1	-	-	-	-	282	
Stage 2	-	-	-	-	601	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	630	-	93	479
Mov Cap-2 Maneuver	-	-	-	-	93	-
Stage 1	-	-	-	-	282	-
Stage 2	-	-	-	-	540	-
Approach	EB		WB		NB	

2015 AM Peak 7:30 am 12/17/2014 Existing Synchro 9 Report
LAN Employee

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr

Intersection						
HCM Control Delay, s		0			1	23.9
HCM LOS						C
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	289	-	-	630	-	
HCM Lane V/C Ratio	0.347	-	-	0.057	-	
HCM Control Delay (s)	23.9	-	-	11.1	0.5	
HCM Lane LOS	C	-	-	B	A	
HCM 95th \%tile Q(veh)	1.5	-	-	0.2	-	

2015 AM Peak 7:30 am 12/17/2014 Existing Synchro 9 Report
LAN Employee

Intersection							
Int Delay, s/veh							
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	89	890	573	29	12	66	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	70	86	73	73	60	63	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	127	1035	785	40	20	105	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	825	0	-	0	1577	412	
Stage 1	-	-	-	-	805	-	
Stage 2	-	-	-	-	772	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	801	-	-	-	100	589	
Stage 1	-	-	-	-	400	-	
Stage 2	-	-	-	-	416	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	801	-	-	-	63	589	
Mov Cap-2 Maneuver	-	-	-	-	63	-	
Stage 1	-	-	-	-	400	-	
Stage 2	-	-	-	-	261	-	
Approach	EB		WB		SB		
2015 AM Peak 7:30 am 12 LAN Employee							Synchro 9 Report Page 20

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/17/2015

Intersection							
HCM Control Delay, s	2.5					0	32.5
HCM LOS							D
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)	801	-	-	-	252		
HCM Lane V/C Ratio	0.159	-	-	-	0.495		
HCM Control Delay (s)	10.3	1.5	-	-	32.5		
HCM Lane LOS	B	A	-	-	D		
HCM 95th \%tile Q(veh)	0.6	-	-	-	2.5		

$\|$

	4	\rightarrow		7			4	4	p		$\frac{1}{*}$	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$
Lane Configurations		4中4	「	＊	44						个性				
Volume（vph）	0	1080	330	165	485	0	0	0	0	171	1446	140			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width（ft）	11	11	11	11	11	11	11	11	11	11	11	11			
Storage Length（ft）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（ft）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.986				
Flt Protected				0.950							0.995				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Flt Permitted				0.950							0.995				
Satd．Flow（perm）	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								19				
Link Speed（mph）		35			35			35			35				
Link Distance（ft）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.91	0.90	0.73			
Adj．Flow（vph）	0	1149	388	181	527	0	0	0	0	188	1607	192			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	1149	388	181	527	0	0	0	0	0	1987	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（ft）		11			11			0			0				
Link Offset（ft）		0			0			0			0				
Crosswalk Width（ft）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Split	NA				
Protected Phases		6		5	56					8	8		1	2	4
Permitted Phases			6												
Total Split（s）		40.0	40.0	20.0						60.0	60.0		36.0	24.0	60.0

2016 AM Peak 7：30 am 12／17／2014 No Build
Synchro 9 Report
LAN Employee

Lanes，Volumes，Timings
10：SB BW8 WSR U－Turn／SB BW8 WSR

		\rightarrow	\geqslant	\dagger			4	\dagger	F		\downarrow	\downarrow			
Lane Group EBL	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 1$	$\varnothing 2$	${ }^{64}$
Total Lost Time（s）		6.5	6.5	6.5							6.5				
Act Effict Green（s）		33.5	33.5	13.5	53.5						53.5				
Actuated g／C Ratio		0.28	0.28	0.11	0.45						0.45				
v／c Ratio		0.84	0.79	0.94	0.35						0.92				
Control Delay		47.2	43.0	57.2	9.9						39.1				
Queue Delay		1.7	0.0	28.1	19.9						0.7				
Total Delay		48.9	43.0	85.3	29.8						39.8				
LOS		D	D	F	C						D				
Approach Delay		47.4			44.0						39.8				
Approach LOS		D			D						D				
Intersection Summary															
Area Type：Other	Other														
Cycle Length： 120															
Actuated Cycle Length： 120															
Offset： 0 （0\％），Referenced to phase 2：EBWB and 6：，Start of Green，Master Intersection															
Control Type：Actuated－Coordinated															
Maximum v／c Ratio： 1.11															
Intersection Signal Delay： 43.3				Intersection LOS：D											
Intersection Capacity Utilization 93．4\％				ICU Level of Service F											
Analysis Period（min） 15															

Splits and Phases：10：SB BW8 WSR U－Turn／SB BW8 WSR

	4	\rightarrow		7	\leftarrow		4	\uparrow	p	\checkmark	\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 5$	$\emptyset 6$	ø8
Lane Configurations	\%	个 \uparrow			蚛			* $\uparrow \uparrow$	\%						
Volume (vph)	387	828	0	0	470	162	188	2027	166	0	0	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width (tt)	11	11	11	11	11	11	11	11	11	11	11	11			
Lane Util. Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.960				0.850						
Flt Protected	0.950							0.996							
Satd. Flow (prot)	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Flt Permitted	0.950							0.996							
Satd. Flow (perm)	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd. Flow (RTOR)					32				91						
Link Speed (mph)		35			35			35			35				
Link Distance (t)		225			208			132			141				
Travel Time (s)		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.83	0.87	0.92	0.92	0.83	0.78	0.89	0.93	0.82	0.92	0.92	0.92			
Adj. Flow (vph)	466	952	0	0	566	208	211	2180	202	0	0	0			
Shared Lane Traffic (\%)															
Lane Group Flow (vph)	466	952	0	0	774	0	0	2391	202	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width(t)		11			11			0			0				
Link Offset(tt)		0			0			0			0				
Crosswalk Width(tr)		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	,	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split (s)	36.0				24.0		60.0	60.0	60.0				20.0	40.0	60.0
Total Lost Time (s)	6.5				6.5			6.5	6.5						
Act Efft Green (s)	29.5	53.5			17.5			53.5	53.5						
Actuated g/C Ratio	0.25	0.45			0.15			0.45	0.45						

2016 AM Peak 7:30 am 12/17/2014 No Build
Synchro 9 Report LAN Employee

Lanes, Volumes, Timings
13: NB BW8 ESR/NB BW8 ESR U-Turn
8/18/2015

	4	\rightarrow	7	7	4	4	4	\uparrow	p	\checkmark	I	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	${ }_{65}$	$ø 6$	$\varnothing 8$
v/c Ratio	1.11	0.62			1.08			1.10	0.28						
Control Delay	88.4	10.5			101.8			83.6	12.3						
Queue Delay	0.1	2.0			7.3			1.9	0.0						
Total Delay	88.5	12.4			109.0			85.4	12.3						
LOS	F	B			F			F	B						
Approach Delay		37.4			109.0			79.7							
Approach LOS		D			F			E							

	\cdots	+	2	m	k	5	\cdots	\nearrow	Ta	4	\square	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	44		${ }^{1}$	44			\$			\uparrow	「
Volume (vph)	115	753	14	6	544	110	43	42	5	88	13	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	120		0	120		0	0		0	0		50
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.995			0.974			0.991				0.850
Flt Protected	0.950			0.950				0.976			0.961	
Satd. Flow (prot)	1711	3404	0	1711	3332	0	0	1742	0	0	1730	1531
Flt Permitted	0.950			0.950				0.479			0.634	
Satd. Flow (perm)	1711	3404	0	1711	3332	0	0	855	0	0	1142	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4			34			3				150
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.77	0.90	0.54	0.42	0.82	0.80	0.58	0.64	0.50	0.53	0.33	0.74
Adj. Flow (vph)	149	837	26	14	663	138	74	66	10	166	39	73
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	149	863	0	14	801	0	0	150	0	0	205	73
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	20.0	75.0		20.0	75.0		25.0	25.0		25.0	25.0	25.0

2016 AM Peak 7:30 am 12/17/2014 Opening Year (No Build)
Synchro 9 Report LAN Employee

Lanes, Volumes, Timings
22: Broken Bough

	\cdots	\backslash	λ	m	k	厄	\%	\nearrow	-	4	\nearrow	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Lost Time (s)	6.5	6.5		6.5	6.5			6.5			6.5	6.5
Act Effct Green (s)	12.9	80.5		8.9	69.1			18.5			18.5	18.5
Actuated g/C Ratio	0.11	0.67		0.07	0.58			0.15			0.15	0.15
v/c Ratio	0.81	0.38		0.11	0.41			1.12			1.16	0.20
Control Delay	89.3	3.1		51.2	14.4			159.2			164.1	1.3
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Delay	89.3	3.1		51.2	14.4			159.2			164.1	1.3
LOS	F	A		D	B			F			F	A
Approach Delay		15.8			15.0			159.2			121.3	
Approach LOS		B			B			F			F	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 15 (13\%), Referenced to phase 2:NWT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.16												
Intersection Signal Delay: 38.1					sectio	S: D						
Intersection Capacity Utilization 52.7\%				ICU Level of Service A								
Analysis Period (min) 15												

2016 AM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln

Intersection						
HCM Control Delay, s	46.7				0	1.4
HCM LOS	E					
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT	
Capacity (veh/h)	-	-	177	787	-	
HCM Lane V/C Ratio	-	-	0.537	0.088	-	
HCM Control Delay (s)	-	-	46.7	10	0.8	
HCM Lane LOS	-	-	E	B	A	
HCM 95th \%tile Q(veh)	-	-	2.7	0.3	-	

2016 AM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr
8/17/2015

Intersection						
HCM Control Delay, s	31.8				0	0.4
HCM LOS	D					
	NBT	NBR	WBLn1	SBL	SBT	
Minor Lane/Major Mvmt	-	-	213	803	-	
Capacity (veh/h)	-	-	0.376	0.022	-	
HCM Lane V/C Ratio	-	-	31.8	9.6	0.2	
HCM Control Delay (s)	-	-	D	A	A	
HCM Lane LOS	-	-	1.6	0.1	-	

2016 AM Peak 7:30 am 12/17/2014 No Build

HCM 2010 TWSC
4: Boheme Drive \& Memorial Dr

Intersection						
HCM Control Delay, s	98.8				2.5	0
HCM LOS	F					
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)	725	-	328	-	-	
HCM Lane V/C Ratio	0.162	-	1.046	-	-	
HCM Control Delay (s)	10.9	1.1	98.8	-	-	
HCM Lane LOS	B	A	F	-	-	
HCM 95th \%tile Q(veh)	0.6	-	12.3	-		

2016 AM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend

Intersection						
HCM Control Delay, s	48		0.4	0		
HCM LOS	E					
Minor Lane/Major Mvmt	NWT	NWR	WBLn1	SEL	SET	
Capacity (veh/h)	-	-	119	499	-	
HCM Lane V/C Ratio	-	-	0.305	0.02	-	
HCM Control Delay (s)	-	-	48	12.4	0.3	
HCM Lane LOS	-	-	E	B	A	
HCM 95th \%tile Q(veh)	-	-	1.2	0.1	-	

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	3	1013	667	36	3	14
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	50	91	79	48	25	81
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	6	1113	844	75	12	17
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	919	0	-	0	1451	460
Stage 1	-	-	-	-	882	-
Stage 2	-	-	-	-	569	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	738	-	-	-	122	548
Stage 1	-	-	-	-	365	-
Stage 2	-	-	-	-	530	-
Platoon blocked, \%		-		-		
Mov Cap-1 Maneuver	738	-	-	-	119	548
Mov Cap-2 Maneuver	-	-	-	-	119	-
Stage 1	-	-	-	-	365	-
Stage 2	-	-	-	-	519	-
Approach	EB		WB		SB	

2016 AM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive

Intersection						
HCM Control Delay, s						
HCM LOS						
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)	738	-	-	-	221	
HCM Lane V/C Ratio	0.008	-	-	-	0.133	
HCM Control Delay (s)	9.9	0.1	-	-	23.8	
HCM Lane LOS	A	A	-	-	C	
HCM 95th \%tile Q(veh)	0	-	-	-	0.5	

2016 AM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr

Intersection						
HCM Control Delay, s		0			2.2	39.5
HCM LOS						E
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	204	-	-	571	-	
HCM Lane V/C Ratio	0.506	-	-	0.13	-	
HCM Control Delay (s)	39.5	-	-	12.2	1.3	
HCM Lane LOS	E	-	-	B	A	
HCM 95th \%tile Q(veh)	2.6	-	-	0.4		

Intersection						
Int Delay, s/veh 1.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	1052	6	10	693	9	21
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	63	45	75	50	71
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1252	10	22	924	18	30
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1262	0	1763	631
Stage 1	-	-	-	-	1257	-
Stage 2	-	-	-	-	506	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	547	-	75	424
Stage 1	-	-	-	-	231	-
Stage 2	-	-	-	-	571	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	547	-	69	424
Mov Cap-2 Maneuver	-	-	-	-	69	-
Stage 1	-	-	-	-	231	-
Stage 2	-	-	-	-	524	-
Approach	EB		WB		NB	

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	90	977	632	30	13	67
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%		0	0	-	0	
Peak Hour Factor	70	86	73	73	60	63
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	129	1136	866	41	22	106
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	907	0	-	0	1711	453
Stage 1	-	-	-	-	886	-
Stage 2	-	-	-	-	825	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	746	-	-	-	82	554
Stage 1	-	-	-	-	363	-
Stage 2	-	-	-	-	391	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	746	-	-	-	44	554
Mov Cap-2 Maneuver	-	-	-	-	44	-
Stage 1	-		-	-	363	-
Stage 2	-	-	-	-	208	-
Approach	EB		WB		SB	

2016 AM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/17/2015

Intersection						
HCM Control Delay, s						
HCM LOS						
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)	746	-	-	-	187	
HCM Lane V/C Ratio	0.172	-	-	-	0.685	
HCM Control Delay (s)	10.8	2.1	-	-	58	
HCM Lane LOS	B	A	-	-	F	
HCM 95th \%tile Q(veh)	0.6	-	-	-	4.2	

||

	4	\rightarrow		\checkmark			4	\dagger	\%		$\frac{1}{7}$	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$ø 1$	$\varnothing 2$	$\emptyset 4$
Lane Configurations		444	「	*	44						*紈				
Volume (vph)	0	1080	330	165	485	0	0	0	0	171	1446	140			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length (ft)	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length (ft)	25			25			25			25					
Lane Util. Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.986				
Flt Protected				0.950							0.995				
Satd. Flow (prot)	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Flt Permitted				0.950							0.995				
Satd. Flow (perm)	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd. Flow (RTOR)			91								19				
Link Speed (mph)		35			35			35			35				
Link Distance (ft)		290			225			131			129				
Travel Time (s)		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.91	0.90	0.73			
Adj. Flow (vph)	0	1149	388	181	527	0	0	0	0	188	1607	192			
Shared Lane Traffic (\%)															
Lane Group Flow (vph)	0	1149	388	181	527	0	0	0	0	0	1987	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width(ft)		11			11			0			0				
Link Offset(ft)		0			0			0			0				
Crosswalk Width(ft)		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split (s)		40.0	40.0	20.0						60.0	60.0		36.0	24.0	60.0
Total Lost Time (s)		6.5	6.5	6.5							6.5				

2016 AM Peak 7:30 am 12/17/2014 Build
Synchro 9 Report LAN Employee

Lanes, Volumes, Timings
10: SB BW8 WSR U-Turn/SB BW8 WSR
8/18/2015

	4	\rightarrow	7	7		4	4	\uparrow	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 5$	$\varnothing 6$	${ }^{68}$
Lane Configurations	\％	个 \uparrow			个鲑			¢れ中	「						
Volume（vph）	387	828	0	0	470	164	201	2027	166	0	0	0			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util．Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.959				0.850						
Flt Protected	0.950							0.995							
Satd．Flow（prot）	1711	3421	0	0	4714	0	0	4891	1531	0	0	0			
Flt Permitted	0.950							0.995							
Satd．Flow（perm）	1711	3421	0	0	4714	0	0	4891	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）					32				91						
Link Speed（mph）		35			35			35			35				
Link Distance（t）		225			208			132			141				
Travel Time（s）		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.83	0.87	0.92	0.92	0.83	0.78	0.89	0.93	0.82	0.92	0.92	0.92			
Adj．Flow（vph）	466	952	0	0	566	210	226	2180	202	0	0	0			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	466	952	0	0	776	0	0	2406	202	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（ft）		11			11			0			0				
Link Offset（tt）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split（s）	36.0				24.0		60.0	60.0	60.0				20.0	40.0	60.0
Total Lost Time（s）	6.5				6.5			6.5	6.5						
Act Efft Green（s）	29.5	53.5			17.5			53.5	53.5						
Actuated g／C Ratio	0.25	0.45			0.15			0.45	0.45						
v／c Ratio	1.11	0.62			1.09			1.10	0.28						

2016 AM Peak 7：30 am 12／17／2014 Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
13：NB BW8 ESR／SB BW8 WSR U－Turn
8／18／2015

	$\stackrel{ }{*}$	\rightarrow	\geqslant	7	\leftarrow	4	4	\uparrow	p		\dagger	\checkmark			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	${ }_{6}$	$ø 6$	$\varnothing 8$
Control Delay	88.4	10.5			97.8			86.6	12.3						
Queue Delay	0.1	2.0			5.6			0.1	0.0						
Total Delay	88.5	12.4			103.4			86.7	12.3						
LOS	F	B			F			F	B						
Approach Delay		37.4			103.4			80.9							
Approach LOS		D			F			F							

Intersection Summary

Area Type：
Other
Cycle Length： 120
Actuated Cycle Length： 120
Offset： $0(0 \%)$ ，Referenced to phase 2：EBWB and 6：，Start of Green，Master Intersection
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 1.11
Intersection Signal Delay： 71.7
Intersection Capacity Utilization 93．7\％
Intersection LOS：E
Analysis Period（min） 15
ICU Level of Service F

Splits and Phases：13：NB BW8 ESR／SB BW8 WSR U－Turn

	\checkmark	＋	2	\cdots	k	5	\cdots	\nearrow	Th	5	4	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\％	中 ${ }^{\text {a }}$		${ }^{*}$	中 ${ }^{\text {a }}$			\＆			\uparrow	「7
Volume（vph）	115	753	14	6	544	110	43	42	5	88	13	54
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	140		0	100		0	0		0	100		0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.995			0.974			0.991				0.850
Flt Protected	0.950			0.950				0.976			0.961	
Satd．Flow（prot）	1711	3404	0	1711	3332	0	0	1742	0	0	1730	1531
Flt Permitted	0.950			0.950				0.479			0.634	
Satd．Flow（perm）	1711	3404	0	1711	3332	0	0	855	0	0	1142	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		4			34			3				150
Link Speed（mph）		35			35			35			35	
Link Distance（ft）		264			140			379			137	
Travel Time（s）		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.77	0.90	0.54	0.42	0.82	0.80	0.58	0.64	0.50	0.53	0.33	0.74
Adj．Flow（vph）	149	837	26	14	663	138	74	66	10	166	39	73
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	149	863	0	14	801	0	0	150	0	0	205	73
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		11			11			0			0	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed（mph）	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split（s）	20.0	75.0		20.0	75.0		25.0	25.0		25.0	25.0	25.0
Total Lost Time（s）	6.5	6.5		6.5	6.5			6.5			6.5	6.5

2016 AM Peak 7：30 am 12／17／2014 Opening Year
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
22：Broken Bough

2016 AM Peak 7:30 am 12/17/2014 Opening Year

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln

2016 AM Peak 7:30 am 12/17/2014 Opening Year

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr

Intersection							
HCM Control Delay, s	11.8					0	0
HCM LOS	B						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT		
Capacity (veh/h)	-	-	590	803	-		
HCM Lane V/C Ratio	-	-	0.106	-	-		
HCM Control Delay (s)	-	-	11.8	0	-		
HCM Lane LOS	-	-	B	A	-		
HCM 95th \%tile Q(veh)	-	-	0.4	0			

2016 AM Peak 7:30 am 12/17/2014 Opening Year

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive

Intersection					
HCM Control Delay, s	80.7			1.6	0
HCM LOS	F				
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	725	-	347	-	-
HCM Lane V/C Ratio	0.162	-	0.988	-	-
HCM Control Delay (s)	10.9	-	80.7	-	-
HCM Lane LOS	B	-	F	-	-
HCM 95th \%tile Q(veh)	0.6	-	11.1	-	-

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/17/2015

Intersection							
HCM Control Delay, s	0.1					0	27.6
HCM LOS							D
Minor Lane/Major Mvmt	NWT	NWR	SEL	SET	SWLn1		
Capacity (veh/h)	-	-	771	-	202		
HCM Lane V/C Ratio	-	-	0.013	-	0.215		
HCM Control Delay (s)	-	-	9.7	-	27.6		
HCM Lane LOS	-	-	A	-	D		
HCM 95th \%tile Q(veh)	-	-	0	-	0.8		

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	3	1013	667	36	3	14
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	50	91	79	48	25	81
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	6	1113	844	75	12	17
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	919	0	-	0	1451	460
Stage 1	-	-	-	-	882	-
Stage 2	-	-	-	-	569	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	738	-	-	-	122	548
Stage 1	-	-	-	-	365	-
Stage 2	-	-	-	-	530	-
Platoon blocked, \%		-		-		
Mov Cap-1 Maneuver	738	-	-	-	121	548
Mov Cap-2 Maneuver	-	-	-	-	121	-
Stage 1	-	-	-	-	365	-
Stage 2	-	-	-	-	526	-
Approach	EB		WB		SB	

2016 AM Peak 7:30 am 12/17/2014 Opening Year

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive

Intersection						
HCM Control Delay, s	0.1					
HCM LOS						
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)	738	-	-	-	224	
HCM Lane V/C Ratio	0.008	-	-	-	0.131	
HCM Control Delay (s)	9.9	-	-	-	23.5	
HCM Lane LOS	A	-	-	-	C	
HCM 95th \%tile Q(veh)	0	-	-	-	0.4	

Intersection						
Int Delay, s/veh 2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	1015	14	58	651	15	50
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0	-	-	0	0	
Peak Hour Factor	85	75	78	76	88	58
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1194	19	74	857	17	86
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1213	0	1780	606
Stage 1	-	-	-	-	1203	
Stage 2	-	-	-	-	577	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	571	-	73	440
Stage 1	-	-	.	-	247	-
Stage 2	-	-	-	-	525	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	571	-	64	440
Mov Cap-2 Maneuver	-	-	-	-	64	-
Stage 1	-	-	-	-	247	-
Stage 2	-	-	-	-	457	-
Approach	EB		WB		NB	

2016 AM Peak 7:30 am 12/17/2014 Opening Year

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr

Intersection						
HCM Control Delay, s		0			1	34.3
HCM LOS						D
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	223	-	-	571	-	
HCM Lane V/C Ratio	0.463	-	-	0.13	-	
HCM Control Delay (s)	34.3	-	-	12.2	-	
HCM Lane LOS	D	-	-	B	-	
HCM 95th \%tile Q(veh)	2.2	-	-	0.4	-	

Intersection						
Int Delay, s/veh						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	1052	6	10	693	9	21
Conficicting Peds, \#hhr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	84	63	45	75	50	70
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1252	10	22	924	18	30
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1262	0	1763	631
Stage 1	-	-		-	1257	-
Stage 2	-	-	-	-	506	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	547	-	75	424
Stage 1	-	-	-	-	231	-
Stage 2	-	-	-	-	571	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	547	-	72	424
Mov Cap-2 Maneuver	-	-	-	-	72	-
Stage 1	-	-	-	-	231	-
Stage 2	-	-	-	-	548	-
Approach	EB		WB		NB	

2016 AM Peak 7:30 am 12/17/2014 Opening Year

Intersection						
HCM Control Delay, s		0		0.3	39.9	
HCM LOS						
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	150	-	-	547	-	
HCM Lane V/C Ratio	0.32	-	-	0.041	-	
HCM Control Delay (s)	39.9	-	-	11.9	-	
HCM Lane LOS	E	-	-	B	-	
HCM 95th \%tile Q(veh)	1.3	-	-	0.1	-	

2016 AM Peak 7:30 am 12/17/2014 Opening Year

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/17/2015

|

	4	\rightarrow		\downarrow	\leftarrow		4	\uparrow		\checkmark	\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\emptyset 1$	02	¢4
Lane Configurations		个虫	「	\％	个 \uparrow						＊中t				
Volume（vph）	0	1215	372	186	546	0	0	0	0	162	1626	158			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length（t）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（t）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.985				
FIt Protected				0.950							0.996				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Flt Permitted				0.950							0.996				
Satd．Flow（perm）	0	4916	1531	1711	3421		0	0	0	0	4823	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								19				
Link Speed（mph）		35			35			35			35				
Link Distance（t）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.91	0.90	0.73			
Adj．Flow（vph）	0	1293	438	204	593	0	0	0	0	178	1807	216			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	1293	438	204	593	0	0	0	0	0	2201	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（ft）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15			15		9	15		，	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			，							8					
Total Split（s）		41.2	41.2	21.8						57.0	57.0		37.0	26.0	57.0
Total Lost Time（s）		6.5	6.5	6.5							6.5				

2030 A．M．Peak 7：30 am 12／17／2014 No Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
10：SB BW8 WSR U－Turn／SB BW8 WSR
8／18／2015

	$\stackrel{ }{*}$	\rightarrow		\checkmark		4	4	\uparrow	＞	\checkmark	\downarrow	\checkmark			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 1$	$\varnothing 2$	64
Act Efft Green（s）		34.7	34.7	15.3	56.5						50.5				
Actuated g／C Ratio		0.29	0.29	0.13	0.47						0.42				
v／c Ratio		0.91	0.86	0.94	0.37						1.08				
Control Delay		51.7	50.1	52.3	9.5						78.7				
Queue Delay		7.2	0.0	45.8	33.7						9.1				
Total Delay		58.9	50.1	98.2	43.2						87.8				
LOS		E	D	F	D						F				
Approach Delay		56.7			57.3						87.8				
Approach LOS		E			E						F				
Intersection Summary															
Area Type：Other															
Cycle Length： 120															
Actuated Cycle Length： 120															
Offset： 0 （0\％），Referenced to phase 2：EBWB and 6：，Start of Green，Master Intersection															
Control Type：Actuated－Coordinated															
Maximum v／c Ratio： 1.31															
Intersection Signal Delay： 71.3				Intersection LOS：E											
Intersection Capacity Utilization 103．1\％				ICU Level of Service G											
Analysis Period（min） 15															
Splits and Phases：10：SB BW8 WSR U－Turn／SB BW8 WSR															
$\stackrel{\# 13}{\leftrightarrows}$	$\begin{array}{\|c} +13 \\ 4 \\ 4 \\ \hline \end{array}$						$\begin{array}{r} \# 13 \\ { }^{\# 13} \\ 404 \end{array}$								
26 s							57 s								
${ }^{10}{ }^{10}$	$\stackrel{\# 10}{\leftrightarrows}$						$\stackrel{1}{10}_{10}$								
21.8 s	41.2 s						57 s								

	4	\rightarrow	\geqslant	\checkmark	－	4	4	\uparrow	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	65	$ø 6$	$\varnothing 8$
Lane Configurations	\％	个个			个中的			＊4个	「						
Volume（vph）	436	932	0	0	529	183	212	2280	187	0	0	0			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util．Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.960				0.850						
Flt Protected	0.950							0.996							
Satd．Flow（prot）	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Flt Permitted	0.950							0.996							
Satd．Flow（perm）	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）					26				91						
Link Speed（mph）		35			35			35			35				
Link Distance（t）		225			208			132			141				
Travel Time（s）		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.83	0.87	0.92	0.92	0.83	0.78	0.89	0.93	0.82	0.92	0.92	0.92			
Adj．Flow（vph）	525	1071	0	0	637	235	238	2452	228	0	0	0			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	525	1071	0	0	872	0	0	2690	228	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（ft）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split（s）	37.0				26.0		57.0	57.0	57.0				21.8	41.2	57.0
Total Lost Time（s）	6.5				6.5			6.5	6.5						
Act Effict Green（s）	30.5	56.5			19.5			50.5	50.5						
Actuated g／C Ratio	0.25	0.47			0.16			0.42	0.42						
V／c Ratio	1.21	0.67			1.11			1.31	0.33						

2030 A．M．Peak 7：30 am 12／17／2014 No Build

Lanes，Volumes，Timings
13：NB BW8 ESR／SB BW8 WSR U－Turn
8／18／2015

Splits and Phases：13：NB BW8 ESR／SB BW8 WSR U－Turn

	\checkmark	+	2	\cdots	k	5	\cdots	\nearrow	Ta	5	4	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	44		${ }^{7}$	44			¢			\uparrow	「゙
Volume (vph)	130	847	16	7	612	124	49	48	6	99	15	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	120		0	120		0	0		0	0		50
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.995			0.974			0.991				0.850
Flt Protected	0.950			0.950				0.976			0.961	
Satd. Flow (prot)	1711	3404	0	1711	3332	0	0	1742	0	0	1730	1531
Flt Permitted	0.950			0.950				0.540			0.631	
Satd. Flow (perm)	1711	3404	0	1711	3332	0	0	964	0	0	1136	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4			23			3				106
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.77	0.90	0.54	0.42	0.82	0.80	0.58	0.64	0.50	0.53	0.33	0.74
Adj. Flow (vph)	169	941	30	17	746	155	84	75	12	187	45	82
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	169	971	0	17	901	0	0	171	0	0	232	82
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	25.0	65.0		10.0	50.0		45.0	45.0		45.0	45.0	45.0
Total Lost Time (s)	4.9	4.9		4.9	4.9			5.1			5.1	5.1

2030 A.M. Peak 7:30 am 12/17/2014 No Build

Lanes, Volumes, Timings
22: Broken Bough

Intersection HCM Control Delay, s 108.7 0 1.9						
HCMLOS	F					
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT	
Capacity (veh/h)	-	-	127	717	-	
HCM Lane V/C Ratio	-	-	0.849	0.109	-	
HCM Control Delay (s)	-	-	108.7	10.6	1.3	
HCM Lane LOS	-	-	F	B	A	
HCM 95th \%tile Q(veh)	-		5.3	0.4		

2030 A.M. Peak 7:30 am 12/17/2014 No Build Synchro 9 Report
7.30 am 12/17/2014 No Build

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr
8/17/2015

Intersection						
HCM Control Delay, s	52.1				0	0.6
HCM LOS	F					
	NBT	NBR	WBLn1	SBL	SBT	
Minor Lane/Major Mvmt	-	-	165	734	-	
Capacity (veh/h)	-	-	0.567	0.029	-	
HCM Lane V/C Ratio	-	-	52.1	10.1	0.4	
HCM Control Delay (s)	-	-	F	B	A	
HCM Lane LOS	-	-	2.9	0.1	-	

2030 A.M. Peak 7:30 am 12/17/2014 No Build Synchro 9 Report

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive
8/19/2015

Intersection						
HCM Control Delay, s	298.2				3.1	0
HCM LOS	F					
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)	655	-	252	-	-	
HCM Lane V/C Ratio	0.204	-	1.541	-	-	
HCM Control Delay (s)	11.9	1.6	298.2	-	-	
HCM Lane LOS	B	A	F		-	
HCM 95th \%tile Q(veh)	0.8	-	23.3			

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/17/2015

Intersection						
HCM Control Delay, s	0.4				0	40.6
HCM LOS						
Minor Lane/Major Mvmt	NWT	NWR	SEL	SET	SWLn1	
Capacity (veh/h)	-	-	700	-	150	
HCM Lane VIC Ratio	-	-	0.017	-	0.335	
HCM Control Delay (s)	-	-	10.2	0.3	40.6	
HCM Lane LOS	-	-	B	A	E	
HCM 95th \%tile Q(veh)	-	-	0.1	-	1.4	

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	4	1140	750	27	4	16
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	
Grade, \%	-	0	0	-	0	
Peak Hour Factor	50	91	79	48	25	81
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	8	1253	949	56	16	20
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	1006	0	-	0	1619	503
Stage 1	-	-	-	-	977	
Stage 2	-	-	-	-	642	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	684	-	-	-	94	514
Stage 1	-	-	-	-	325	-
Stage 2	-	-	-	-	486	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	684	-	-	-	90	514
Mov Cap-2 Maneuver	-	-	-	-	90	-
Stage 1	-	-	-	-	325	-
Stage 2	-	-	-	-	468	-
Approach	EB		WB		SB	

2030 A.M. Peak 7:30 am 12/17/2014 No Build Synchro 9 Report

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive

Intersection							
HCM Control Delay, s	0.3					0	32.8
HCM LOS							D
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)	684	-	-	-	165		
HCM Lane V/C Ratio	0.012	-	-	-	0.217		
HCM Control Delay (s)	10.3	0.2	-	-	32.8		
HCM Lane LOS	B	A	-	-	D		
HCM 95th \%tile Q(veh)	0	-	-	-	0.8		

$\begin{array}{ll}\text { Intersection } \\ \text { Int Delay, s/veh } & 5.8\end{array}$						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	1142	16	66	732	17	57
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	75	78	76	88	58
Heavy Vehicles, \%	2	2	2	2	2	,
Mumt Flow	1344	21	85	963	19	98
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1365	0	2005	682
Stage 1	-	-	-	-	1354	-
Stage 2	-	-	-	-	651	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	499	-	52	392
Stage 1	-	-	-	-	205	-
Stage 2	-	-	-	-	481	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	499	-	33	392
Mov Cap-2 Maneuver	-	-	-	-	33	-
Stage 1	-	-	-	-	205	-
Stage 2	-	-	-	-	305	-
Approach	EB		WB		NB	

2030 A.M. Peak 7:30 am 12/17/2014 No Build

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr

Intersection							
Int Delay, s/veh 4.7							
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	102	1099	711	34	15	76	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0		
Peak Hour Factor	70	86	73	73	60	63	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	146	1278	974	47	25	121	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	1021	0	-	0	1927	510	
Stage 1	-	-	-	-	997	-	
Stage 2	-	-	-	-	930	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	675	-	-	-	58	509	
Stage 1	-	-	-	-	318	-	
Stage 2	-	-	-	-	344	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	675	-	-	-	~ 15	509	
Mov Cap-2 Maneuver	-	-	-	-	67	-	
Stage 1	-	-	-	-	318	-	
Stage 2	-	-	-	-	87	-	
Approach	EB		WB		SB		
2030 A.M. Peak 7:30 am 12/17/2014 No Build LAN Employee							Synchro 9 Report Page 20

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/17/2015

|

	4	\rightarrow	7	7	\leftrightarrow		4	\dagger	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\emptyset 1$	ø2	${ }_{64}$
Lane Configurations		个蚔	「	\％	¢ \uparrow						¢个守				
Volume（vph）	0	1215	372	186	546	0	0	0	0	162	1626	158			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length（tt）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（t）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.985				
Flt Protected				0.950							0.996				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4823	0			
Flt Permitted				0.950							0.996				
Satd．Flow（perm）	0	4916	1531	1711	3421	0	0	0	，	0	4823	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								19				
Link Speed（mph）		35			35			35			35				
Link Distance（t）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.91	0.90	0.73			
Adj．Flow（vph）	0	1293	438	204	593	0	0	0	0	178	1807	216			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	1293	438	204	593	0	0	0	0	0	2201	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（t）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split（s）		41.2	41.2	21.8						57.0	57.0		37.0	26.0	57.0
Total Lost Time（s）		6.5	6.5	6.5							6.5				

2030 AM Peak 7：30 am 12／17／2014 Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
10：SB BW8 WSR U－Turn／SB BW8 WSR
8／18／2015

	4			t		4	4		p	－	\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 1$	$\emptyset 2$	$\varnothing 4$
Act Efft Green（s）		34.7	34.7	15.3	56.5						50.5				
Actuated g／C Ratio		0.29	0.29	0.13	0.47						0.42				
v／c Ratio		0.91	0.86	0.94	0.37						1.08				
Control Delay		51.7	50.1	52.4	9.5						78.7				
Queue Delay		7.2	0.0	45.8	33.7						9.1				
Total Delay		58.9	50.1	98.2	43.2						87.8				
LOS		E	D	F	D						F				
Approach Delay		56.7			57.3						87.8				
Approach LOS		E			E						F				
Intersection Summary															
Area Type：Other															
Cycle Length： 120															
Actuated Cycle Length： 120															
Offset： 0 （0\％），Referenced to phase 2：EBWB and 6：，Start of Green，Master Intersection															
Control Type：Actuated－Coordinated															
Maximum v／c Ratio： 1.31															
Intersection Signal Delay： 71.3				Intersection LOS：E											
Intersection Capacity Utilization 103．1\％				ICU Level of Service G											
Analysis Period（min） 15															
Splits and Phases： $10:$ SB BW8 WSR U－Turn／SB BW8 WSR															
$\stackrel{\#_{13}}{\leftrightarrows}$	$\begin{gathered} \#_{13} \\ \Delta_{0} \\ \hline \end{gathered}$						$\# 13$								
26 s	37 s						57 s								
							${ }_{-10}^{10}$								
21.8 s	41.2 s						$\frac{1}{7} \mathrm{~s}$								

	4	\rightarrow	7	7		4	4	\dagger	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 5$	$\varnothing 6$	${ }^{68}$
Lane Configurations	\％	个 \uparrow			个悜			¢れ¢	「						
Volume（vph）	436	932	0	0	529	183	212	2280	187	0	0	0			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util．Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.960				0.850						
Flt Protected	0.950							0.996							
Satd．Flow（prot）	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Flt Permitted	0.950							0.996							
Satd．Flow（perm）	1711	3421	0	0	4719	0	0	4896	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）					26				91						
Link Speed（mph）		35			35			35			35				
Link Distance（t）		225			208			132			141				
Travel Time（s）		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.83	0.87	0.92	0.92	0.83	0.78	0.89	0.93	0.82	0.92	0.92	0.92			
Adj．Flow（vph）	525	1071	0	0	637	235	238	2452	228	0	0	0			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	525	1071	0	0	872	0	0	2690	228	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（ft）		11			11			0			0				
Link Offset（tt）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split（s）	37.0				26.0		57.0	57.0	57.0				21.8	41.2	57.0
Total Lost Time（s）	6.5				6.5			6.5	6.5						
Act Efft Green（s）	30.5	56.5			19.5			50.5	50.5						
Actuated g／C Ratio	0.25	0.47			0.16			0.42	0.42						
v／c Ratio	1.21	0.67			1.11			1.31	0.33						

2030 AM Peak 7：30 am 12／17／2014 Build

Lanes，Volumes，Timings
13：NB BW8 ESR／SB BW8 WSR U－Turn
8／18／2015

Splits and Phases：13：NB BW8 ESR／SB BW8 WSR U－Turn

	\cdots	＋	2	m	\cdots	5	\dagger	\nsim	ra	5	$\not /$	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	＊	中 ${ }^{\text {a }}$		${ }^{1}$	中 ${ }^{\text {a }}$			\＄			\uparrow	「
Volume（vph）	130	847	16	7	612	124	49	48	6	99	15	61
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	140		0	100		0	0		0	100		0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.995			0.974			0.991				0.850
Flt Protected	0.950			0.950				0.976			0.961	
Satd．Flow（prot）	1711	3404	0	1711	3332	0	0	1742	0	0	1730	1531
Flt Permitted	0.950			0.950				0.540			0.631	
Satd．Flow（perm）	1711	3404	0	1711	3332	0	0	964	0	0	1136	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		4			23			3				106
Link Speed（mph）		35			35			35			35	
Link Distance（ft）		264			140			379			137	
Travel Time（s）		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.77	0.90	0.54	0.42	0.82	0.80	0.58	0.64	0.50	0.53	0.33	0.74
Adj．Flow（vph）	169	941	30	17	746	155	84	75	12	187	45	82
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	169	971	0	17	901	0	0	171	0	0	232	82
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		11			11			0			0	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed（mph）	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split（s）	25.0	65.0		10.0	50.0		45.0	45.0		45.0	45.0	45.0
Total Lost Time（s）	4.9	4.9		4.9	4.9			5.1			5.1	5.1

2030 AM Peak 7：30 am 12／17／2014 Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
22：Broken Bough

Intersection							
Int Delay, S/veh 3.9							
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Vol, veh/h	36	40	690	58	51	901	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	-	-	-	200	-	
Veh in Median Storage, \#	0	-	0	-		0	
Grade, \%	0		0	-		0	
Peak Hour Factor	70	71	79	74	65	83	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	51	56	873	78	78	1086	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1613	476	0	0	952	0	
Stage 1	913		-	-		-	
Stage 2	700	-	-	-	-	-	
Critical Hdwy	6.84	6.94	-	-	4.14	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	-	-	2.22	-	
Pot Cap-1 Maneuver	95	535	-	-	717	-	
Stage 1	352	-	-	-	.	-	
Stage 2	454	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	85	535	-	-	717	-	
Mov Cap-2 Maneuver	85	-	-	-	-	-	
Stage 1	352	-	-	-		-	
Stage 2	405	-	-	-	-	-	
Approach	WB		NB		SB		
2030 AM Peak 7:30 am 12/17/2014 Build LAN Employee							Synchro 9 Report Page 18

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln

Intersection						0	0.7
HCM Control Delay, s	72				0		
HCM LOS	F						
MBT	NBR	WBLn1	SBL	SBT			
Minor Lane/Major Mvmt	-	-	152	717	-		
Cacaity (veh/h)	-	-	0.709	0.109	-		
HCM Lane VC Ratio	-	-	72	10.6	-		
HCM Control Delay (s)	-	-	F	B	-		
HCM Lane LOS	0.2	0.4	-				
HCM 95th \%otile Q(veh)							

Intersection							
Int Delay, s/veh							
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Vol, veh/h	0	50	701	13	0	939	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	0	-	-	-	-	
Veh in Median Storage, \#	0	-	0	-	-	0	
Grade, \%	0	-	0	-	-	0	
Peak Hour Factor	40	69	77	83	56	84	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	0	72	910	16	0	1118	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	1477	463	0	0	926	0	
Stage 1	918	-	-	-	-	-	
Stage 2	559	-	-	-	-	-	
Critical Hdwy	6.84	6.94	-	-	4.14	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	-	-	2.22	-	
Pot Cap-1 Maneuver	117	546	-	-	734	-	
Stage 1	349	-	-	-	-	-	
Stage 2	536	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	117	546	-	-	734	-	
Mov Cap-2 Maneuver	117	-	-	-	-	-	
Stage 1	349	-	-	-	-	-	
Stage 2	536	-	-	-	-	-	
Approach	WB		NB		SB		
2030 AM Peak 7:30 am 12 LAN Employee							Synchro 9 Report Page 22

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr

Intersection							
Int Delay, s/veh 38							
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	30	201	84	679	894	35	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	100	-	-	-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	63	59	63	88	91	47	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	48	341	133	772	982	74	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1672	528	1057	0	-	0	
Stage 1	1020	-	-	-	-	-	
Stage 2	652	-		-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	.	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	87	495	655	-	-	-	
Stage 1	309	-	-	-	-	-	
Stage 2	480	-	-	-	-	-	
Platoon blocked, \%					-	-	
Mov Cap-1 Maneuver	69	495	655	-	-	-	
Mov Cap-2 Maneuver	69	-	-	-	-	-	
Stage 1	309	-	-	-	-	-	
Stage 2	383	-	-	-	-	-	
Approach	EB		NB		SB		
2030 AM Peak 7:30 am 12/17/2014 Build LAN Employee							Synchro 9 Report Page 1

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive

Intersection						
HCM Control Delay, s	225.5				1.8	0
HCM LOS	F					
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)	655	-	282	-	-	
HCM Lane V/C Ratio	0.204	-	1.377	-	-	
HCM Control Delay (s)	11.9	-	225.5	-	-	
HCM Lane LOS	B	-	F		-	
HCM 95th \%tile Q(veh)	0.8		20.4			

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/17/2015

Intersection							
Int Delay, s/veh 0.6							
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	4	1140	764	27	4	16	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	100	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	50	91	79	48	25	81	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	8	1253	967	56	16	20	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	1023	0	-	0	1637	512	
Stage 1	-	-	-	-	995	-	
Stage 2	-	-	-	-	642	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	674	-	-	-	91	507	
Stage 1	-	-	-	-	318	-	
Stage 2	-	-	-	-	486	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	674	-	-	-	90	507	
Mov Cap-2 Maneuver	-	-	-	-	90	-	
Stage 1	-	-	-	-	318	-	
Stage 2	-	-	-	-	480	-	
Approach	EB		WB		SB		
2030 AM Peak 7:30 am 1 LAN Employee							Synchro 9 Report Page 6

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive

Intersection						
Int Delay, s/veh 3.5						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	1142	16	66	732	17	57
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	75	78	76	88	58
Heavy Vehicles, \%	2	2	2	2	2	,
Mumt Flow	1344	21	85	963	19	98
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1365	0	2005	682
Stage 1	-	-	-	-	1354	-
Stage 2	-	-	-	-	651	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	499	-	52	392
Stage 1	-	-	-	-	205	-
Stage 2	-	-	-	-	481	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	499	-	43	392
Mov Cap-2 Maneuver	-	-	-	-	43	-
Stage 1	-	-	-	-	205	-
Stage 2	-	-	-	-	399	-
Approach	EB		WB		NB	

2030 AM Peak 7:30 am 12/17/2014 Build Synchro 9 Report
LAN Employee

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr

Intersection					
HCM Control Delay, s		0		1.1	65.3
HCM LOS					
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	168	-	-	499	-
HCM Lane V/C Ratio	0.7	-	-	0.17	-
HCM Control Delay (s)	65.3	-	-	13.7	-
HCM Lane LOS	F	-	-	B	-
HCM 95th \%tile Q(veh)	4.2	-	-	0.6	-

2030 AM Peak 7:30 am 12/17/2014 Build Synchro 9 Report

Intersection						
HCM Control Delay, s		0		0.3	72.2	
HCM LOS						
Minor Lane/Major Mvmt	106	-	-	476	-	
Capacity (veh/h)	0.531	-	-	0.056	-	
HCM Lane V/C Ratio	72.2	-	-	13	-	
HCM Control Delay (s)	F	-	-	B	-	
HCM Lane LOS	2.4	-	-	0.2	-	
HCM 95th \%tile Q(veh)						

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/17/2015

Intersection						
HCM Control Delay, s	1.2				0	73.4
HCM LOS						
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)	675	-	-	-	184	
HCM Lane VIC Ratio	0.216	-	-	-	0.791	
HCM Control Delay (s)	11.8	-	-	-	73.4	
HCM Lane LOS	B	-	-	-	F	
HCM 95th \%tile Q(veh)	0.8	-	-	-	5.4	

$\|$

	\rangle	－		\dagger			4	\dagger		\checkmark		\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	${ }^{61}$	62	¢4
Lane Configurations		个中虫	\％	\％	个 \uparrow						＊中t				
Volume（vph）	0	715	340	254	1091	0	0	0	0	99	1764	266			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width（tt）	12	12	12	12	12	12	12	12	12	12	12	12			
Storage Length（t）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（tt）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.978				
Flt Protected				0.950							0.998				
Satd．Flow（prot）	0	5085	1583	1770	3539	0	0	0	0	0	4963	0			
Flt Permitted				0.950							0.998				
Satd．Flow（perm）	0	5085	1583	1770	3539	0	0	0	0	0	4963	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								30				
Link Speed（mph）		35			35			35			35				
Link Distance（t）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.92	0.90	0.73			
Adj．Flow（vph）	0	761	400	279	1186	0	0	0	0	108	1960	364			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	761	400	279	1186	0	0	0	0	0	2432	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		12			12			0			0				
Link Offset（tt）		0			0			0			0				
Crosswalk Width（t）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split（s）		33.0	33.0	27.0						60.0	60.0		23.0	37.0	60.0
2015 PM Peak 5：00 pm 12／ LAN Employee	$14 \text { Exist }$													Synchro 9 Report Page 4	

Lanes，Volumes，Timings
10：SB BW8 WSR
8／18／2015

Splits and Phases：10：SB BW8 WSR

	4	\rightarrow		7	$1-$	4	4	\dagger	\%	\downarrow	1	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 5$	$ø 6$	$ø 8$
Lane Configurations	${ }^{*}$	44			虾 ${ }^{\text {a }}$			*个4	F7						
Volume (vph)	244	566	0	0	1080	112	249	1704	171	0	0	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width (tt)	11	11	11	11	11	11	11	11	11	11	11	11			
Lane Util. Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.983				0.850						
Flt Protected	0.950							0.993							
Satd. Flow (prot)	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Flt Permitted	0.950							0.993							
Satd. Flow (perm)	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd. Flow (RTOR)					18				164						
Link Speed (mph)		35			35			35			35				
Link Distance (ft)		225			208			132			141				
Travel Time (s)		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.97	0.96	0.92	0.92	0.92	0.76	0.85	0.91	0.78	0.92	0.92	0.92			
Adj. Flow (vph)	252	590	0	0	1174	147	293	1873	219	0	0	0			
Shared Lane Traffic (\%)															
Lane Group Flow (vph)	252	590	0	0	1321	0	0	2166	219	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width(ft)		11			11			0			0				
Link Offset(ft)		0			0			0			0				
Crosswalk Width(ft)		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed (mph)	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split (s)	23.0				37.0		60.0	60.0	60.0				27.0	33.0	60.0
Total Lost Time (s)	6.5				6.5			6.5	6.5						
Act Effct Green (s)	16.5	53.5			30.5			53.5	53.5						
Actuated g/C Ratio	0.14	0.45			0.25			0.45	0.45						

2015 PM Peak 5:00 pm 12/17/2014 Existing

Lanes, Volumes, Timings
13: NB BW8 ESR
8/18/2015

	\cdots	+	2	m	k	5	\%	\nearrow	Pa	5	\square	-
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	44		${ }^{*}$	中 ${ }^{\text {P }}$			¢			\uparrow	「
Volume (vph)	75	553	17	0	1047	181	19	42	10	207	33	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	120		0	120		0	0		0	0		50
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.993			0.976			0.980				0.850
Flt Protected	0.950							0.984			0.959	
Satd. Flow (prot)	1711	3397	0	1801	3339	0	0	1736	0	0	1727	1531
Flt Permitted	0.950							0.510			0.656	
Satd. Flow (perm)	1711	3397	0	1801	3339	0	0	900	0	0	1181	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			31			7				106
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.65	0.90	0.61	0.92	0.90	0.82	0.53	0.75	0.63	0.80	0.75	0.69
Adj. Flow (vph)	115	614	28	0	1163	221	36	56	16	259	44	109
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	115	642	0	0	1384	0	0	108	0	0	303	109
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	15.0	70.0		20.0	75.0		30.0	30.0		30.0	30.0	30.0

2015 PM Peak 5:00 pm 12/17/2014 Existing
Synchro 9 Report LAN Employee

Lanes, Volumes, Timings
22: Broken Bough

	\cdots	\backslash	λ	\cdots	k	¢	\%	\ngtr	ra	4	\nearrow	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Lost Time (s)	4.9	4.9		4.9	4.9			5.1			5.1	5.1
Act Effct Green (s)	10.1	85.1			70.1			24.9			24.9	24.9
Actuated g/C Ratio	0.08	0.71			0.58			0.21			0.21	0.21
v/c Ratio	0.80	0.27			0.71			0.56			1.24	0.27
Control Delay	85.9	2.3			19.7			52.5			177.0	9.8
Queue Delay	0.0	0.0			0.0			0.0			0.0	0.0
Total Delay	85.9	2.3			19.7			52.5			177.0	9.8
LOS	F	A			B			D			F	A
Approach Delay		15.0			19.7			52.5			132.7	
Approach LOS		B			B			D			F	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 7 (6\%), Referenced to phase 2:NWT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.24												
Intersection Signal Delay: 37.2					sectio	OS: D						
Intersection Capacity Utilization 71.2\%				ICU Level of Service C								
Analysis Period (min) 15												

2015 PM Peak $5: 00$ pm 12/17/2014 Existing Synchro 9 Report

LAN Employee

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln

Intersection						
HCM Control Delay, s	127.6				1.5	
HCM LOS	F					
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT	
Capacity (veh/h)	-	-	100	482	-	
HCM Lane V/C Ratio	-	-	0.843	0.083	-	
HCM Control Delay (s)	-	-	127.6	13.1	0.9	
HCM Lane LOS	-	-	F	B	A	
HCM 95th \%tile Q(veh)	-	-	4.7	0.3	-	

| Intersection | | | | |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | | | | |

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr

2015 PM Peak 5:00 pm 12/17/2014 Existing Synchro 9 Report
LAN Employee

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive

Intersection						
HCM Control Delay, s	75.8				5.4	0
HCM LOS	F					
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)	830	-	209	-	-	
HCM Lane V/C Ratio	0.348	-	0.847	-	-	
HCM Control Delay (s)	11.6	4	75.8	-	-	
HCM Lane LOS	B	A	F	-	-	
HCM 95th \%tile Q(veh)	1.6	-	6.4	-	-	

Intersection							
Int Delay, s/veh 0.6							
Movement	WBL	WBR	SEL	SET	NWT	NWR	
Vol, veh/h	2	11	16	792	1354	12	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-		-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	50	92	67	87	93	75	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	4	12	24	910	1456	16	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1967	736	1472	0		0	
Stage 1	1464	-	-	-		-	
Stage 2	503	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	55	361	454	-	-	-	
Stage 1	179	-	-	-	-	-	
Stage 2	573	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	49	361	454	-	-	-	
Mov Cap-2 Maneuver	49	-	-	-	-	-	
Stage 1	179	-	-	-	-	-	
Stage 2	512	-	-	-	-	-	
Approach	WB		SE		NW		
2015 PM Peak 5:00 pm 12/17/2014 Existing LAN Employee							Synchro 9 Report Page 26

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/17/2015

Intersection					
HCM Control Delay, s	34.2		1	0	
HCM LOS	D				
Minor Lane/Major Mvmt	NWT	NWR	WBLn1	SEL	SET
Capacity (veh/h)	-	-	139	454	-
HCM Lane V/C Ratio	-	-	0.115	0.053	-
HCM Control Delay (s)	-	-	34.2	13.4	0.7
HCM Lane LOS	-	-	D	B	A
HCM 95th \%tile Q(veh)	-	-	0.4	0.2	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	5	814	1446	11	3	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	42	90	94	46	38	38
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	12	904	1538	24	8	16
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	1562	0	-	0	2026	781
Stage 1	-	-	-	-	1550	-
Stage 2	-	-	-	-	476	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	419	-	-	-	50	338
Stage 1	-	-	-	-	161	-
Stage 2	-	-	-	-	591	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	419	-	-	-	47	338
Mov Cap-2 Maneuver	-	-	-	-	47	-
Stage 1	-	-	-	-	161	-
Stage 2	-	-	-	-	557	-
Approach	EB		WB		SB	

2015 PM Peak 5:00 pm 12/17/2014 Existing Synchro 9 Report
LAN Employee

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive

Intersection							
HCM Control Delay, s	0.6					0	46.5
HCM LOS							E
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)	419	-	-	-	110		
HCM Lane V/C Ratio	0.028	-	-	-	0.215		
HCM Control Delay (s)	13.8	0.4	-	-	46.5		
HCM Lane LOS	B	A	-	-	E		
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.8		

Intersection						
Int Delay, s/veh 1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	782	18	9	1364	7	22
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0	-	-	0	0	
Peak Hour Factor	88	38	69	94	50	50
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	889	47	13	1451	14	44
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	936	0	1664	468
Stage 1	-	-	-	-	912	
Stage 2	-	-	-	-	752	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	727	-	88	542
Stage 1	-	-	-	-	352	-
Stage 2	-	-	-	-	426	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	727	-	80	542
Mov Cap-2 Maneuver	-	-	-	-	80	-
Stage 1	-	-	-	-	352	-
Stage 2	-	-	-	-	387	-
Approach	EB		WB		NB	

2015 PM Peak 5:00 pm 12/17/2014 Existing Synchro 9 Report

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr

Intersection						
HCM Control Delay, s		0		0.6	26.3	
HCM LOS						
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	226	-	-	727	-	
HCM Lane V/C Ratio	0.257	-	-	0.018	-	
HCM Control Delay (s)	26.3	-	-	10	0.5	
HCM Lane LOS	D	-	-	B	A	
HCM 95th \%tile Q(veh)	1	-	-	0.1	-	

2015 PM Peak 5:00 pm 12/17/2014 Existing Synchro 9 Report
LAN Employee

Intersection							
Int Delay, s/veh 3.7							
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	59	747	1338	24	5	78	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	.	
Grade, \%	-	0	0		0		
Peak Hour Factor	78	86	91	67	42	81	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	76	869	1470	36	12	96	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	1506	0	-	0	2074	753	
Stage 1	-	-	-	-	1488	-	
Stage 2	-	-	-	-	586	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	441	-	-	-	46	352	
Stage 1	-	-	-	-	174	-	
Stage 2	-	-	-	-	519	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	441	-	-	-	31	352	
Mov Cap-2 Maneuver	-	-		-	31	-	
Stage 1	-	-			174		
Stage 2	-	-	-	-	346	-	
Approach	EB		WB		SB		
2015 PM Peak 5:00 pm 12/17/2014 Existing LAN Employee							Synchro 9 Repor Page 20

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/17/2015

	4	\rightarrow		7			4	4	p		$\frac{1}{*}$	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\emptyset 1$	$\emptyset 2$	$\emptyset 4$
Lane Configurations		4忡	「	＊	44						¢性				
Volume（vph）	0	762	343	281	1205	0	0	0	0	106	1779	269			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width（ft）	11	11	11	11	11	11	11	11	11	11	11	11			
Storage Length（ft）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（ft）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.978				
Flt Protected				0.950							0.998				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4798	0			
Flt Permitted				0.950							0.998				
Satd．Flow（perm）	0	4916	1531	1711	3421	0	0	0	0	0	4798	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								20				
Link Speed（mph）		35			35			35			35				
Link Distance（ft）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.91	0.90	0.73			
Adj．Flow（vph）	0	811	404	309	1310	0	0	0	0	116	1977	368			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	811	404	309	1310	0	0	0	0	0	2461	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（ft）		11			11			0			0				
Link Offset（ft）		0			0			0			0				
Crosswalk Width（ft）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split（s）		32.0	32.0	28.0						60.0	60.0		23.0	37.0	60.0

2016 PM Peak 5：00 pm 12／17／2014 No Build

Lanes，Volumes，Timings
10：SB BW8 WSR U－Turn／SB BW8 WSR

4	\rightarrow	\geqslant	t	4	4	4	\uparrow	p		\downarrow	\downarrow			
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 1$	$\emptyset 2$	${ }^{6}$
Total Lost Time（s）	6.5	6.5	6.5							6.5				
Act Effct Green（s）	25.5	25.5	21.5	53.5						53.5				
Actuated g／C Ratio	0.21	0.21	0.18	0.45						0.45				
v／c Ratio	0.78	1.02	1.01	0.86						1.14				
Control Delay	50.5	86.4	62.0	13.9						102.9				
Queue Delay	1.4	0.0	32.7	48.2						0.0				
Total Delay	52.0	86.4	94.7	62.1						102.9				
LOS	D	F	F	E						F				
Approach Delay	63.4			68.3						102.9				
Approach LOS	E			E						F				
Intersection Summary														
Area Type：Other														
Cycle Length： 120														
Actuated Cycle Length： 120														
Offset： 0 （0\％），Referenced to phase 2：EBWB and 6：，Start of Green，Master Intersection														
Control Type：Actuated－Coordinated														
Maximum v／c Ratio： 1.20														
Intersection Signal Delay： 83.3			Intersection LOS：F											
Intersection Capacity Utilization 142．8\％			ICU Level of Service H											
Analysis Period（min） 15														

Analysis Period（min） 15
Splits and Phases：10：SB BW8 WSR U－Turn／SB BW8 WSR

	4	\rightarrow		\checkmark	－	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	${ }_{6} 6$	${ }^{66}$	$\varnothing 8$
Lane Configurations	\％	个个			个中的			А价	F＇						
Volume（vph）	247	617	0	0	1218	126	252	1719	187	0	0	0			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Width（tt）	11	11	11	11	11	11	11	11	11	11	11	11			
Lane Util．Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.983				0.850						
Flt Protected	0.950							0.993							
Satd．Flow（prot）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Flt Permitted	0.950							0.993							
Satd．Flow（perm）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）					18				164						
Link Speed（mph）		35			35			35			35				
Link Distance（t）		225			208			132			141				
Travel Time（s）		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.97	0.96	0.92	0.92	0.92	0.76	0.85	0.91	0.78	0.92	0.92	0.92			
Adj．Flow（vph）	255	643	0	0	1324	166	296	1889	240	0	0	0			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	255	643	0	0	1490	0	0	2185	240	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（t）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split（s）	23.0				37.0		60.0	60.0	60.0				28.0	32.0	60.0
Total Lost Time（s）	6.5				6.5			6.5	6.5						
Act Effct Green（s）	16.5	53.5			30.5			53.5	53.5						
Actuated g／C Ratio	0.14	0.45			0.25			0.45	0.45						

2016 PM Peak 5：00 pm 12／17／2014 No Build

Lanes，Volumes，Timings
13：NB BW8 ESR／NB BW8 ESR U－Turn
8／18／2015

	\cdots	+	2	m	k	5	\cdots	\nearrow	Ta	4	\square	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{1}$	44		${ }^{1}$	44			\$			\uparrow	「
Volume (vph)	76	618	18	0	1197	183	20	43	11	209	34	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	11	11	11	11	11	11
Storage Length (ft)	120		0	120		0	0		0	0		50
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.993			0.980			0.976				0.850
Flt Protected	0.950							0.986			0.962	
Satd. Flow (prot)	1711	3397	0	1801	3353	0	0	1733	0	0	1732	1531
Flt Permitted	0.950							0.190			0.641	
Satd. Flow (perm)	1711	3397	0	1801	3353	0	0	334	0	0	1154	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			25			8				106
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.77	0.90	0.54	0.42	0.82	0.80	0.58	0.64	0.50	0.53	0.33	0.74
Adj. Flow (vph)	99	687	33	0	1460	229	34	67	22	394	103	103
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	99	720	0	0	1689	0	0	123	0	0	497	103
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	15.0	70.0		20.0	75.0		30.0	30.0		30.0	30.0	30.0

2016 PM Peak 7:30 am 12/17/2014 Opening Year (No Build)
Synchro 9 Report LAN Employee

Lanes, Volumes, Timings
22: Broken Bough

	\cdots	\backslash	λ	\cdots	k	¢	\%	\ngtr	ra	4	\nearrow	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Lost Time (s)	4.9	4.9		4.9	4.9			5.1			5.1	5.1
Act Effct Green (s)	9.7	85.1			70.5			24.9			24.9	24.9
Actuated g/C Ratio	0.08	0.71			0.59			0.21			0.21	0.21
v/c Ratio	0.72	0.30			0.85			1.64			2.08	0.26
Control Delay	94.3	2.4			25.7			370.3			525.8	8.7
Queue Delay	0.0	0.0			0.0			0.0			0.0	0.0
Total Delay	94.3	2.4			25.7			370.3			525.8	8.7
LOS	F	A			C			F			F	A
Approach Delay		13.5			25.7			370.3			437.1	
Approach LOS		B			C			F			F	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0\%), Referenced to phase 2:NWT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 2.08												
Intersection Signal Delay: 112.1					sectio	OS: F						
Intersection Capacity Utilization 75.6\%				ICU Level of Service D								
Analysis Period (min) 15												

2016 PM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln

Intersection HCM Control Delay, s 169.6 0 1.7							
HCMLOS	F						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT		
Capacity (veh/h)	-	-	80	390	-		
HCM Lane V/C Ratio	-	-	0.92	0.083	-		
HCM Control Delay (s)	-	-	169.6	15.1	1.3		
HCM Lane LOS	-	-	F	C	A		
HCM 95th \%tile Q(veh)	-		4.9	0.3			

2016 PM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr

Intersection							
HCM Control Delay, s	282.6					0	2.3
HCM LOS	F						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT		
Capacity (veh/h)	-	-	47	378	-		
HCM Lane V/C Ratio	-	-	1.048	0.109	-		
HCM Control Delay (s)	-	-	282.6	15.7	1.7		
HCM Lane LOS	-	-	F	C	A		
HCM 95th \%tile Q(veh)	-	-	4.4	0.4			

2016 PM Peak 5:00 pm 12/17/2014 No Build Synchro 9 Report

2016 PM Peak 5.00 pm 1217/2014 No Build

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive
8/19/2015

Intersection						
HCM Control Delay, s	143.2				5.7	0
HCM LOS	F					
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)	779	-	169	-	-	
HCM Lane V/C Ratio	0.375	-	1.066	-	-	
HCM Control Delay (s)	12.4	4.4	143.2	-	-	
HCM Lane LOS	B	A	F	-	-	
HCM 95th \%tile Q(veh)	1.8	-	8.9	-		

2016 PM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/18/2015

Intersection					
HCM Control Delay, s	56.9			1.3	0
HCM LOS	F				
Minor Lane/Major Mvmt					
Capacity (veh/h)	NWT	NWR	WBLn1	SEL	SET
HCM Lane V/C Ratio	-	-	88	392	-
HCM Control Delay (s)	-	-	0.216	0.065	-
HCM Lane LOS	-	-	56.9	14.8	1
HCM 95th \%tile Q(veh)	-	-	F	B	A

Intersection						
Int Delay, s/veh						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	6	881	1593	12	7	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	42	90	94	46	38	38
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	14	979	1695	26	18	11
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	1721	0	-	0	2226	860
Stage 1	-	-	-	-	1708	-
Stage 2	-	-	-	-	518	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	364	-	-	-	37	299
Stage 1	-	-	-	-	132	-
Stage 2	-	-	-	-	563	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	364	-	-	-	34	299
Mov Cap-2 Maneuver	-	-	-	-	34	-
Stage 1	-	-	-	-	132	-
Stage 2	-	-	-	-	516	-
Approach	EB		WB		SB	

2016 PM Peak 7:30 am 12/17/2014 Opening Year (No Build)

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive
8/18/2015

Intersection						
HCM Control Delay, s	0.8				148.8	
HCM LOS						
Minor Lane/Major Mvmt	364	-	-	-	50	
Capacity (veh/h)	0.039	-	-	-	0.579	
HCM Lane V/C Ratio	15.3	0.6	-	-	148.8	
HCM Control Delay (s)	C	A	-	-	F	
HCM Lane LOS	0.1	-	-	-	2.2	
HCM 95th \%tile Q(veh)						

2016 PM Peak 7:30 am 12/17/2014 Opening Year (No Build) Synchro 9 Report
LAN Employee

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr
8/18/2015

Intersection						
HCM Control Delay, s		0		0.2	33.6	
HCM LOS						
Minor Lane/Major Mvmt	174	-	-	671	-	
Capacity (veh/h)	0.28	-	-	0.065	-	
HCM Lane V/C Ratio	33.6	-	-	10.7	0	
HCM Control Delay (s)	D	-	-	B	A	
HCM Lane LOS	1.1	-	-	0.2	-	
HCM 95th \%tile Q(veh)						

2016 PM Peak 7:30 am 12/17/2014 Opening Year (No Build) Synchro 9 Report

Intersection						81.6
HCM Control Delay, s		0			2.1	F
HCM LOS						
MBLn 17	EBT	EBR	WBL	WBT		
Minor Lane/Major Mvmt	77	-	-	659	-	
Cacaity (veh/h)	0.416	-	-	0.026	-	
HCM Lane VC Ratio	81.6	-	-	10.6	2	
HCM Control Delay (s)	F	-	-	B	A	
HCM Lane LOS	1.7	-	-	0.1	-	

2016 PM Peak 5:00 pm 12/17/2014 No Build Synchro 9 Report
LAN Employee

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/19/2015

Intersection						
HCM Control Delay, s	4.1				0	182.9
HCM LOS						
Minor Lane/Major Mvmt	379	-	-	-	105	
Capacity (veh/h)	0.203	-	-	-	1.065	
HCM Lane V/C Ratio	16.9	3.1	-	-	182.9	
HCM Control Delay (s)	C	A	-	-	F	
HCM Lane LOS	0.7	-	-	-	6.9	
HCM 95th \%tile Q(veh)						

	4	\rightarrow		\checkmark	4		4	\uparrow	p	\checkmark	\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 1$	62	${ }^{64}$
Lane Configurations		个个个	\％	\％	个 \uparrow						¢中献				
Volume（vph）	0	762	343	281	1205	0	0	0	0	106	1779	269			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length（tt）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（t）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.978				
Flt Protected				0.950							0.998				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4798	0			
Flt Permitted				0.950							0.998				
Satd．Flow（perm）	0	4916	1531	1711	3421	0	0	0	0	0	4798	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								20				
Link Speed（mph）		35			35			35			35				
Link Distance（t）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.94	0.85	0.91	0.92	0.92	0.92	0.92	0.92	0.92	0.90	0.73			
Adj．Flow（vph）	0	811	404	309	1310	0	0	0	0	115	1977	368			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	811	404	309	1310	0	0	0	0	0	2460	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（tt）		0			0			0			0				
Crosswalk Width（t）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split（s）		33.0	33.0	27.0						60.0	60.0		23.0	37.0	60.0
Total Lost Time（s）		6.5	6.5	6.5							6.5				

2016 PM Peak 5：00 pm 12／17／2014 Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
10：SB BW8 WSR
8／18／2015

	4	\rightarrow	7	\dagger		4	4	4	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	65	$\varnothing 6$	$\varnothing 8$
Lane Configurations	\％	个 \uparrow			个个¢			А个¢	\％						
Volume（vph）	247	617	0	0	1218	126	252	1719	187	0	0	0			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util．Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.983				0.850						
Flt Protected	0.950							0.993							
Satd．Flow（prot）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Flt Permitted	0.950							0.993							
Satd．Fow（perm）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）					18				164						
Link Speed（mph）		35			35			35			35				
Link Distance（t）		225			208			132			141				
Travel Time（s）		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.97	0.96	0.92	0.92	0.92	0.76	0.85	0.91	0.78	0.92	0.92	0.92			
Adj．Flow（vph）	255	643	0	0	1324	166	296	1889	240	0	0	0			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	255	643	0	0	1490	0	0	2185	240	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（t）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split（s）	23.0				37.0		60.0	60.0	60.0				27.0	33.0	60.0
Total Lost Time（s）	6.5				6.5			6.5	6.5						
Act Effict Green（s）	16.5	53.5			30.5			53.5	53.5						
Actuated g／C Ratio	0.14	0.45			0.25			0.45	0.45						
V／C Ratio	1.09	0.42			1.20			1.00	0.31						

2016 PM Peak 5：00 pm 12／17／2014 Build

Lanes，Volumes，Timings
13：NB BW8 ESR
8／18／2015

Splits and Phases：13：NB BW8 ESR

	\checkmark	+	2	m	k	5	\%	7	r	6	\pm	-
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	44		${ }^{*}$	44			\uparrow			4	「
Volume (vph)	76	618	18	0	1197	183	20	43	11	209	34	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	140		0	100		0	0		0	100		0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.994			0.978			0.980				0.850
Flt Protected	0.950							0.983			0.959	
Satd. Flow (prot)	1711	3401	0	1801	3346	0	0	1735	0	0	1727	1531
Flt Permitted	0.950							0.488			0.651	
Satd. Flow (perm)	1711	3401	0	1801	3346	0	0	861	0	0	1172	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			27			7				110
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.65	0.90	0.61	0.92	0.90	0.82	0.53	0.75	0.63	0.80	0.75	0.69
Adj. Flow (vph)	117	687	30	0	1330	223	38	57	17	261	45	110
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	117	717	0	0	1553	0	0	112	0	0	306	110
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	15.0	70.0		20.0	75.0		30.0	30.0		30.0	30.0	30.0
Total Lost Time (s)	4.9	4.9		4.9	4.9			5.1			5.1	5.1

2016 PM Peak 5:00 pm 12/17/2014 Opening Year

Lanes, Volumes, Timings
22: Broken Bough

2016 PM Peak 5:00 pm 12/17/2014 Opening Year

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln
8/18/2015

2016 PM Peak 5:00 pm 12/17/2014 Opening Year

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr

2016 PM Peak 5:00 pm 12/17/2014 Opening Year

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/18/2015

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	6	881	1593	12	7	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	42	90	94	46	38	38
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	14	979	1695	26	18	11
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	1721	0	-	0	2226	860
Stage 1	-	-	-	-	1708	-
Stage 2	-	-	-	-	518	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2		-	-	-	5.84	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	364	-	-	-	37	299
Stage 1	-	-	-	-	132	-
Stage 2	-	-	-	-	563	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	364	-	-	-	36	299
Mov Cap-2 Maneuver	-	-	-	-	36	-
Stage 1	-	-	-	-	132	-
Stage 2	-	-	-	-	541	-
Approach	EB		WB		SB	

2016 PM Peak 5:00 pm 12/17/2014 Opening Year

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive
8/18/2015

Intersection						
HCM Control Delay, s	0.2				135.5	
HCM LOS						
Minor Lane/Major Mvmt						
Capacity (veh/h)	364	-	-	-	53	
HCM Lane V/C Ratio	0.039	-	-	-	0.546	
HCM Control Delay (s)	15.3	-	-	-	135.5	
HCM Lane LOS	C	-	-	-	F	
HCM 95th \%tile Q(veh)	0.1	-	-	-	2.1	

$\begin{array}{ll}\text { Intersection } \\ \text { Int Delay, s/veh } & 1.1\end{array}$						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	849	23	34	1517	8	23
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	38	69	94	50	50
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	965	61	49	1614	16	46
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1025	0	1900	513
Stage 1	-	-	-	-	995	-
Stage 2	-	-	-	-	905	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	673	-	61	506
Stage 1	-	-	-	-	318	-
Stage 2	-	-	-	-	355	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	673	-	57	506
Mov Cap-2 Maneuver	-	-	-	-	57	-
Stage 1	-	-	-	-	318	-
Stage 2	-	-	-	-	329	-
Approach	EB		WB		NB	

2016 PM Peak 5:00 pm 12/17/2014 Opening Year

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr
8/18/2015

Intersection						
HCM Control Delay, s		0		0.3	38.8	
HCM LOS						
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	167	-	-	673	-	
HCM Lane V/C Ratio	0.371	-	-	0.073	-	
HCM Control Delay (s)	38.8	-	-	10.8	-	
HCM Lane LOS	E	-	-	B	-	
HCM 95th \%tile Q(veh)	1.6	-	-	0.2	-	

2012 12/17/2014 Opening Year

2016 PM Peak 5:00 pm 12/17/2014 Opening Year

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/18/2015

Intersection						
HCM Control Delay, s	1.3				111.5	
HCM LOS						
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)	379	-	-	-	129	
HCM Lane V/C Ratio	0.203	-	-	-	0.867	
HCM Control Delay (s)	16.9	-	-	-	111.5	
HCM Lane LOS	C	-	-	-	F	
HCM 95th \%tile Q(veh)	0.7	-	-	-	5.5	

||

	4	\rightarrow		\checkmark	\leftarrow	4		\uparrow		＊		\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 1$	$\varnothing 2$	64
Lane Configurations		个个中	＂	\％	$\uparrow \uparrow$						¢个中				
Volume（vph）	0	857	386	316	1355	0	0	0	0	120	2001	303			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length（tt）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（t）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.982				
Flt Protected				0.950							0.998				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4818	0			
Flt Permitted				0.950							0.998				
Satd．Flow（perm）	0	4916	1531	1711	3421	0	0	0	0	0	4818	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								12				
Link Speed（mph）		35			35			35			35				
Link Distance（t）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.88	0.90	0.85	0.92	0.92	0.92	0.92	0.92	0.92	0.91	0.95			
Adj．Flow（vph）	0	974	429	372	1473	0	0	0	0	130	2199	319			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	974	429	372	1473	0	0	0	0	0	2648	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（tt）		0			0			0			0				
Crosswalk Width（t）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		－		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split（s）		33.0	33.0	27.0						60.0	60.0		23.0	37.0	60.0
Total Lost Time（s）		6.5	6.5	6.5							6.5				

2030 PM Peak 5：00 pm 12／17／2014 No Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
10：SB BW8 WSR
8／18／2015

	4	\rightarrow	\geqslant	\dagger	\longleftarrow	4	4	\uparrow	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	65	$ø 6$	$\varnothing 8$
Lane Configurations	\％	¢个			个中的			＊4个	「						
Volume（vph）	278	694	0	0	1370	142	284	1933	211	0	0	0			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util．Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.983				0.850						
Flt Protected	0.950							0.993							
Satd．Flow（prot）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Flt Permitted	0.950							0.993							
Satd．Flow（perm）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）					18				145						
Link Speed（mph）		35			35			35			35				
Link Distance（t）		225			208			132			141				
Travel Time（s）		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.97	0.96	0.92	0.92	0.92	0.76	0.85	0.91	0.78	0.92	0.92	0.92			
Adj．Flow（vph）	287	723	0	0	1489	187	334	2124	271	0	0	0			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	287	723	0	0	1676	0	0	2458	271	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（tt）		11			11			0			0				
Link Offset（t）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split（s）	23.0				37.0		60.0	60.0	60.0				27.0	33.0	60.0
Total Lost Time（s）	6.0				6.0			6.0	6.0						
Act Effct Green（s）	17.0	54.0			31.0			54.0	54.0						
Actuated g／C Ratio	0.14	0.45			0.26			0.45	0.45						
v／c Ratio	1.19	0.47			1.33			1.12	0.35						

2030 PM Peak 5：00 pm 12／17／2014 No Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
13：NB BW8 ESR
8／18／2015

	\cdots	+	2	m	k	5	\cdots	\nsim	Ta	6	4	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	44		${ }^{1}$	44			\$			\uparrow	「
Volume (vph)	86	695	21	0	1346	206	23	49	13	236	39	86
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	120		0	120		0	0		0	0		50
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.994			0.978			0.978				0.850
Flt Protected	0.950							0.984			0.959	
Satd. Flow (prot)	1711	3401	0	1801	3346	0	0	1733	0	0	1727	1531
Flt Permitted	0.950							0.600			0.649	
Satd. Flow (perm)	1711	3401	0	1801	3346	0	0	1057	0	0	1169	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			23			8				106
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.65	0.90	0.61	0.92	0.90	0.82	0.53	0.75	0.63	0.80	0.75	0.69
Adj. Flow (vph)	132	772	34	0	1496	251	43	65	21	295	52	125
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	132	806	0	0	1747	0	0	129	0	0	347	125
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	14.0	73.5		7.5	67.0		39.0	39.0		39.0	39.0	39.0
Total Lost Time (s)	4.9	4.9		4.9	4.9			5.1			5.1	5.1

2030 PM Peak 5:00 pm 12/17/2014 No Build

Lanes, Volumes, Timings
22: Broken Bough

	\cdots	k	2	\cdots	k	\checkmark	\%	\nearrow	A	4	4	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Act Efft Green (s)	9.1	76.1			62.1			33.9			33.9	33.9
Actuated g/C Ratio	0.08	0.63			0.52			0.28			0.28	0.28
v/c Ratio	1.02	0.37			1.00			0.42			1.05	0.25
Control Delay	145.8	3.2			51.2			38.0			105.9	9.9
Queue Delay	0.0	0.0			0.0			0.0			0.0	0.0
Total Delay	145.8	3.2			51.2			38.0			105.9	9.9
LOS	F	A			D			D			F	A
Approach Delay		23.2			51.2			38.0			80.5	
Approach LOS		C			D			D			F	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 15 (13\%), Referenced to phase 2:NWT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.05												
Intersection Signal Delay: 46.9					sectio	S: D						
Intersection Capacity Utilization 82.7\%				ICU Level of Service E								
Analysis Period (min) 15												

Analysis Period (min) 15

2030 PM Peak 5:00 pm 12/17/2014 No Build Synchro 9 Report

Intersection						
HCM Control Delay, s	\$ 447.1				0	2.3
HCM LOS	F					
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT	
Capacity (veh/h)	-	-	63	434	-	
HCM Lane V/C Ratio	-	-	1.616	0.111	-	
HCM Control Delay (s)	-	-	\$ 447.1	14.3	1.7	
HCM Lane LOS	-	-	F	B	A	
HCM 95th \%tile Q(veh)	-	-	9.1	0.4	-	
Notes						
\sim : Volume exceeds capa	exceeds		Computa	Not	d *: All m	

2030 PM Peak 5:00 pm 12/17/2014 No Build Synchro 9 Report

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr
8/18/2015

Intersection							
HCM Control Delay, s	92.8					0	1.9
HCM LOS	F						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT		
Capacity (veh/h)	-	-	82	426	-		
HCM Lane V/C Ratio	-	-	0.548	0.088	-		
HCM Control Delay (s)	-	-	92.8	14.3	1.4		
HCM Lane LOS	-	-	F	B	A		
HCM 95th \%tile Q(veh)	-	-	2.4	0.3			

2030 PM Peak 5:00 pm 12/17/2014 No Build Synchro 9 Report
LAN Employee

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive

Intersection							
Int Delay, S/veh 1.9							
Movement	WBL	WBR	SEL	SET	NWT	NWR	
Vol, veh/h	4	14	20	966	1695	15	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	50	92	67	87	93	75	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	8	15	30	1110	1823	20	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	2448	921	1843	0	-	0	
Stage 1	1833	-	-	-	-	-	
Stage 2	615	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	26	273	326	-	-	-	
Stage 1	112	-	-	-	-	-	
Stage 2	502	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	20	273	326	-	-	-	
Mov Cap-2 Maneuver	20	-	-		-	-	
Stage 1	112	-	-			-	
Stage 2	382	-	-	-	-	-	
Approach	WB		SE		NW		
2030 PM Peak 5:00 pm 12/17/2014 No Build LAN Employee							Synchro 9 Report Page 26

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/18/2015

Intersection						
HCM Control Delay, s	124.7				2.4	0
HCM LOS	F					
Minor Lane/Major Mvmt	NWT	NWR	WBLn1	SEL	SET	
Capacity (veh/h)	-	-	51	326	-	
HCM Lane V/C Ratio	-	-	0.455	0.092	-	
HCM Control Delay (s)	-	-	124.7	17.2	2	
HCM Lane LOS	-	-	F	C	A	
HCM 95th \%tile Q(veh)			1.7	0.3		

Intersection						
Int Delay, s/veh	4.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	7	991	1792	24	8	5
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	42	90	94	46	38	38
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	17	1101	1906	52	21	13
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	1959	0	-	0	2516	979
Stage 1	-	-	-	-	1932	-
Stage 2	-	-	-	-	584	
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	294	-	-	-	23	249
Stage 1	-	-	-	-	99	-
Stage 2	-	-	-	-	521	-
Platoon blocked, \%			-			
Mov Cap-1 Maneuver	294	-	-	-	~ 20	249
Mov Cap-2 Maneuver	-	-	-	-	- 20	-
Stage 1	-	-	-	-	99	-
Stage 2	-	-	-	-	443	-
Approach	EB		WB		SB	

2030 PM Peak 5:00 pm 12/17/2014 No Build Synchro 9 Report
LAN Employee

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive
8/18/2015

Intersection							
HCM Control Delay, s	1.5					0	\$ 385.7
HCM LOS							F
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR	SBLn1		
Capacity (veh/h)	294	-	-	-	31		
HCM Lane V/C Ratio	0.057	-	-	-	1.104		
HCM Control Delay (s)	18	1.3	-	-	\$ 385.7		
HCM Lane LOS	C	A	-	-	F		
HCM 95th \%tile Q(veh)	0.2	-	-	-	3.8		
Notes							
~: Volume exceeds capacity	\$: Delay exceeds 3		mputa	Not D	fined		

Intersection						
Int Delay, s/veh 1.8						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	955	27	51	1706	9	26
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0	-	-	0	0	
Peak Hour Factor	88	38	69	94	50	50
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1085	71	74	1815	18	52
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1156	0	2176	578
Stage 1	-	-	-	-	1121	
Stage 2	-	-	-	-	1055	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	600	-	40	459
Stage 1	-	-	-	-	273	-
Stage 2	-	-	-	-	296	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	600	-	40	459
Mov Cap-2 Maneuver	-	-	-	-	40	-
Stage 1	-	-	-	-	273	-
Stage 2	-	-	-	-	296	-
Approach	EB		WB		NB	

2030 PM Peak 5:00 pm 12/17/2014 No Build Synchro 9 Report

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr
8/18/2015

Intersection						
HCM Control Delay, s		0		0.5	66.3	
HCM LOS						
Minor Lane/Major Mvmt	124	-	-	600	-	
Capacity (veh/h)	0.565	-	-	0.123	-	
HCM Lane V/C Ratio	66.3	-	-	11.8	0	
HCM Control Delay (s)	F	-	-	B	A	
HCM Lane LOS	2.8	-	-	0.4	-	
HCM 95th \%tile Q(veh)						

Intersection							
Int Delay, s/veh 1							
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Vol, veh/h	967	17	13	1753	8	11	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	84	58	63	93	50	50	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	1151	29	21	1885	16	22	
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	1181	0	2150	590	
Stage 1	-	-	-	-	1166	-	
Stage 2	-	-	-	-	984	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	587	-	41	451	
Stage 1	-	-	-	-	259	-	
Stage 2	-	-	-	-	323	-	
Platoon blocked, \%	-	-		-			
Mov Cap-1 Maneuver	-	-	587	-	41	451	
Mov Cap-2 Maneuver	-	-	-	-	41	-	
Stage 1	-	-	-	-	259	-	
Stage 2	-	-	-	-	323	-	
Approach	EB		WB		NB		
2030 PM Peak 5:00 pm 12/17/2014 No Build LAN Employee							Synchro 9 Report Page 24

HCM 2010 TWSC
55: Legend Ln \& Memorial Dr
8/18/2015

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/18/2015

Traffic Operational Analysis Results

	4	\rightarrow		\checkmark	4		4	\uparrow	p	＊	\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	$\varnothing 1$	62	${ }^{64}$
Lane Configurations		个个个	＂	\％	个 \uparrow						¢中號				
Volume（vph）	0	857	386	316	1355	0	0	0	0	133	2001	303			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Storage Length（tt）	0		120	0		0	0		0	0		0			
Storage Lanes	0		1	1		0	0		0	0		0			
Taper Length（t）	25			25			25			25					
Lane Util．Factor	1.00	0.91	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.91	0.91	0.91			
Frt			0.850								0.982				
Flt Protected				0.950							0.997				
Satd．Flow（prot）	0	4916	1531	1711	3421	0	0	0	0	0	4813	0			
Flt Permitted				0.950							0.997				
Satd．Flow（perm）	0	4916	1531	1711	3421	0	0	0	0	0	4813	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）			91								12				
Link Speed（mph）		35			35			35			35				
Link Distance（t）		290			225			131			129				
Travel Time（s）		5.6			4.4			2.6			2.5				
Peak Hour Factor	0.92	0.88	0.90	0.85	0.92	0.92	0.92	0.92	0.92	0.92	0.91	0.95			
Adj．Flow（vph）	0	974	429	372	1473	0	0	0	0	145	2199	319			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	0	974	429	372	1473	0	0	0	0	0	2663	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（tt）		0			0			0			0				
Crosswalk Width（tr）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type		NA	Perm	Prot	NA					Perm	NA				
Protected Phases		6		5	56						8		1	2	4
Permitted Phases			6							8					
Total Split（s）		33.0	33.0	27.0						60.0	60.0		23.0	37.0	60.0
Total Lost Time（s）		6.5	6.5	6.5							6.5				

2030 PM Peak $5: 00$ pm 12／17／2014 Build
LAN Employee

Lanes，Volumes，Timings
10：SB BW8 WSR
8／18／2015

	4	\rightarrow	7	\dagger		4	4	4	p		\downarrow	\downarrow			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	${ }_{65}$	$\varnothing 6$	$\varnothing 8$
Lane Configurations	\％	个 \uparrow			个个t			＾4界	F						
Volume（vph）	278	694	0	0	1370	142	284	1933	211	0	0	0			
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900			
Lane Util．Factor	1.00	0.95	1.00	1.00	0.91	0.91	0.91	0.91	1.00	1.00	1.00	1.00			
Frt					0.983				0.850						
Flt Protected	0.950							0.993							
Satd．Flow（prot）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Flt Permitted	0.950							0.993							
Satd．Fow（perm）	1711	3421	0	0	4832	0	0	4881	1531	0	0	0			
Right Turn on Red			Yes			Yes			Yes			Yes			
Satd．Flow（RTOR）					17				150						
Link Speed（mph）		35			35			35			35				
Link Distance（t）		225			208			132			141				
Travel Time（s）		4.4			4.1			2.6			2.7				
Peak Hour Factor	0.97	0.96	0.92	0.92	0.92	0.76	0.85	0.91	0.78	0.92	0.92	0.92			
Adj．Flow（vph）	287	723	0	0	1489	187	334	2124	271	0	0	0			
Shared Lane Traffic（\％）															
Lane Group Flow（vph）	287	723	0	0	1676	0	0	2458	271	0	0	0			
Enter Blocked Intersection	No														
Lane Alignment	Left	Left	Right												
Median Width（t）		11			11			0			0				
Link Offset（t）		0			0			0			0				
Crosswalk Width（tt）		16			16			16			16				
Two way Left Turn Lane															
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04			
Turning Speed（mph）	15		9	15		9	15		9	15		9			
Turn Type	Prot	NA			NA		Perm	NA	Perm						
Protected Phases	1	12			2			4					5	6	8
Permitted Phases							4		4						
Total Split（s）	23.0				37.0		60.0	60.0	60.0				27.0	33.0	60.0
Total Lost Time（s）	6.5				6.5			6.5	6.5						
Act Effict Green（s）	16.5	53.5			30.5			53.5	53.5						
Actuated g／C Ratio	0.14	0.45			0.25			0.45	0.45						
V／C Ratio	1.22	0.47			1.35			1.13	0.35						

2030 PM Peak 5：00 pm 12／17／2014 Build
Synchro 9 Report LAN Employee

Lanes，Volumes，Timings
13：NB BW8 ESR
8／18／2015

	\checkmark	+	2	m	k	5	\cdots	\nsim	Ta	6	4	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{1}$	44		${ }^{1}$	44			\$			4	「
Volume (vph)	86	695	21	0	1346	206	23	49	13	236	39	86
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	140		0	100		0	0		0	100		0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.994			0.978			0.978				0.850
Flt Protected	0.950							0.984			0.959	
Satd. Flow (prot)	1711	3401	0	1801	3346	0	0	1733	0	0	1727	1531
Flt Permitted	0.950							0.600			0.649	
Satd. Flow (perm)	1711	3401	0	1801	3346	0	0	1057	0	0	1169	1531
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			23			8				125
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		264			140			379			137	
Travel Time (s)		5.1			2.7			7.4			2.7	
Peak Hour Factor	0.65	0.90	0.61	0.92	0.90	0.82	0.53	0.75	0.63	0.80	0.75	0.69
Adj. Flow (vph)	132	772	34	0	1496	251	43	65	21	295	52	125
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	132	806	0	0	1747	0	0	129	0	0	347	125
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		11			11			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	Perm
Protected Phases	1	6		5	2			4			8	
Permitted Phases							4			8		8
Total Split (s)	14.0	75.1		5.9	67.0		39.0	39.0		39.0	39.0	39.0
Total Lost Time (s)	4.9	4.9		4.9	4.9			5.1			5.1	5.1

2030 PM Peak 5:00 pm 12/17/2014 Build
Synchro 9 Report LAN Employee

Lanes, Volumes, Timings
22: Broken Bough

	\cdots	k)	\cdots	k	\checkmark	\%	\nearrow	B	4	4	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Act Efftct Green (s)	9.1	76.1			62.1			33.9			33.9	33.9
Actuated g/C Ratio	0.08	0.63			0.52			0.28			0.28	0.28
v/c Ratio	1.02	0.37			1.00			0.42			1.05	0.24
Control Delay	145.3	3.2			51.2			38.0			105.9	6.8
Queue Delay	0.0	0.0			0.0			0.0			0.0	0.0
Total Delay	145.3	3.2			51.2			38.0			105.9	6.8
LOS	F	A			D			D			F	A
Approach Delay		23.2			51.2			38.0			79.7	
Approach LOS		C			D			D			E	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 15 (13\%), Referenced to phase 2:NWT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.05												
Intersection Signal Delay: 46.8				Intersection LOS: D								
Intersection Capacity Utilization 82.7\%				ICU Level of Service E								
Analysis Period (min) 15												

Intersection							
Int Delay, S/veh 13							
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Vol, veh/h	20	40	1444	16	24	906	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	-	-	-	200	-	
Veh in Median Storage, \#	0	-	0	-		0	
Grade, \%	0		0	-		0	
Peak Hour Factor	44	71	96	81	50	87	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	45	56	1504	20	48	1041	
Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	2131	762	0	0	1524	0	
Stage 1	1514		-	-		-	
Stage 2	617	-	-	-	-	-	
Critical Hdwy	6.84	6.94	-	-	4.14	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	-	-	2.22	-	
Pot Cap-1 Maneuver	~ 42	347	-	-	434	-	
Stage 1	168	-	-	-	-	-	
Stage 2	501	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	~37	347	-	-	434	-	
Mov Cap-2 Maneuver	-37	-	-	-	-	-	
Stage 1	168	-	-	-		-	
Stage 2	446	-	-	-	-	-	
Approach	WB		NB		SB		
2030 PM Peak 5:00 pm 12/17/2014 Build LAN Employee							Synchro 9 Repor Page 18

HCM 2010 TWSC
41: Memorial Dr \& Old Oaks Ln

Intersection HCM Control Delay, S $\$ 340.1$ 0 0.6							
HCM LOS	F						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT		
Capacity (veh/h)	-	-	73	434	-		
HCM Lane V/C Ratio	-	-	1.394	0.111	-		
HCM Control Delay (s)	-	-	\$ 340.1	14.3	-		
HCM Lane LOS	-	-	F	B	-		
HCM 95th \%tile Q(veh)	-	-	8.2	0.4	-		
Notes							

HCM 2010 TWSC
50: Memorial Dr \& Huntingwick Dr
8/18/2015

$\frac{\text { Intersection }}{\text { HCM Control Delay, s }}$							
HCM LOS	C						
Minor Lane/Major Mvmt	NBT	NBR	WBLn1	SBL	SBT		
Capacity (veh/h)	-	-	342	426	-		
HCM Lane V/C Ratio	-	-	0.151	-	-		
HCM Control Delay (s)	-	-	17.4	0	-		
HCM Lane LOS	-	-	C	A	-		
HCM 95th \%tile Q(veh)			0.5	0			

2030 PM Peak 5:00 pm 12/17/2014 Build Synchro 9 Report

HCM 2010 TWSC
4: Memorial Dr \& Boheme Drive

Intersection							
Int Delay, s/veh 0.9							
Movement	SEL	SET	NWT	NWR	SWL	SWR	
Vol, veh/h	20	966	1695	15	4	14	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0		
Peak Hour Factor	67	87	93	75	50	92	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	30	1110	1823	20	8	15	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	1843	0	-	0	2448	921	
Stage 1	-	-	-	-	1833	-	
Stage 2	-	-	-	-	615	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	326	-	-	-	26	273	
Stage 1	-	-	-	-	112	-	
Stage 2	-	-	-	-	502	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	326	-	-	-	24	273	
Mov Cap-2 Maneuver	-	-	-	-	24	-	
Stage 1	-	-	-	-	112		
Stage 2	-	-	-	-	456	-	
Approach	SE		NW		SW		
2030 PM Peak 5:00 pm 12/17/2014 Build Synchro 9 Report LAN Employee Page 26							

HCM 2010 TWSC
56: Memorial Dr \& Memorial Bend
8/18/2015

Intersection						
HCM Control Delay, s	0.4				0	98.7
HCM LOS						
Minor Lane/Major Mvmt						
Capacity (veh/h)	NWT	NWR	SEL	SET	SWLn1	
HCM Lane VIC Ratio	-	-	326	-	60	
HCM Control Delay (s)	-	-	0.092	-	0.387	
HCM Lane LOS	-	-	17.2	-	98.7	
HCM 95th \%tile Q(veh)	-	-	C	-	F	

HCM 2010 TWSC
21: Memorial Dr \& Hollow Drive
8/18/2015

Intersection						
Int Delay, s/veh 2.1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	955	27	51	1706	9	26
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	100	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0	-	-	0	0	
Peak Hour Factor	88	38	69	94	50	50
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1085	71	74	1815	18	52
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1156	0	2176	578
Stage 1	-	-	-	-	1121	
Stage 2	-	-	-	-	1055	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	600	-	40	459
Stage 1	-	-	-	-	273	-
Stage 2	-	-	-	-	296	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	600	-	35	459
Mov Cap-2 Maneuver	-	-	-	-	35	-
Stage 1	-	-	-	-	273	
Stage 2	-	-	-	-	259	-
Approach	EB		WB		NB	

2030 PM Peak 5:00 pm 12/17/2014 Build Synchro 9 Report

HCM 2010 TWSC
26: Somerset PI \& Memorial Dr
8/18/2015

Intersection					
HCM Control Delay, s		0		0.5	79.9
HCM LOS					
Minor Lane/Major Mvmt	112	-	-	600	-
Capacity (veh/h)	0.625	-	-	0.123	-
HCM Lane V/C Ratio	79.9	-	-	11.8	-
HCM Control Delay (s)	F	-	-	B	-
HCM Lane LOS	3.1	-	-	0.4	-
HCM 95th \%tile Q(veh)					

HCM 2010 TWSC
55: Legend Ln \& Memorial Dr
8/18/2015

Intersection							
Int Delay, S/veh 15.6							
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Vol, veh/h	68	916	1677	29	7	89	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	100	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	78	86	91	67	42	81	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	87	1065	1843	43	17	110	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	1886	0	-	0	2571	943	
Stage 1	-	-	-	-	1864	-	
Stage 2	-	-	-	-	707	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	314	-	-	-	21	264	
Stage 1	-	-	-	-	108	-	
Stage 2	-	-	-	-	450	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	314	-	-	-	~ 15	264	
Mov Cap-2 Maneuver	-	-	-	-	~ 15	-	
Stage 1	-	-	-	-	108	-	
Stage 2	-	-	-	-	325	-	
Approach	EB		WB		SB		
2030 PM Peak 5:00 pm 12/17/2014 Build LAN Employee							Synchro 9 Report Page 20

HCM 2010 TWSC
48: Memorial Dr \& Tallowood Dr
8/18/2015

Appendix D. 5
Existing Traffic Signal Layouts

Appendix D. 6
Proposed Traffic Signal Layouts

MEMORIAL DRIVE AND BELTWAY 8

MEMORIAL DRIVE AND W BOUGH LANE/BROKEN BOUGH DRIVE

MEMORIAL CITY
REDEVELOPMENT AUTHORITY
$91 \begin{aligned} & \text { Lockwood, Andrews } \\ & \frac{\&}{\text { \& Newnam, }} \text {, LEO. }\end{aligned}$
$\frac{\text { MEMORIAL DRIVE }}{\text { MEO }}$ MEMORIAL DRIVE
N-TI7000-031B-4 proposed row aquisition

CITY	OF 1 HOUSTON
S.	somemate
No. 1 \|reum	
oraming scales	Wens me.
As shown	
SHEETi of xx	

Memorial Road @ Sam Houston Parkway (Looking West)

Memorial Road @ Sam Houston Parkway (Looking South)

Memorial Road @ Town \& Country Village Entrance (Looking West)

Memorial Road Near Old Oaks Drive (Looking North West)

Memorial Road Near Old Oaks Drive (Looking South)

Memorial Road @ Boheme Drive (Looking North)

Memorial Road Near Hollow Drive (Looking West)

Memorial Road Near Hollow Drive (Looking East)

Memorial Road @ Tallowood Road (Looking West)

Memorial Road @ Tallowood Road (Looking East)

Memorial Road @ Tallowood Road (Looking North)

Memorial City Redevelopment Authority

 Memorial Drive Pavement \& Storm Sewer Improvements N-T17000-031B-4
Preliminary Tree Inventory-Findings and Recommendations

C.N. Koehl:

Urban Forestry, Inc.

Overall Project Findings

Proposed 6’ wide sidewalk on north side of street and 10’ wide sidewalk on south side of street will impact most of the existing trees and shrubs located in the street right of way. A majority of the plants will need to be removed for proposed design.

A handful of trees in the right of way have been identified as potential preservation candidates. These candidates are located adjacent to areas where proposed sidewalks appear to be designed in existing roadside ditches. The fill situation may allow preservation of the trees - final determination will be evaluated with 60% and 90% design drawings.

75 trees will need to be removed for proposed street and sidewalk construction. 31 of the 75 trees are protected by Street Tree Ordinance and are in good condition that will require replacement planting to comply with Ordinance. The 31 trees require replacement total of 359 inches in plantings with an estimated removal and replacement fee of $\$ 143,950.00$.

Trees located on private property will be protected by using root pruning trench for sidewalk construction or forming sidewalk on grade without cutting or otherwise damaging tree roots 1 " diameter or larger. Tree protection fencing and overhead clearance pruning may also be necessary to ensure long term tree survival.

Individual Tree Findings

Tree numbers and locations included on attached tree location drawings.

Trees no. 1-6

(2)14" Laurel Oak, 10" Laurel Oak, 9" Laurel Oak, 12" Live Oak \& 7" Live Oak growing on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 7

19" Southern Red Oak growing in TXDOT right of way. Tree will not be impacted, provided no utility relocation/connection or sidewalk relocation is required within 15' of trunk. Tree is not protected by City of Houston Street Tree Ordinance but is covered by TXDOT protection and replacement requirements.
$\underline{\text { Trees no. } 8}$

Page 2 of 21

C.N. Koehl

Urban Forestrulnclatw
(10)5" Italian Cypress growing on private property. Trees will not be impacted by construction in street right of way.

Tree no. 9
27" Pine growing at edge of street right of way. Proposed drive construction will significantly impact long term tree health and structural integrity. Tree will need to be removed. Tree is protected by Street Tree Ordinance and will require 27" in replacement planting to comply with ordinance. Estimated removal and replacement cost is \$8,850.00.

Figure 1: Tree No. 9-27" Pine to be removed for proposed drive ways.
Trees no. 10, $11 \& 12$
22" Pine, 20" Pine \& 28" Water Oak are growing in street right of way and protected by Street Tree Ordinance. It appears from preliminary drawings that trees can be preserved with root pruning for street, Sidewalk on grade and tree protection fencing. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 13-17

3" Crepe Myrtle, 4" Juniper, 18" Post Oak, 17" Post Oak \& 3" Juniper growing on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 18

23" American Elm growing in street right of way and protected by Street Tree Ordinance. Tree has 40% dieback and is in fair to poor condition. It appears from preliminary drawings that tree can be preserved with root pruning for street, Sidewalk on grade and tree protection fencing. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings. If tree is preserved the canopy will need to be hazard pruned to remove large deadwood for public safety concerns.

Figure 2: Large deadwood in canopy of Tree no. 18.
Tree no. 19
10 " Arborvitae growing in Street Right of way and not protected by street tree ordinance. Tree may need to be pruned to provide clearance for proposed sidewalk.

Trees no. 20-22
17" Post Oak, 19" Post Oak \& 22" Post Oak growing on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 23
12 " Post Oak growing in street right of way and protected by Street Tree Ordinance. It appears from preliminary drawings that tree can be preserved with root pruning for street,

Sidewalk on grade and tree protection fencing. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Tree no. 24
22" Post Oak growing on private property with approximately 30% canopy dieback. Tree has been impacted by private drive construction. Tree will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Trees no. 25 \& 26
9" Lacebark Elm \& 7" Lacebark Elm growing in street right of way and protected by Street Tree Ordinance. It appears from preliminary drawings that trees can be preserved with root pruning for street, Sidewalk on grade and tree protection fencing. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Tree no. 27

13 " Live Oak growing in street right of way and protected by Street Tree Ordinance. Tree will need to be removed for proposed street and sidewalk construction. Removal requires 13 " in replacement planting to comply with Ordinance. Estimated removal and replacement costs are $\$ 5,125.00$.

Figure 3: Tree no. 27 to be removed for street and walk construction.
C.N. Koehl

Page 5 of 21

Trees no. 28, 30, 32, 33, \& 35
12" Live Oak, 16" Live Oak, 13" Live Oak, 16" Live Oak \& 40’ Palm growing on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Trees no. 29 \& 31
26" Live Oak and 15" Live Oak growing in street right of way and protected by Street Tree Ordinance. Trees will need to be removed for proposed street and sidewalk construction. Removal requires 41 " in replacement planting to comply with Ordinance. Estimated removal and replacement costs are \$14,425.00.

Figure 4: Tree no. 29-26" Live Oak to be removed for proposed street and walk construction.

Tree no. 34 \& 38
26" Crepe Myrtle \& 22" Crepe Myrtle growing in street right of way and protected by Street Tree Ordinance. It appears from preliminary drawings that trees can be preserved with root pruning for street, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Figure 5: Tree no. 34-26" Live Oak in esplanade.
Trees no. 36, 37, 39-42
(4) 40’ Palms, 13" Crepe Myrtle, 16" Pine growing on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 43
17" Water Oak growing on private property that has been significantly impacted by new home and driveway construction. Tree has 50% canopy dieback and has been colonized by Hypoxylon, which is slowly killing the tree. Tree is in poor condition and will most likely die before start of final design.

Figure 6: Tree no. 43 with $\mathbf{5 0 \%}$ canopy dieback and Hypoxylon infestation.
Trees no. 44-48 \& 50
9" Willow Oak, 8" Pine, 20" Post Oak, 18" Post Oak, 22" Pine, 21" Pine growing just outside of right of way on private property. Trees have been impacted by recent home construction and exhibit 20-50\% canopy dieback. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 49
11 " Redbud growing in street right of way is not protected by street tree ordinance. Tree will need to be clearance pruned to allow construction and provide Accessibility Standards requirements for new sidewalk.
C.N. Koehl

Page 8 of 21
Urban Forestur Lic:

Trees no. 51-62
14" Pine, 10" Pine, 11" Pine, 12" Pine, 14" Pine, (2)5" Mulberry, 7" Mulberry, 8" Tallow, 5" Cherrylaurel , 11" Water Oak \& 23" Water Oak growing just outside of right of way on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Trees no. 63 \& 65
(2) 5" Crepe Myrtles growing in street right of way are not protected by street tree ordinance. Trees will need to be removed for construction of proposed sidewalk. No replacement planting required.

Trees no. 66, 67 \& 68
$10 "$ Pine, 11 " Pine \& 6" Live Oak growing on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Trees no. 69 \& 71
$12 "$ Live Oak \& 13" Live Oak growing in street right of way and protected by Street Tree Ordinance. Trees will need to be removed for proposed street and sidewalk construction. Removal requires 25 " in replacement planting to comply with Ordinance. Estimated removal and replacement costs are $\$ 9,875.00$.

Tree no. 70
15 " Live Oak growing just outside of right of way on private property. Construction of proposed storm lead will need to be completed with manual labor in order to minimize impacts on root system of tree. Tree can then be protected with sidewalk on grade or root prune for walk, tree protection fence, root prune for street and clearance pruning.

Tree no. 73, 74, 76, 77 \& 78
23" Sycamore, 33" Southern Red Oak, 25" Post Oak, 18" Pine \& 16" Southern Red Oak growing just outside of right of way on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Trees no. 75, 79-92, 94 \& 95
Spirea hedge \& (16) 7" Crepe Myrtle growing in street right of way are not protected by Street Tree Ordinance. No protection required, or replacement required should they need to be removed for walk to comply with Ordinance. Clearance pruning for sidewalk would be necessary if trees are preserved.

Tree no. 93
15 " Pine growing just outside right of way on private property is dead. Tree will most likely be removed before final design starts.

Figure 7: Dead 15" Pine on private property.
Trees no. 96, 97, 99, 100, 103 \& 104
(5)4’ Sago Palms \& 7" Redbud growing in street right of way are not protected by street tree ordinance. Trees will need to be removed for construction of proposed sidewalk. No replacement planting required.

Trees no. 98, 101, 102, 105, 106-112
19" Southern Red Oak, 32" Water Oak, 21" Pine, 18" Pine, 8" Yaupon, 15" Ligustrum, 35" Water Oak \& (4) 10" Crepe Myrtle growing just outside of right of way on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 113
5" Ligustrum growing in street right of way is not protected by street tree ordinance. Tree will need to be removed for construction of proposed sidewalk. No replacement planting required.

Trees no. 114-118, 120, 121, 124, 127-136
5" Ligustrum, 14" Pine, 13" Pine, 20" Pine, 16" Crepe Myrtle, (2)7" Water Oak, 25" Pine, 10 " Tallow, 16" Pine, 26" Pine, 25" Pine, 17" Magnolia, 20" Pine, 26" Pine, 16" Pine, 10 " Water Oak \& 9" Water Oak growing just outside of right of way on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 119
13 " Mulberry growing in street right of way is not protected by street tree ordinance. Tree will need to be removed for construction of proposed sidewalk. Trunk of tree leans into proposed street location and would need to be removed for traffic clearance regardless of conflict with sidewalk construction. No replacement planting required.

Figure 8: 13" Mulberry leaning into proposed street location.

Trees no. 122, 123, 125 \& 126
(2)6" Crepe Myrtle, 3" Raintree, 5" Redbud growing in street right of way are not protected by street tree ordinance. Trees will need to be removed for construction of proposed sidewalk. No replacement planting required.
C.N. Koehl

Page 11 of 21
Urban Forestur Mr.

Trees no. 137-139
$16 "$ Pine, 12 " Pine \& 5" Pine are growing in street right of way and protected by Street Tree Ordinance. It appears from preliminary drawings that trees can be preserved with root pruning for street, Sidewalk on grade and tree protection fencing. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 140, 142-148
3' Palm, (3)20’ Palms \& (4)12' Palms growing in street right of way are not protected by Street Tree Ordinance. No protection required, or replacement required should they need to be removed for walk to comply with Ordinance.

Tree no. 141

23" Pine growing in street right of way is protected by Street Tree Ordinance. Tree has been significantly pruned. Approximately $1 / 3$ to $1 / 2$ of the tree's canopy has been removed. It appears from preliminary drawings that tree can be preserved with root pruning for street, Sidewalk on grade and tree protection fencing. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Tree no. 141A

16 " Magnolia growing just outside of right of way on private property. Tree is thin and in poor condition with approximately 30% canopy dieback. Tree will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 149

25" American Elm growing in street right of way and protected by Street Tree Ordinance. Tree has been topped by overhead utility clearing and is in poor condition. Tree will need to be removed for proposed street and sidewalk construction. No replacement planting required due to damaged condition of tree.

Figure 9: 25" American Elm topped for overhead utility clearance.
Tree no. 150
16 " Tallow growing in street right of way is not protected by street tree ordinance. Tree will need to be removed for construction of proposed sidewalk. No replacement planting required.

Tree no. 151
7 " Live Oak growing in street right of way and protected by Street Tree Ordinance. It appears from preliminary drawings that tree can be preserved with root pruning for street, Sidewalk on grade and tree protection fencing. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 152-156
9" Live Oak, 6" Live Oak, 8" Live Oak, 10" Live Oak, 9" Live Oak growing in street right of way and protected by Street Tree Ordinance. Trees will need to be removed for proposed street and sidewalk construction. Removal requires 42 " in replacement planting to comply with Ordinance. Estimated removal and replacement costs are $\$ 14,750.00$.

Figure 10: Trees 152-156 to be removed for sidewalk construction.
Tree no. 157 \& 159
Ligustrum hedge growing in street right of way is not protected by street tree ordinance. Hedge will need to be removed for construction of proposed sidewalk. No replacement planting required.

Trees no. 158, \& 162-164
$12 "$ Pecan, 19 " Pine, 13 " Pine \& 32" Water Oak growing in street right of way and protected by Street Tree Ordinance. Trees will need to be removed for proposed street and sidewalk construction. Removal requires 44 " in replacement planting to comply with Ordinance. Estimated removal and replacement costs are \$27,950.00.

Figure 11: Tree no. 158-12" Pecan \& 162-19" Pine to be removed for sidewalk.

Figure 12: Tree no. 164-32" Water Oak to be removed for sidewalk.

Trees no. 165 \& 166
(2) 4" Japanese Blueberry growing in street right of way are not protected by Street Tree Ordinance. No protection required, or replacement required should they need to be removed for walk to comply with Ordinance.

Tree no. 167
16 " Magnolia growing on private property with 40% canopy dieback and in overall poor condition. Tree has significant exposed surface roots in outside ditch bank. Most roots appear to be desiccating and decayed from years of ditch cleaning work. Proposed Storm will need to be installed with manual labor to minimize impacts on tree roots. It appears tree can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Figure 13: Roots exposed at top of bank tree no. 167.
Tree no. 168
20 " Pine growing in street right of way is protected by Street Tree Ordinance. Proposed Storm will need to be installed with manual labor to minimize impacts on tree roots. It appears tree can be preserved with root pruning for street, sidewalk on grade, tree
protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Tree no. 169
3" Sugarberry growing in street right of way is not protected by Street Tree Ordinance. No protection required, or replacement required should tree need to be removed for walk to comply with Ordinance.

Tree no. 170

26" American Elm growing in street right of way is protected by Street Tree Ordinance. Tree has 50% canopy dieback and is in overall poor condition. It appears tree can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 171-175
(5) 7" Crepe Myrtle growing on private property. Trees will not be impacted by construction in street right of way.

Trees no. 176-178, 180-182, 184, 186, 188, 189, 194, 195, \& 199
Ligustrum hedges, 5" Crepe Myrtle, (4)6" Crepe Myrtle, (3) 7" Crepe Myrtle, (3) 8" Crepe Myrtle growing in street right of way are not protected by street tree ordinance. Trees will need to be removed for construction of proposed sidewalk. No replacement planting required.

Trees no. 179, 183, 185, 187, 190-192, 196-198, 200 \& 201
23" Water Oak, 15" Pine, 42" Cottonwood, 19" Pine, 25" Pine, 17" Pine, 15" Pine, 14" Willow Oak, 14" Pine, 23" Pine, 23" Pine, 18" Pine, 26" Pine growing just outside of right of way on private property. Trees will be protected with sidewalk on grade or root pruning for sidewalk, tree protection fencing, and clearance pruning for construction access.

Tree no. 193
11 " Pine growing in street right of way is protected by Street Tree Ordinance. Tree will need to be removed for proposed street and sidewalk construction. Removal requires 11" in replacement planting to comply with Ordinance. Estimated removal and replacement costs are \$3,625.00.

Figure 14: 11" Pine to be removed for walk and street construction.
Trees no. 202-204, 227-230, \& 233-235
14 " to 23 " Water Oak trees growing just outside right of way on private property. Trees have been topped for overhead utility clearance and are planted in planters that have significantly restricted root growth. Trees are in fair to poor condition. It appears trees can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Tree no. 205
12" Live Oak growing on private property. Will not be impacted by construction in street right of way.

Trees no. 206 \& 207
14 " Live Oak \& 13" Live Oak growing in street right of way are protected by Street Tree Ordinance. Trees will need to be removed for proposed street and sidewalk construction. Removal requires 27" in replacement planting to comply with Ordinance. Estimated removal and replacement costs are $\$ 10,275.00$.

Trees no. 208-216, 218-223, \& 225
9 " to 23 " Pine trees growing in street right of way are protected by Street Tree
Ordinance. It appears trees can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees 217 \& 224
9 " Sugarberry \& 12" Sugarberry growing in street right of way are not protected by street tree ordinance. Trees will need to be removed for construction of proposed sidewalk. No replacement planting required.

Tree no. 226 \& 243

14 " Sugarberry \& 15 " Sugarberry growing just outside right of way on private property. Trees have been topped for overhead utility clearance. Trees are in fair to poor condition. It appears trees can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 244 \& 254
$15 "$ Pine \& 15 " Green Ash growing in street right of way are protected by Street Tree Ordinance. It appears trees can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees 246

$16 "$ Shumard Oak growing in street right of way is protected by Street Tree Ordinance. Tree will need to be removed for proposed street and sidewalk construction. Removal requires 16 " in replacement planting to comply with Ordinance. Estimated removal and replacement costs are $\$ 6,450.00$.

Trees 247-249, 252 \& 253
13" Sycamore, 10" Sycamore, 9" Sycamore, 12" Sycamore \& 15" Sugarberry growing in street right of way are not protected by street tree ordinance. Trees will need to be removed for construction of proposed sidewalk. No replacement planting required.

Tree no. 250

10 " Sugarberry growing in street right of way is not protected by Street Tree Ordinance. No protection required, or replacement required should tree need to be removed for walk to comply with Ordinance.

Tree no. 254
15 " Green Ash growing in street right of way is protected by Street Tree Ordinance. It appears tree can be preserved with root pruning for street, sidewalk on grade, tree
protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 255, 256, 260, \& 271-273
13" Pine, 17" Pine, 11" Pine, 11" Pine, 12" Pine, 15" Post Oak growing in street right of way are protected by Street Tree Ordinance. Trees will need to be removed for proposed street and sidewalk construction. Removal requires 79" in replacement planting to comply with Ordinance. Estimated removal and replacement costs are \$29,625.00.

Trees no. 257, 258, 259, 261, 267-269, \& 294-297
16" Green Ash, 15" Hickory, 7" Crepe Myrtle, 23" Pine, 11" Pine, 13" Pine, 10" Pine, (2)3" Crepe Myrtle, 12 " Live Oak, 12" Live Oak growing just outside right of way on private property. It appears trees can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 262-266 \& 270
$11 "$ Pine, 12 " Pine, 13 " Pine, 19" Pine, 10" Pine, 4" Post Oak growing in street right of way are protected by Street Tree Ordinance. It appears trees can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees no. 274, 282, \& 285
18" Pine, 8" Sawtooth Oak, 8" Pine growing in street right of way are protected by Street Tree Ordinance. Trees will need to be removed for proposed street and sidewalk construction. Removal requires 34 " in replacement planting to comply with Ordinance. Estimated removal and replacement costs are $\$ 13,000.00$.

Trees no. 275, 278, 284, 286 \& 287
10" Cherrylaurel, 7" Cherrylaurel, 23" Post Oak, 8" Pine growing just outside right of way on private property. It appears trees can be preserved with root pruning for street, sidewalk on grade, tree protection fencing and clearance pruning. Final treatment will be determined by horizontal and vertical location of walk in design phase drawings.

Trees 276, 277, 279-281 \& 283
(2) 5" Cherrylaurel, (3) 5" Sugarberry, 5" Cherrylaurel growing in street right of way are not protected by street tree ordinance. Trees will need to be removed for construction of proposed sidewalk. No replacement planting required.

Trees 288-293
9" Post Oak, 8" Water Oak, 7" Post Oak, 15" Post Oak, 13" Water Oak \& 12" Water Oak growing on private property. Trees will not be impacted by proposed construction in
street right of way. Clearance pruning will be necessary to provide construction access and provide tree protection from construction equipment.

MEMORIAL CITY REDEVELOPMENT AUTHORITY	
9 ($\begin{aligned} & \text { Lockwood, Androws } \\ & \frac{\text { \& Nownam, Inc. }}{\text { LHo } A \text { DALY CompANr }}\end{aligned}$	
C.N. Koehl Urban Forestry, Inc	
210 Stone Bush Ct. \circ Katy, Texas 77493 281-391-0022 ckoehlQkoehlurbanforestry.com	
TREE LOCATIONS SHEET 3 OF 3	
CITY OF HOUSTON	
\% moex	,
Fle no.: ${ }^{\text {Preaur }}$	
DRamNG SCALE:	WSS No.

ENGINEERING CORP.

> This document is released for the purpose of interim review under the authority of Wilber L. Wang, P.E. 99226 on September 2, 2015. It is not to be used for bidding or construction

GEOTECHNICAL INVESTIGATION

MEMORIAL CITY REDEVELOPMENT AUTHORITY

Reported to:
Lockwood, Andrews, and Newnam, Inc. Houston, Texas
by

Aviles Engineering Corporation 5790 Windfern
Houston, Texas 77041
713-895-7645

REPORT NO. G178-14

ENGINEERING CORP.

September 2, 2015
Mr. Ricky Gonzalez
Lockwood, Andrews, and Newnam, Inc.
2925 Briarpark Drive, Suite 400
Houston, Texas 77042

Reference: Geotechnical Investigation
Memorial City Redevelopment Authority
Memorial Drive Drainage and Mobility Improvements
TIRZ 17 CIP No. T1731B
From West Sam Houston Parkway South to Tallowwood Drive
Houston, Texas
WBS No.: N-T17000-031B-4
AEC Report No. G178-14

Dear Mr. Gonzalez,

Aviles Engineering Corporation (AEC) is pleased to present this draft report of the results of our geotechnical investigation for the above referenced project. Notice to proceed for the project was provided by Mr. Muhammad Ali, P.E., Project Manager of Lockwood, Andrews, and Newnam, Inc. (LAN), on December 12, 2014 via Task Order 1055/2 for Geotechnical Investigation Services, based on AEC proposal G2014-06-05R2, dated August 13, 2014.

AEC appreciates the opportunity to be of service to you. Please call us if you have any questions or comments concerning this report or when we can be of further assistance.

Respectfully submitted,
Aviles Engineering Corporation
(TBPE Firm Registration No. F-42)

Wilber L. Wang, P.E.
Senior Engineer

Shou Ting Hu, M.S.C.E., P.E.
Principal Engineer

Reports Submitted: 3 Lockwood, Andrews, and Newnam, Inc.
1 File (electronic)

ENGINEERING CORP.

TABLE OF CONTENTS

EXECUTIVE SUMMARY i
1.0 INTRODUCTION 1
1.1 General 1
1.2 Purpose and Scope 1
2.0 SUBSURFACE EXPLORATION 2
2.1 Soil Borings 2
3.0 LABORATORY TESTING PROGRAM 3
4.0 SITE CONDITIONS 4
4.1 Subsurface Conditions 5
4.2 Hazardous Materials 8
4.3 Geologic Conditions 8
4.4 Subsurface Variations 8
5.0 GEOTECHNICAL ENGINEERING RECOMMENDATIONS 9
5.1 Geotechnical Parameters for Underground Utilities 9
5.2 Installation of Underground Utilities by Open-Cut Method 9
5.2.1 Loadings on Pipes 10
5.2.2 Trench Stability 11
5.2.3 Thrust Force Design Recommendations 14
5.2.4 Bedding and Backfill 15
5.3 Pavement Reconstruction 15
5.3.1 Estimation of Traffic Loading 16
5.3.2 Rigid Pavement 17
5.3.3 Reinforcing Steel 19
5.3.4 Pavement Subgrade Preparation 19
6.0 CONSTRUCTION CONSIDERATIONS 20
6.1 Site Preparation 20
6.2 Groundwater Control 20
6.3 Construction Monitoring 22
6.4 Monitoring of Existing Structures 22
7.0 LIMITATIONS 22

ENGINEERING CORP.

APPENDICES

APPENDIX A

Plate A-1
Plate A-2
Plates A-3 to A-11
Plate A-12
Plate A-13
Plate A-14
Plate A-15
Plate A-16
Plates A-17 to A-20

Vicinity Map
Boring Location Plan
Boring Logs
Key to Symbols
Classification of Soils for Engineering Purposes
Terms Used on Boring Logs
ASTM \& TXDOT Designation for Soil Laboratory Tests
Sieve Analysis Results
Summary of Lab Data

APPENDIX B

Plates B-1a to B-1b
Generalized Soil Profiles
Plates B-2 to B-3
Piezometer Installation Details

APPENDIX C

Plates C-1 to C-2
Plate C-3
Recommended Geotechnical Design Parameters
Load Coefficients for Pipe Loading
Plate C-4
Live Loads on Pipe Crossing Under Roadway

APPENDIX D

Plate D-1
Plate D-2
Plate D-3
Plate D-4
Plate D-5
Plate D-6
Plate D-7
Plate D-8
Plate D-9
Plate D-10

APPENDIX E
Plates E-1 to E-3

Critical Heights of Cut Slopes in Nonfissured Clays
Maximum Allowable Slopes
A Combination of Bracing and Open Cuts
Lateral Pressure Diagrams for Open Cuts in Cohesive Soil-Long Term Conditions
Lateral Pressure Diagrams for Open Cuts in Cohesive Soil-Short Term Conditions
Lateral Pressure Diagrams for Open Cuts in Sand
Bottom Stability for Braced Excavation in Clay
Thrust Force Calculation
Thrust Force Example Calculation
Design Parameters for Bearing Thrust Block

EXECUTIVE SUMMARY

The report submitted herein presents the results of Aviles Engineering Corporation's (AEC) geotechnical investigation for the Memorial City Redevelopment Authority's (MCRA) proposed Memorial Drive Drainage and Mobility Improvements, from W. Sam Houston Parkway S. to Tallowwood Drive, in Houston, Texas (Houston/Harris County Key Map Nos.: 489G, H, M, and 490J). A vicinity map is presented on Plate A-1, in Appendix A. Based on drawings (dated August 27, 2015) provided by Lockwood, Andrews, and Newnam, Inc. (LAN), the project alignment is 4,750 linear feet long. The proposed improvements include: (i) installation of approximately of 8 to 16 inch diameter waterline; (ii) installation of 24 to 48 inch diameter reinforced concrete pipe and 10 foot by 10 foot reinforced concrete box storm sewers; and (ii) reconstruction of Memorial Drive with concrete pavement. The waterlines and storm sewers will be installed by open cut method. The invert depth of the storm sewer along the alignment typically varies from approximately 17.4 to 23.8 feet.

1. Subsurface Soil Conditions: Based on the borings, subsurface soil conditions along the project alignment generally consist of approximately 6 to 21 feet of stiff to hard lean/fat clay (CL/CH) at the ground surface, underlain by medium dense to dense silty sand (SP-SM/SM) to the boring termination depths. Approximately 6 feet of clayey sand (SC) was encountered at a depth of 8 feet in Boring B-6, and approximately 0.5 to 4 feet of sandy lean clay (CL) fill was encountered at the ground surface in Borings B-1, and B-5 through B-8.
2. Subsurface Soil Properties: The subsurface clayey soils (CL/CH/SC) encountered in the borings have medium to very high plasticity, with liquid limits (LL) ranging from 26 to 58 , and plasticity indices (PI) ranging from 12 to 43 . The cohesive soils encountered are classified as "CL" and "CH" type soils and granular soils were classified as "SC", "SM", and "SP-SM" type soils in accordance with ASTM D 2487.
3. Groundwater Conditions: Groundwater was encountered in Boring B-9 at a depth of 23 feet below grade during drilling. Groundwater was not encountered in Borings B-1 through B-8 during drilling. Groundwater was also observed at a depth of 18.6 to 18.9 feet in the piezometer installed at Boring B-9. A detailed description of ground water readings is presented on Table 4 in Section 4.1 of this report.
4. Hazardous Materials: No signs of visual staining or odors were encountered during field drilling or during processing of the soil samples in the laboratory.
5. Geologic Hazards: A desktop study of available literature indicates that the Piney Point West fault crosses the project alignment in the vicinity of the intersection of Broken Bough Road. Limited field observations in the project area will be performed by AEC's Senior Geologist to look for evidence of faulting. A summary of the field observations will be included in AEC's final geotechnical report.
6. Design parameters and recommendations for installation of underground utilities by open cut method are presented in Section 5.2 of this report. Based on the borings and the invert depths indicated on the plan and profile drawings provided by LAN, the majority of the storm sewer trench excavations will encounter granular soils during construction.

ENGIAEERING CORP.

EXECUTIVE SUMMARY (cont.)

7. Design parameters and recommendations for construction of concrete pavement are presented in Section 5.3 of this report. If the roadway is classified as a 'major collector', AEC recommends that a 10 inch thick concrete pavement with 8 inch thick lime stabilized subgrade be used for the roadway. If the roadway is classified as a' thoroughfare', AEC recommends that a 11 inch thick concrete pavement with 8 inch thick lime stabilized subgrade be used for the roadway.

This Executive Summary is intended as a summary of the investigation and should not be used without the full text of this report.

GEOTECHNICAL INVESTIGATION

MEMORIAL CITY REDEVELOPMENT AUTHORITY MEMORIAL DRIVE DRAINAGE AND MOBILITY IMPROVEMENTS FROM W. SAM HOUSTON PARKWAY S. TO TALLOWWOOD DR TIRZ 17 CIP No. T-1731B
WBS NO. N-T17000-031B-4
HOUSTON, TEXAS

1.0 INTRODUCTION

1.1 General

The report submitted herein presents the results of Aviles Engineering Corporation's (AEC) geotechnical investigation for the Memorial City Redevelopment Authority's (MCRA) proposed Memorial Drive Drainage and Mobility Improvements, from W. Sam Houston Parkway S. to Tallowwood Drive, in Houston, Texas (Houston/Harris County Key Map Nos.: 489G, H, M, and 490J). A vicinity map is presented on Plate A-1, in Appendix A. Based on drawings (dated August 27, 2015) provided by Lockwood, Andrews, and Newnam, Inc. (LAN), the project alignment is 4,750 linear feet long. The proposed improvements include: (i) installation of approximately of 8 to 16 inch diameter waterline; (ii) installation of 24 to 48 inch diameter reinforced concrete pipe and 10 foot by 10 foot reinforced concrete box storm sewers; and (ii) reconstruction of Memorial Drive with concrete pavement. The waterlines and storm sewers will be installed by open cut method. The invert depth of the storm sewer along the alignment typically varies from approximately 17.4 to 23.8 feet.

1.2 Purpose and Scope

The purpose of this geotechnical investigation is to evaluate the subsurface soil conditions along the alignment and develop geotechnical engineering recommendations for design and construction of underground utilities by open cut method and concrete pavement for roadway reconstruction. The scope of this geotechnical investigation is summarized below:

1. Drilling and sampling nine geotechnical borings ranging from 25 to 35 feet below existing grade;
2. Soil laboratory testing on selected soil samples;
3. Engineering analyses and recommendations for the installation of underground utilities by open cut method, including loadings on pipes, bedding, lateral earth pressure parameters, trench stability, and backfill requirements;
4. Engineering analyses and recommendations for roadway reconstruction, including concrete pavement thickness design and subgrade preparation
5. Construction recommendations for installation of underground utilities by open cut method as well as roadway reconstruction.

2.0 SUBSURFACE EXPLORATION

2.1 Soil Borings

Boring layout and depths were performed in general accordance with the City of Houston (COH) Infrastructure Design Manual (IDM). The subsurface exploration consisted of drilling and sampling a total of nine borings ranging from 25 to 35 feet below existing grade. The boring locations are shown on the Boring Location Plan on Plate A-2, in Appendix A. Total drilling footage is 260 feet. After completion of drilling, the boring locations were surveyed by Kuo \& Associates, Inc. Boring survey data is presented on the boring logs. The boring designations and depths and corresponding underground utility invert depths are presented in Table 1 below.

AEC determined the boring depths prior to drilling based on a preliminary storm sewer profile provided by LAN on July 21, 2015. However, based on plan and profile drawings (dated August 27, 2015), the proposed storm sewer invert depths have increased. As a result, Borings B-1, B-4, B-5, B-7, and B-8 do not meet the minimum boring depth requirements of the latest edition of the COH IDM. If possible, AEC recommends that the depth of these borings be increased to cover the increase in invert depths. If the boring depths are not increased, AEC will not be liable for any changed soil or groundwater conditions that may be encountered in the vicinity of these boring locations during construction.

Table 1. Boring Number, Station, and Depth

Boring/ PZ No.	Boring/PZ Depth (ft)	Station	Boring Surface Elevation (ft)	Invert Elevation at Boring (ft)	Invert Depth at Boring $(\mathbf{f t})$
B-1	30	$5+96.87$	76.67	$52.85\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$	$23.82\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$
B-2	30	$10+74.41$	73.01	$52.38\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$	$20.63\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$
B-3/	$30 / 20$	$15+52.23$	71.50	$51.89\left(10^{\prime} \times 10^{\prime} \mathrm{RCB} /\right.$ $\left.48^{\prime} \mathrm{RCP}\right)$	$19.61\left(10^{\prime} \times 10^{\prime} \mathrm{RCB} /\right.$ PZ-1
B-4	25	$20+04.90$	70.43	$51.44\left(100^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$	$18.99\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$

ENGINEERAGG CORP.

Boring/ PZ No.	Boring/PZ Depth (ft)	Station	Boring Surface Elevation (ft)	Invert Elevation at Boring(ft)	Invert Depth at Boring (ft)
B-5	25	$25+04.35$	68.55	$50.95\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$	$17.60\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$
B-6	35	$30+07.15$	69.69	$50.04\left(24^{\prime} \mathrm{RCP} \mathrm{Siphon}\right)$	$19.65\left(24^{\prime}{ }^{\prime} \mathrm{RCP} \mathrm{Siphon}\right)$
B-7	25	$35+53.12$	68.72	$49.51\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$	$19.21\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$
B-8	25	$40+07.75$	66.92	$49.05\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$	$17.87\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$
B-9/ PZ-2	$35 / 25$	$44+43.76$	67.19	$49.83\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$	$17.36\left(10^{\prime} \times 10^{\prime} \mathrm{RCB}\right)$

The field drilling was performed with a truck-mounted drilling rig. Borings B-1 through B-8 were advanced using dry auger method, and Boring B-9 was initially advanced using dry auger method, and then using wet rotary method once water-bearing granular soils were encountered. Undisturbed samples of cohesive soils were obtained from the borings by pushing 3-inch diameter thin-wall, seamless steel Shelby tube samplers in general accordance with ASTM D 1587. Granular soils were sampled with a 2 -inch splitbarrel sampler in accordance with ASTM D 1586. Standard Penetration Test resistance (N) values were recorded for the granular soils as "Blows per Foot" and are shown on the boring logs. Strength of the cohesive soils was estimated in the field using a hand penetrometer. The undisturbed samples of cohesive soils were extruded mechanically from the core barrels in the field and wrapped in aluminum foil; all samples were sealed in plastic bags to reduce moisture loss and disturbance. The samples were then placed in core boxes and transported to the AEC laboratory for testing and further study. Borings B-3 and B-9 were converted to piezometers upon completion of drilling. The remaining borings were grouted with cement-bentonite. The pavement surface was patched with non-shrink grout.

3.0 LABORATORY TESTING PROGRAM

Soil laboratory testing was performed by AEC personnel. Samples from the borings were examined and classified in the laboratory by a technician under the supervision of a geotechnical engineer. Laboratory tests were performed on selected soil samples in order to evaluate the engineering properties of the foundation soils in accordance with applicable ASTM Standards. Atterberg limits, moisture contents, percent passing a No. 200 sieve, mechanical sieve analysis, and dry unit weight tests were performed on typical samples to establish the index properties and confirm field classification of the subsurface soils. Strength properties of cohesive soils were determined by means of unconfined compression (UC) and undrained-unconsolidated (UU) triaxial tests performed on undisturbed samples. The test results are presented on the boring logs. Details of the soils encountered in the borings are presented on Plates A-3
through A-11, in Appendix A. A key to the boring logs, classification of soils for engineering purposes, terms used on boring logs, and reference ASTM Standards for laboratory testing are presented on Plates A12 through A-15, in Appendix A. Sieve analysis results are presented on Plate A-16, in Appendix A. A summary of the laboratory test results is presented on Plates A-17 through A-20, in Appendix A.

4.0 SITE CONDITIONS

Based on our site visit, Memorial Drive is currently a four lane (2 lanes in each direction) asphalt roadway. In general, the existing asphalt pavement surface along the project alignment appears to be in average to very poor condition. At the time of our site visit in July 2015, AEC observed rutting in the outer lanes (mostly in the outer wheel path), abundant longitudinal cracking, some transverse cracking, numerous asphalt patches, a large pothole (near the Chase Bank located at 12802 Memorial Drive), and some surface spalling (near 12827 Memorial Drive).

A summary of pavement types encountered in our borings is presented on Table 2.

Table 2. Existing Pavement Encountered at Pavement Borings

Boring No.	Pavement Section
B-1	$3 "$ asphalt, $12 "$ stabilized sand and crushed shell
B-2	$1.5 "$ asphalt, $4.5 "$ asphalt stabilized shell, $12 "$ crushed shell and gravel
B-3	2" asphalt, $13 "$ stabilized sand and crushed shell
B-4	$1 "$ asphalt, $11 "$ stabilized sand and crushed shell
B-5	$3 "$ asphalt, $11 "$ stabilized sand and crushed shell
B-6	$2.5 "$ asphalt, $4.5 "$ asphalt stabilized shell, $8 "$ stabilized sand and crushed shell
B-7	$12 "$ asphalt and asphalt stabilized base (base thickness not determined), $8 "$
stabilized sand and crushed shell	

ENGINEERING CORP.

4.1 Subsurface Conditions

Details of the soils encountered during drilling are presented in the boring logs. Soil strata encountered in our borings are summarized below. A generalized subsurface profile along the project alignment is presented on Plates B-1a and B-1b, in Appendix B.

Boring	Depth (ft)	Description of Stratum
B-1	0-1.3	Pavement and base: see Table 2
	1.3-4	Fill: very stiff, Sandy Lean Clay (CL)
	4-8	Stiff to very stiff, Lean Clay w/Sand (CL), with abundant silt partings
	8-18	Very stiff to hard, Sandy Lean Clay (CL), with abundant silt partings
	18-30	Medium dense, Silty Sand (SM)
B-2	0-1.5	Pavement and base: see Table 2
	1.5-2	Fill: Sandy Lean Clay (CL), with silt seams and shell
	2-6	Very stiff, Fat Clay w/Sand (CH)
	6-10	Very stiff, Sandy Fat Clay (CH)
	10-20	Very stiff to hard, Sandy Lean Clay (CL), with abundant silt partings
B-3	0-1.3	Pavement and base: see Table 2
	1.3-10	Very stiff, Fat Clay w/Sand (CH), with abundant silt partings
	10-14	Very stiff, Sandy Lean Clay (CL), with abundant silt partings
	14-18	Hard, Fat Clay w/Sand (CH), with abundant silt partings
	18-30	Medium dense, Poorly Graded Sand w/Silt (SP-SM)
B-4	0-1	Pavement and base: see Table 2
	1-8	Very stiff, Fat Clay w/Sand (CH), with abundant silt partings
	8-16	Very stiff to hard, Sandy Lean Clay (CL), with abundant silt partings and siltstone fragments
	16-25	Dense, Silty Sand (SM)
B-5	0-1.2	Pavement and base: see Table 2
	1.2-2	Fill: stiff, Lean Clay w/Sand (CL), with silt partings and shell
	2-12	Stiff to hard, Lean Clay w/Sand (CL), with abundant silt partings
	12-18	Stiff to very stiff, Sandy Lean Clay (CL), with abundant silt partings
	18-25	Medium dense, Poorly Graded Sand w/Silt (SP-SM)
B-6	0-1.3	Pavement and base: see Table 2
	1.3-4	Fill: firm to stiff, Sandy Lean Clay (CL), with shell
	4-8	Very stiff, Sandy Lean Clay (CL), with abundant silt partings
	8-14	Clayey Sand (SC), with abundant silt partings
	14-21	Stiff to very stiff, Sandy Fat Clay (CH)
	21-35	Medium dense to dense, Silty Sand (SM)

Boring	Depth (ft)	Description of Stratum
B-7	0-1.7	Pavement and base: see Table 2
	1.7-2	Fill: Sandy Lean Clay (CL), with sand seams and siltstone fragments
	2-8	Stiff to hard, Lean Clay w/Sand (CL), with abundant silt partings and siltstone fragments
	8-14	Very stiff to hard, Sandy Fat Clay (CH), with abundant silt partings
	14-20	Very stiff to hard, Sandy Lean Clay (CL), with abundant silt partings
	20-25	Medium dense, Silty Sand (SM)
B-8	0-1.5	Pavement and base: see Table 2
	1.5-2	Fill: Clayey Sand (SC), with shell
	2-10	Stiff to hard, Lean Clay w/Sand (CL), with silt partings and siltstone fragments
	10-18	Stiff to very stiff, Sandy Lean Clay (CL), with abundant silt partings
	18-20	Medium dense, Clayey Sand (SC)
	20-25	Medium dense, Silty Sand (SM)
B-9	0-1.3	Pavement and base: see Table 2
	1.3-4	Very stiff, Lean Clay w/Sand (CL), with abundant silt partings
	4-8	Very stiff to hard, Fat Clay w/Sand (CH), with abundant silt partings and siltstone fragments
	8-18	Stiff to very stiff, Lean Clay w/Sand (CL), with abundant silt partings
	18-35	Medium dense to dense, Silty Sand (SM)

A summary of granular soils encountered in the borings is presented in Table 3.

Table 3. Granular Soils Encountered in Borings

Boring	Depth to Granular Soil	Soil Type
B-1	18^{\prime} to 30^{\prime}	Medium dense, Silty Sand (SM)
B-2	20^{\prime} to 30^{\prime}	Dense, Poorly Graded Sand w/Silt (SP-SM)
B-3	18' to 30'	Medium dense, Poorly Graded Sand w/Silt (SP-SM)
B-4	16^{\prime} to 25^{\prime}	Dense, Silty Sand (SM)
B-5	18^{\prime} to 25 ,	Medium dense, Poorly Graded Sand w/Silt (SP-SM)
B-6	$\begin{aligned} & 8^{\prime} \text { to } 14^{\prime} \\ & 21^{\prime} \text { to } 35 \end{aligned}$	Clayey Sand (SC) Medium dense to dense, Silty Sand (SM)
B-7	20^{\prime} to $25{ }^{\prime}$	Medium dense, Silty Sand (SM)
B-8	$\begin{aligned} & 1.5^{\prime} \text { to } 2^{\prime} \\ & 18^{\prime} \text { to } 25^{\prime} \end{aligned}$	Fill: Clayey Sand (SC) Medium dense, Clayey/Silty Sand (SC/SM)
B-9	18^{\prime} to 35^{\prime}	Medium dense to dense, Silty Sand (SM)

Subsurface Soil Properties: The subsurface clayey soils (CL/CH/SC) encountered in the borings have medium to very high plasticity, with liquid limits (LL) ranging from 26 to 58, and plasticity indices (PI) ranging from 12 to 43 . The cohesive soils encountered are classified as "CL" and "CH" type soils and granular soils were classified as "SC", "SM", and "SP-SM" type soils in accordance with ASTM D 2487. High plasticity clays can undergo significant volume changes due to seasonal changes in moisture contents. "CH" soils undergo significant volume changes due to seasonal changes in soil moisture contents. "CL" type soils with lower LL (less than 40) and PI (less than 20) generally do not undergo significant volume changes with changes in moisture content. However, "CL" soils with LL approaching 50 and PI greater than 20 essentially behave as " CH " soils and could undergo significant volume changes.

Groundwater Conditions: Groundwater was encountered in Boring B-9 at a depth of 23 feet below grade during drilling. Groundwater was not encountered in Borings B-1 through B-8 during drilling. After completion of drilling, Borings B-3 and B-9 were converted to piezometers. Piezometer installation details are presented on Plates B-2 and B-3, in Appendix B. Detailed groundwater levels are summarized in Table 4.

Table 4. Groundwater Depths below Existing Ground Surface

Boring/PZ No.	Date Drilled	Boring/PZ Depth (ft)	Groundwater Depth (ft)	Boring Cave-in Depth (ft)	Groundwater Depth in Piezometer (ft)
B-1	$8 / 4 / 15$	30	Dry (Drilling)	-	-
B-2	$8 / 8 / 15$	30	Dry (Drilling)	-	-
B-3/	$8 / 3 / 15$	$30 / 20$	Dry (Drilling)	-	Dry (8/6/15) Dry (9/2/15)
B-1	$8 / 3 / 15$	25	Dry (Drilling)	-	
B-5	$8 / 3 / 15$	25	Dry (Drilling)	-	
B-6	$8 / 4 / 15$	35	Dry (Drilling)	-	
B-7	$8 / 5 / 15$	25	Dry (Drilling)	-	
B-8	$8 / 5 / 15$	25	Dry (Drilling)	-	
B-9/	$8 / 4 / 15$	$35 / 25$	23 (Drilling)	18.3 (Drilling)	$18.9(8 / 6 / 15)$
PZ-2				$18.6(9 / 2 / 15)$	

The information in this report summarizes conditions found on the dates the borings were drilled. It should be noted that our groundwater observations are short-term; groundwater depths and subsurface soil moisture contents will vary with environmental variations such as frequency and magnitude of rainfall and
the time of year when construction is in progress.

4.2 Hazardous Materials

No signs of visual staining or odors were encountered during field drilling or during processing of the soil samples in the laboratory.

4.3 Geologic Conditions

AEC performed a preliminary fault investigation, which included a review of available literature, aerial photographs, public maps, and limited field observations. According to the published maps "Principal Active Faults of the Houston Area (after O'Neill and Van Siclen, May 1984)", and "Principal Faults in the Houston, Texas, Metropolitan Area (Shah and Lanning-Rush 2005)", the Piney Point West fault crosses the project alignment in the vicinity of Memorial Drive and the intersection of Broken Bough Drive.

AEC's Senior Geologist will visit the site to perform limited field observations to attempt to identify evidences of faulting along the alignment. These observations will be included in the final geotechnical report.

Limitations: The preliminary fault investigation provided in this report is limited to a review of literature, aerial photographs and maps and our limited field observations, and distances are scaled from maps. Faults may exist in the project area or surrounding area due to the following reasons: not observed during the reconnaissance due to limitations of the scope of work and cost; the presence of obscuring vegetation and environmental features; modification of the land surface by human activities; and lack of documentation in the literature. Faults may also be present below ground but do not currently have surface expressions. Identification of these faults is beyond the scope of work for this project. The observations made during the fault reconnaissance represent conditions at the time of the reconnaissance.

4.4 Subsurface Variations

It should be emphasized that: (i) at any given time, groundwater depths can vary from location to location, and (ii) at any given location, groundwater depths can change with time. Groundwater depths will vary
with seasonal rainfall and other climatic/environmental events. Subsurface conditions may vary away from and in between the boring locations.

Clay soils in the Houston area typically have secondary features such as slickensides and contain sand/silt seams/lenses/layers/pockets. It should be noted that the information in the boring logs is based on 3-inch diameter soil samples. Samples were obtained continuously at intervals of 2 feet from the ground surface to a depth of 20 feet in the borings, then at intervals of 5 feet thereafter to the boring termination depths. A detailed description of the soil secondary features may not have been obtained due to the small sample size and sampling interval between the samples. Therefore, while a boring log shows some soil secondary features, it should not be assumed that the features are absent where not indicated on the boring logs.

5.0 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

Based on drawings (dated August 27, 2015) provided by LAN, the project alignment is 4,750 linear feet long. The proposed improvements include: (i) installation of approximately of 8 to 16 inch diameter waterline; (ii) installation of 24 to 48 inch diameter reinforced concrete pipe and 10 foot by 10 foot reinforced concrete box storm sewers; and (ii) reconstruction of Memorial Drive with concrete pavement. The waterlines and storm sewers will be installed by open cut method. The invert depth of the storm sewer along the alignment typically varies from approximately 17.4 to 23.8 feet.

5.1 Geotechnical Parameters for Underground Utilities

Recommended geotechnical parameters for the subsurface soils along the alignment to be used for design of underground utilities are presented on Plates $\mathrm{C}-1$ and $\mathrm{C}-2$, in Appendix C. The design values are based on the results of field and laboratory test data on individual boring logs as well as our experience. It should be noted that because of the variable nature of soil stratigraphy, soil types and properties along the alignment or at locations away from a particular boring may vary substantially.

5.2 Installation of Underground Utilities by Open-Cut Method

Waterlines and storm sewers installed by open cut method should be designed and installed in accordance with Sections 02511 and 02631 of the latest edition of the City of Houston Standard Construction

Specifications (COHSCS).

5.2.1 Loadings on Pipes

Underground utilities support the weight of the soil and water above the crown, as well as roadway traffic and any structures that exist above the utilities.

Earth Loads: For underground utilities to be installed using open cut methods, the vertical soil load W_{e} can be calculated as the larger of the two values from Equations (1) and (3):

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{e}}=\mathrm{C}_{\mathrm{d}} \gamma \mathrm{~B}_{\mathrm{d}}{ }^{2} \\
& \mathrm{C}_{\mathrm{d}}=\left[1-\mathrm{e}^{-2 K \mu^{c}\left(\mathrm{H} / \mathrm{B}_{\mathrm{d}}\right)}\right] /\left(2 \mathrm{~K} \mu^{3}\right) \\
& \mathrm{W}_{\mathrm{e}}=\mathrm{B}_{\mathrm{c}} \mathrm{H}
\end{aligned}
$$

............Equation (1)
............Equation (2)
............Equation (3)
where: $\quad \mathrm{W}_{\mathrm{e}}=$ trench fill load, in pounds per linear foot $(\mathrm{lb} / \mathrm{ft})$;
$\mathrm{C}_{\mathrm{d}}=$ trench load coefficient, see Plate C-3, in Appendix C;
\neq effective unit weight of soil over the conduit, in pounds per cubic foot (pcf);
$\mathrm{B}_{\mathrm{d}}=$ trench width at top of the conduit $<1.5 \mathrm{~B}_{\mathrm{c}}(\mathrm{ft})$;
$\mathrm{B}_{\mathrm{c}}=$ outside diameter of the conduit (ft);
$\mathrm{H}=$ variable height of fill (ft);
when the height of fill above the top of the conduit $\mathrm{H}_{\mathrm{c}}>2 \mathrm{~B}_{\mathrm{d}}, \mathrm{H}=\mathrm{H}_{\mathrm{h}}$ (height of fill above the middle of the conduit). When $\mathrm{H}_{\mathrm{c}}<2 \mathrm{~B}_{\mathrm{d}}, \mathrm{H}$ varies over the height of the conduit; and
$\mathrm{K} \mu^{\prime}=0.1650$ maximum for sand and gravel,
0.1500 maximum for saturated top soil,
0.1300 maximum for ordinary clay,
0.1100 maximum for saturated clay.

When underground conduits are located below groundwater, the total vertical dead loads should include the weight of the projected volume of water above the conduits.

Traffic Loads: The vertical stress on top of an underground conduit, p_{L} (psf), resulting from traffic loads (from a HS-20 truck) can be obtained from Plate C-4, in Appendix C. The live load on top of the underground conduit can be calculated from Equation (4):

$$
W_{L}=p_{L} B_{c}
$$

ENGINEERING CORP.
where: $\quad \mathrm{W}_{\mathrm{L}}=\quad$ live load on the top of the conduit $(\mathrm{lb} / \mathrm{ft})$;
$\mathrm{p}_{\mathrm{L}}=$ vertical stress (on the top of the conduit) resulting from traffic loads (psf);
$\mathrm{B}_{\mathrm{c}}=$ outside diameter of the conduit, (ft);

Lateral Loads: The lateral soil pressure p_{1} can be calculated from Equation (5); hydrostatic pressure should be added, if applicable.

$$
\begin{equation*}
\mathrm{p}_{\mathrm{l}}=0.5\left(\mathrm{H}_{\mathrm{h}}+\mathrm{p}_{\mathrm{s}}\right) \tag{5}
\end{equation*}
$$

where: $\quad \mathrm{H}_{\mathrm{h}}=$ height of fill above the center of the conduit (ft);
$\gamma=$ effective unit weight of soil over the conduit (pcf);
$\mathrm{p}_{\mathrm{s}}=$ vertical pressure on conduit resulting from traffic and/or construction equipment (psf).

5.2.2 Trench Stability

Cohesive soils in the Houston area contain many secondary features which affect trench stability, including sand seams and slickensides. Slickensides are shiny weak failure planes which are commonly present in fat clays; such clays often fail along these weak planes when they are not laterally supported, such as in an open excavation. The Contractor should not assume that slickensides and sand seams/layers/pockets are absent where not indicated on the logs.

The Contractor should be responsible for designing, constructing and maintaining safe excavations. The excavations should not cause any distress to existing structures.

Trenches 20 feet and Deeper: The Occupational Safety and Health Administration (OSHA) requires that shoring or bracing for trenches 20 feet and deeper be specifically designed by a licensed professional engineer.

Trenches Less than 20 Feet Deep: Trench excavations that are less than 20 feet deep may be shored, sheeted and braced, or laid back to a stable slope for the safety of workers, the general public, and adjacent structures, except for excavations which are less than 5 feet deep and verified by a competent person to have no cave-in potential. The excavation and trenching should be in accordance with OSHA Safety and Health Regulations, 29 CFR, Part 1926. Recommended OSHA soil types for trench design for existing soils can be found on Plates C-1 and C-2, in Appendix C. Fill soils are considered OSHA Class 'C'; submerged cohesive soils should also be considered OSHA Class 'C', unless they are dewatered first.

Critical Height is defined as the height a slope will stand unsupported for a short time; in cohesive soils, it is used to estimate the maximum depth of open-cuts at given side slopes. Critical Height may be calculated based on the soil cohesion. Values for various slopes and cohesion are shown on Plate D-1, in Appendix D. Cautions listed below should be exercised in use of Critical Height applications:

1. No more than 50 percent of the Critical Height computed should be used for vertical slopes. Unsupported vertical slopes are not recommended where granular soils or soils that will slough when not laterally supported are encountered within the excavation depth.
2. If the soil at the surface is dry to the point where tension cracks occur, any water in the crack will increase the lateral pressure considerably. In addition, if tension cracks occur, no cohesion should be assumed for the soils within the depth of the crack. The depth of the first waler should not exceed the depth of the potential tension crack. Struts should be installed before lateral displacement occurs.
3. Shoring should be provided for excavations where limited space precludes adequate side slopes, e.g., where granular soils will not stand on stable slopes and/or for deep open cuts.
4. All excavation, trenching and shoring should be designed and constructed by qualified professionals in accordance with OSHA requirements.

The maximum (steepest) allowable slopes for OSHA Soil Types for excavations less than 20 feet are presented on Plate D-2, in Appendix D.

If limited space is available for the required open trench side slopes, the space required for the slope can be reduced by using a combination of bracing and open cut as illustrated on Plate D-3, in Appendix D. Guidelines for bracing and calculating bracing stress are presented below.

Computation of Bracing Pressures: The following method can be used for calculating earth pressure against bracing for open cuts. Lateral pressure resulting from construction equipment, traffic loads, or other surcharge should be taken into account by adding the equivalent uniformly distributed surcharge to the design lateral pressure. Hydrostatic pressure, if any, should also be considered. The active earth pressure at depth z can be determined by Equation (6). The design soil parameters for trench bracing design are presented on Plates C-1 and C-2, in Appendix C.

$$
\begin{equation*}
p_{a}=\left(q_{s}+\gamma h_{1}+\gamma^{\prime} h_{2}\right) K_{a}-2 c \sqrt{ } K_{a}+\gamma_{w} h_{2} \tag{6}
\end{equation*}
$$

where: $\quad \mathrm{p}_{\mathrm{a}}=$ active earth pressure (psf);
$\mathrm{q}_{\mathrm{s}}=$ uniform surcharge pressure (psf);
$\gamma \dot{\gamma}=$ wet unit weight and buoyant unit weight of soil (pcf);
$\mathrm{h}_{1}=$ depth from ground surface to groundwater table (ft);
$\mathrm{h}_{2}=\mathrm{z}$ - h_{1}, depth from groundwater table to the point under consideration (ft);
$\mathrm{z}=$ depth below ground surface for the point under consideration (ft);
$\mathrm{K}_{\mathrm{a}}=$ coefficient of active earth pressure;
$\mathrm{c}=$ cohesion of clayey soils (psf); c can be omitted conservatively;
$\vartheta=$ unit weight of water, 62.4 pcf .

Pressure distribution for the practical design of struts in open cuts for clays and sands are illustrated on Plates D-4 through D-6, in Appendix D.

Bottom Stability: In open-cuts, it is necessary to consider the possibility of the bottom failing by heaving, due to the removal of the weight of excavated soil. Heaving typically occurs in soft plastic clays when the excavation depth is sufficiently deep enough to cause the surrounding soil to displace vertically due to bearing capacity failure of the soil beneath the excavation bottom, with a corresponding upward movement of the soils in the bottom of the excavation. In fat and lean clays, heave normally does not occur unless the ratio of Critical Height to Depth of Cut approaches one. In very sandy and silty lean clays and granular soils, heave can occur if an artificially large head of water is created due to installation of impervious sheeting while bracing the cut. This can be mitigated if groundwater is lowered below the excavation by dewatering the area. Guidelines for evaluating bottom stability in clay soils are presented on Plate D-7, in Appendix D.

Based on the invert depths presented on Table 1 in Section 2.1 of this report and the depth to granular soils presented on Table 3 in Section 4.1 of this report, AEC anticipates that open cut excavations for storm sewers will encounter granular soils within the trench or box/pipe bedding zone for the entire project alignment (Borings B-1 through B-9), and will encounter groundwater within the trench or box/pipe bedding zone in the vicinity of Boring B-9. If the excavation extends below groundwater and the soils at or near the bottom of the excavation are mainly sands or silts, the bottom can fail by blow-out (boiling) when a sufficient hydraulic head exists. The potential for boiling or in-flow of granular soils increases where the groundwater is pressurized. To reduce the potential for boiling of excavations terminating in granular soils below pressurized groundwater, the groundwater table should be lowered at least 5 feet below the excavation in accordance with Section 01578 of the latest edition of the City of Houston Standard General Requirement (COHSGR).

Calcareous nodules, silt/sand seams, and fat clays with slickensides were encountered in some of the borings. These secondary structures may become sources of localized instability when they are exposed during excavation, especially when they become saturated. Such soils have a tendency to slough or cave in when not laterally confined, such as in trench excavations. The Contractor should be aware of the potential for cave-in of the soils. Low plasticity soils (silts and clayey silts) will lose strength and may behave like granular soils when saturated.

5.2.3 Thrust Force Design Recommendations

Thrust forces are generated in pressure pipes, typically as a result of changes in pipe diameter, pipe direction or at the termination point of the pipes. The pipes could disengage at the joints if the forces are not balanced and if the pipe restraint is not adequate. Various methods of thrust restraint are used including thrust blocks, restrained joints, encasement, and tie-rods.

Thrust restraint design procedure based on the 2008 American Water Works Association (AWWA) Manuals "Pressurized Concrete Pipe (M9)" and "Steel Water Pipe (M11)" is discussed below. Plate D-8, in Appendix D shows the force diagram generated by flow in a bend in a pipe and also gives the equation for computing the thrust force. An example computation of a thrust force for a given surge pressure and a bend angle is presented on Plate D-9, in Appendix D.

Frictional Resistance: The unbalanced force due to changes in grade and alignment can be resisted by frictional force F_{R}, between the pipe and the surrounding soil. The resisting frictional force per linear foot of pipe against soil can be calculated from Equation (7):

$$
\begin{equation*}
\mathrm{F}_{\mathrm{R}}=\mathrm{f}\left(2 \mathrm{~W}_{\mathrm{e}}+\mathrm{W}_{\mathrm{w}}+\mathrm{W}_{\mathrm{p}}\right) \tag{7}
\end{equation*}
$$

where: $\mathrm{f}=$ Coefficient of friction between pipe and soil;
$\mathrm{W}_{\mathrm{e}}=$ Weight of soil over pipe ($\mathrm{lb} / \mathrm{ft}$);
$\mathrm{W}_{\mathrm{w}}=\quad$ Weight of water inside the pipe (lb/ft);
$\mathrm{W}_{\mathrm{p}}=$ Weight of pipe (lb/ft).

The value of the frictional resistance depends on the material in contact with the backfill and the soil used in the backfill. For a ductile iron pipe or steel pipe with crushed stone or compacted sand backfill, an allowable coefficient of friction of 0.3 can be used. To account for submerged conditions, a soil unit weight of 60 pcf should be used to compute the weight of compacted backfill on the pipe.

Thrust Blocks: Thrust blocks utilize passive earth pressures to resist forces generated by changes in direction or diameter of pressurized pipes. Passive earth pressure can be calculated using Equation (8); we recommend that a factor safety of 2.0 be used when using passive earth pressure for design of thrust blocks. The design soil parameters for thrust block design are presented on Plates C-1 and C-2, in Appendix C. Design parameters for bearing thrust blocks are presented on Plate D-10, in Appendix D.

$$
\mathrm{p}_{\mathrm{p}}=\boldsymbol{\gamma} \mathrm{K}_{\mathrm{p}}+2 \mathrm{c}\left(\mathrm{~K}_{\mathrm{p}}\right)^{1 / 2}
$$

where, $\quad \mathrm{p}_{\mathrm{p}}=$ passive earth pressure (psf);
$\gamma=$ wet unit weight of soil (pcf);
z $=$ depth below ground surface for the point under consideration (ft);
$\mathrm{K}_{\mathrm{p}}=$ coefficient of passive earth pressure;
c $=$ cohesion of clayey soils (psf).

5.2.4 Bedding and Backfill

Trench excavation, pipe embedment material, and backfill for the proposed waterlines and storm sewers should be in general accordance with Section 02317 of the latest edition of the COHSCS.

5.3 Pavement Reconstruction

Based on drawings provided by LAN, Memorial Drive is currently a 4 lane asphalt roadway (2 lanes in each direction), that will be reconstructed with concrete pavement. The reconstructed roadway will typically vary from 4 to 5 lanes. The right of way (ROW) of the project alignment is 100 feet. Pavement profile drawings were not available at the time this report was prepared. AEC assumes that the new pavement will be placed at or near existing grade.

The pavement design recommendations developed below are in accordance with the "AASHTO Guide for Design of Pavement Structures," 1993 edition.

ENGINEERAGG CORP.

5.3.1 Estimation of Traffic Loading

COH Infrastructure Design Manual Requirements: The latest edition of Chapter 10 of the COH IDM requires that concrete pavement have a 28 day compressive strength of $4,000 \mathrm{psi}$ and a minimum reinforcing steel yield strength of $60,000 \mathrm{psi}$. The minimum design life span of the concrete pavement is 50 years. Minimum concrete and subgrade thickness is dependent on the classification of the roadway. A 'collector' requires a minimum concrete slab thickness of 9 inches and a minimum stabilized subgrade thickness of 6 inches for granular soil and a minimum thickness of 8 inches for cohesive soil. A 'thoroughfare' requires a minimum concrete slab thickness of 11 inches and a minimum stabilized subgrade thickness of 8 inches.

Traffic Volume: Turning movement counts along the project alignment were provided to AEC by LAN. The turning movement count data is for AM and PM peak hours, and includes counts for 2015, projected 2016 (assuming the improvements are constructed), and projected 2030 traffic levels. AEC selected the most critical turning movement counts (averaged over each intersection along the alignment) and added the AM and PM peak counts together. AEC assumed that the AM and PM peak hour counts are approximately 20 percent of the daily vehicle count along the alignment. Based on the turning movement counts provided, AEC estimated that the 24 hour traffic volume for 2015 was 18,655 vehicles per day (vpd), the 2016 traffic volume to be $20,565 \mathrm{vpd}$, and the 2030 traffic volume to be $23,240 \mathrm{vpd}$. AEC should be notified if different traffic count information should be used for design, so that our recommendations can be updated as necessary.

Estimate Anticipated Traffic Loads: Pavement design is based on the anticipated design number of 18 -kip Equivalent Single Axle Loads (ESAL) the pavement is subjected to during its design life. The equation to calculate the number of 18-kip ESAL repetitions to use for pavement design is presented in Equation (9). Assumptions made by AEC to estimate 18-kip ESAL repetitions are presented on Table 5.

$$
\text { 18-kip ESAL }=(\mathrm{ADT})(\mathrm{T})\left(\mathrm{T}_{\mathrm{f}}\right)(\mathrm{D})(\mathrm{L})(\mathrm{G})(\mathrm{Y})(365) \quad \text { Equation (9) }
$$

where: ESAL = 18-kip Equivalent Single-Axle Load repetitions;
ADT = Average Daily Traffic, vehicles per day;
$\mathrm{T} \quad=$ Percent of heavy trucks;
$\mathrm{T}_{\mathrm{f}} \quad=$ Truck factor;
D = Directional factor;
L = Lane factor;

$$
\begin{array}{ll}
\mathrm{G} & =\text { Growth factor; } \\
\mathrm{Y} & =\text { Design life, in years. }
\end{array}
$$

Table 5. Parameters for Estimation of Traffic Loads for Memorial Drive

Parameters	Between Sam Houston Parkway and Tallowwood
Average Daily Traffic (ADT)	18,655 vpd (2015)
Percent Heavy Trucks (T)	2% (assumed)
Truck factor (T T_{f})	1.5 (assumed)
Directional factor (D)	0.5 (2 lanes in each direction)
Lane factor (L)	1.0 (2 lanes in each direction)
Total Growth Rate Factor (G)	1.41 (1.4\% annual growth rate from
2015 to 2030)	

AEC notes that calculated number of 18 -kip ESAL repetitions is highly sensitive to parameters such as design life, percent heavy trucks, truck factor, and traffic volume growth rate in pavement design. Differences between assumed and actual traffic parameters can have significant effects on overall pavement thickness design and ultimate roadway performance. AEC should be notified if different traffic loads or design parameters are required for pavement design at the site so that our analysis can be updated accordingly.

5.3.2 Rigid Pavement

Rigid pavement design is based on the anticipated design number of 18-kip ESALs the pavement is subjected to during its design life. The parameters that were used in computing the rigid pavement section are as follows:

Overall Standard Deviation $\left(\mathrm{S}_{0}\right)$	0.35
Initial Serviceability $\left(\mathrm{P}_{0}\right)$	4.5
Terminal Serviceability $\left(\mathrm{P}_{\mathrm{t}}\right)$	2.0
Reliability Level (R)	95%
Overall Drainage Coefficient $\left(\mathrm{C}_{\mathrm{d}}\right)$	1.2 (curb and gutter)
Load Transfer Coefficient (J)	3.2
Loss of Support Category (LS)	1.2
Roadbed Soil Resilient Modulus $\left(\mathrm{M}_{\mathrm{R}}\right)$	$3,000 \mathrm{psi}$

> Elastic Modulus $\left(\mathrm{E}_{\mathrm{sb}}\right)$ of Stabilized Soils Composite Effective Modulus of Subgrade Reaction (k) Concrete Compressive Strength $\left(\mathrm{f}_{\mathrm{c}}\right)$
> Mean Concrete Modulus of Rupture $\left(\mathrm{S}_{\mathrm{c}}\right)$ Concrete Elastic Modulus $\left(\mathrm{E}_{\mathrm{c}}\right)$

Table 6. Recommended Rigid Pavement Section for Memorial Drive

Pavement Layer	'Major Collector'	'Thoroughfare'
Portland Cement Concrete	10	11
Lime stabilized Subgrade	8	8

Note: Lime stabilized subgrade recommendations are presented in Section 5.3.4 of this report.

Based on the estimated traffic volume and a 100 foot wide ROW, it appears that Memorial Drive can be classified as either a 'major collector' or a 'thoroughfare', based on the COH Major Thoroughfare and Freeway Plan (MTFP). AEC notes that the latest edition of the IDM requires a minimum concrete thickness of 9 inches for a 'collector' and a minimum concrete thickness of 11 inches for a 'thoroughfare'.

AEC used the DARWin v3.0 computer program to perform rigid pavement design. Outputs from the DARWin program are presented on Plates E-1 through E-3, in Appendix E. Based on the DARWin program, a 9.7 inch thick concrete pavement will be required to sustain the estimated design 18-kip ESAL loading of $7,200,59$ (see Plate E-1, in Appendix E). The design engineer should verify whether the proposed pavement section will provide enough 18-kip ESALs for the anticipated amount of site traffic. AEC should be notified if different standards or constants are required for pavement design at the site, so that our recommendations can be updated accordingly.

Major Collector: If Memorial Drive is classified as a 'major collector', the pavement along Memorial Drive between Sam Houston Parkway and Tallowwood Drive should be 10 inch thick concrete and 8 inch thick lime stabilized subgrade. Given the above design parameters, a 10 inch thick concrete pavement section should sustain $8,832,161$ repetitions of 18 -kip ESALs (see Plate E-2, in Appendix E), which meets or exceeds the design 18-kip ESAL loading presented in Table 5 above.

Thoroughfare: If Memorial Drive is classified as a 'thoroughfare', the pavement along Memorial Drive between Sam Houston Parkway and Tallowwood Drive should be 11 inch thick concrete and 8 inch thick lime stabilized subgrade. Given the above design parameters, a 11 inch thick concrete pavement section

ENGINEERING CORP.
should sustain 16,537,788 repetitions of 18-kip ESALs (see Plate E-3, in Appendix E), which meets or exceeds the design 18-kip ESAL loading presented in Table 5 above.

Concrete Pavement: Portland Cement Concrete (PCC) pavement should be constructed in accordance with Section 02751 of the latest edition of the COHSCS. AEC notes that there is a discrepancy between the requirements of the latest edition of the COHSCS and the latest edition of the COH IDM. Chapter 10 of the latest edition of the COH IDM requires a minimum 28-day concrete compressive strength of 4,000 psi to be used for concrete pavement design. However, according to Section 02751, concrete mix design has a required flexural strength of 600 psi at 28 days and field testing shall confirm a minimum concrete compressive strength of 3,500 psi at 28 days. In regards to this discrepancy, AEC recommends that the concrete mix design be performed to achieve a concrete compressive strength of $4,000 \mathrm{psi}$ at 28 days, and also meets a minimum concrete flexural strength of 500 psi at 7 days and 600 psi at 28 days.

5.3.3 Reinforcing Steel

Reinforcing steel should be in accordance with Section 02751 of the latest edition of the COHSCS. Reinforcing steel is required to control pavement cracks, deflections across pavement joints and resist warping stresses in rigid pavements. The cross-sectional area of steel $\left(\mathrm{A}_{\mathrm{s}}\right)$ required per foot of slab width can be calculated as follows (for both longitudinal and transverse steel).

$$
\begin{equation*}
\mathrm{A}_{\mathrm{s}}=\mathrm{FLW} /\left(2 \mathrm{f}_{\mathrm{s}}\right) \tag{10}
\end{equation*}
$$

where: $\quad A_{s}=$ Required cross-sectional area of reinforcing steel per foot width of pavement, in ${ }^{2}$
$\mathrm{F}=$ Coefficient of resistance between slab and subgrade, $\mathrm{F}=1.8$ for stabilized soil
$\mathrm{L}=$ Distance between free transverse joints or between free longitudinal edges, ft .
$\mathrm{W}=$ Weight of pavement slab per foot of width, $\mathrm{lbs} / \mathrm{ft}$
$\mathrm{f}_{\mathrm{s}}=$ Allowable working stress in steel, 0.75 x (yield strength), psi
i.e. $f_{s}=45,000 \mathrm{psi}$ for Grade 60 steel.

5.3.4 Pavement Subgrade Preparation

Roadway grading and fill should be performed in general accordance with Section 02315 of the latest edition of the COHSCS. Existing pavement should be demolished in accordance with Section 02221 of the latest edition of the COHSCS. Where possible, subgrade preparation should extend a minimum of 2 feet beyond the paved area perimeters. After demolition of existing pavement, we recommend that a competent
soil technician inspect the exposed subgrade to determine if there are any unsuitable soils or other deleterious materials. Excavate and dispose of unsuitable soils and other deleterious materials which will not consolidate; the excavation depth should be increased when inspection indicates the presence of organics and deleterious materials to greater depths. Unsuitable soil is defined in Section 02319 of the latest edition of the COHSCS. The exposed soils should be proof-rolled (see below) to identify and remove any weak, compressible, or other unsuitable materials; such over-excavations should be backfilled in general accordance with Section 02315 of the latest edition of the COHSCS. Proof rolling should be performed with a pneumatic tire roller (or using equivalent compaction equipment), with a loaded weight between 25 and 50 tons. At least two coverages should be made with the proof-roller, and offset each trip of the roller by at most 1 tire width. Rollers should make passes at a speed between 2 and 6 miles per hour.

Scarify areas to be filled to a depth of 4 inches to bond existing and new materials, and then mix with the first fill layer in accordance with Section 02315 of the latest edition of the COHSCS. Cut and pulverize material to bottom of subgrade, then stabilize the subgrade with at least 6 percent hydrated lime by dry soil weight. Lime stabilization shall be performed in accordance with Section 02336 of the latest edition of the COHSCS. The stabilized soils should be compacted to 95 percent of their ASTM D 698 (Standard Proctor) dry density at a moisture content ranging from optimum to 3 percent above optimum.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Site Preparation

To mitigate site problems that may develop following prolonged periods of rainfall, it is essential to have adequate drainage to maintain a relatively dry and firm surface prior to starting any work at the site. Adequate drainage should be maintained throughout the construction period. Methods for controlling surface runoff and ponding include proper site grading, berm construction around exposed areas, and installation of sump pits with pumps.

6.2 Groundwater Control

The need for groundwater control will depend on the depth of excavation relative to the groundwater depth at the time of construction. In the event that there is heavy rain prior to or during construction, the
groundwater table may be higher than indicated in this report; higher seepage is also likely and may require a more extensive groundwater control program. In addition, groundwater may be pressurized in certain areas of the alignment, requiring further evaluation and consideration of the excess hydrostatic pressures. Groundwater control should be in general accordance with Section 01578 of the latest edition of the COHSGR.

The Contractor should be responsible for selecting, designing, constructing, maintaining, and monitoring a groundwater control system and adapt his operations to ensure the stability of the excavations. Groundwater information presented in Section 4.1 and elsewhere in this report, along with consideration for potential environmental and site variation between the time of our field exploration and construction, should be incorporated in evaluating groundwater depths. The following recommendations are intended to guide the Contractor during design and construction of the dewatering system.

In cohesive soils seepage rates are lower than in granular soils and groundwater is usually collected in sumps and channeled by gravity flow to storm sewers. If cohesive soils contain significant secondary features, seepage rates will be higher. This may require larger sumps and drainage channels, or if significant granular layers are interbedded within the cohesive soils, methods used for granular soils may be required. Where it is present, pressurized groundwater will also yield higher seepage rates.

Groundwater for excavations within saturated sands can be controlled by the installation of wellpoints. The practical maximum dewatering depth for well points is about 15 feet. When groundwater control is required below 15 feet, possible ground water control measures include: (i) deep wells with turbine or submersible pumps; (ii) multi-staged well points; or (iii) water-tight sheet pile cut-off walls. Generally, the groundwater depth should be lowered at least 5 feet below the excavation bottom (in accordance with Section 01578 of the latest edition of the COHSGR) to be able to work on a firm surface when waterbearing granular soils are encountered.

Extended and/or excessive dewatering can result in settlement of existing structures in the vicinity; the Contractor should take the necessary precautions to minimize the effect on existing structures in the vicinity of the dewatering operation. We recommend that the Contractor verify the groundwater depths and seepage rates prior to and during construction and retain the services of a dewatering expert (if necessary) to assist him in identifying, implementing, and monitoring the most suitable and cost-effective method of controlling
groundwater.

For open cut construction in cohesive soils, the possibility of bottom heave must be considered due to the removal of the weight of excavated soil. In lean and fat clays, heave normally does not occur unless the ratio of Critical Height to Depth of Cut approaches one. In silty clays, heave does not typically occur unless an artificially large head of water is created through the use of impervious sheeting in bracing the cut. Guidelines for evaluating bottom stability are presented in Section 5.2.2 of this report.

6.3 Construction Monitoring

Pavement construction and subgrade preparation, as well as excavation, bedding, and backfilling of underground utilities should be monitored by qualified geotechnical professionals to check for compliance with project documents and changed conditions, if encountered. AEC should be allowed to review the design and construction plans and specifications prior to release to check that the geotechnical recommendations and design criteria presented herein are properly interpreted.

6.4 Monitoring of Existing Structures

Existing structures in the vicinity of the proposed alignment should be closely monitored prior to, during, and for a period after excavation. Several factors (including soil type and stratification, construction methods, weather conditions, other construction in the vicinity, construction personnel experience and supervision) may impact ground movement in the vicinity of the alignment. We therefore recommend that the Contractor be required to survey and adequately document the condition of existing structures in the vicinity of the proposed alignments.

7.0 LIMITATIONS

The information contained in this report summarizes conditions found on the dates the borings were drilled. The attached boring logs are true representations of the soils encountered at the specific boring locations on the dates of drilling. Reasonable variations from the subsurface information presented in this report should be anticipated. If conditions encountered during construction are significantly different from those presented in this report; AEC should be notified immediately.

This investigation was performed using the standard level of care and diligence normally practiced by recognized geotechnical engineering firms in this area, presently performing similar services under similar circumstances. This report is intended to be used in its entirety. The report has been prepared exclusively for the project and location described in this report. If pertinent project details change or otherwise differ from those described herein, AEC should be notified immediately and retained to evaluate the effect of the changes on the recommendations presented in this report, and revise the recommendations if necessary. The recommendations presented in this report should not be used for other structures located along these alignments or similar structures located elsewhere, without additional evaluation and/or investigation.

ENGINEERING CORP.

Plate A-1
Plate A-2
Plates A-3 to A-11
Plate A-12
Plate A-13
Plate A-14
Plate A-15
Plate A-16
Plates A-17 to A-20

APPENDIX A

Vicinity Map
Boring Location Plan
Boring Logs
Key to Symbols
Classification of Soils for Engineering Purposes
Terms Used on Boring Logs
ASTM \& TXDOT Designation for Soil Laboratory Tests
Sieve Analysis Results
Summary of Lab Data

PROJECT: Memore Drive Draine \& Mobity Project
\qquad
COH WBS No. N-T17000-031B-4
TYPE 4" Dry Auger
 Fill: very stiff, dark gray Sandy Lean Clay (CL)

\triangle Confined Compression

- Unconfined Compression
- Pocket Penetrometer Torvane

14
$12\left\|\left\|\left\|\left\|\left\|\left\|_{\|}^{1.5}\right\|^{1}\right.\right.\right.\right.\right.$
\qquad
2
-with siltstone fragments and calcareous nodules 1'-2'
-gray and tan, with silt pockets $2^{\prime}-4$ '
Stiff to very stiff, tan Lean Clay w/Sand (CL), with abundant silt partings and ferrous stains
-with calcareous nodules 4'-6'
Very stiff to hard, tan and light gray Sandy
Lean Clay (CL), with abundant silt partings
-with ferrous stains 8'-14'
-tan, light gray, and red 12'-14'

Medium dense, tan and light gray Silty Sand
-with clay partings $28^{\prime}-30^{\prime}$

Termination Depth $=30$ feet

SHEAR STRENGTH, TSF

DATE 8/4/15

7 -

PROJECT: Memore Drive Draine \& Mobity Project
\qquad
COH WBS No. N-T17000-031B-4

DESCRIPTION

Very stiff, tan and gray Fat Clay w/Sand (CH), with ferrous stains -with calcareous nodules 4'-6'
Very stiff, tan and light gray Sandy Fat Clay (CH), with ferrous stains
-with abundant silt partings $6^{\prime}-8$ '

Very stiff to hard, tan and light gray Sandy Lean Clay (CL), with abundant silt partings and ferrous stains
65
60

5
55
-tan, light gray, and red $16^{\prime}-18^{\prime}$

50
Dense, light gray Poorly Graded Sand w/Silt
TYPE 4" Dry Auger \qquad DATE 8/8/15

BORING DRILLED TO 30 FEET WITHOUT DRILLING FLUID
WATER ENCOUNTERED AT n/a FEET WHILE DRILLING $\stackrel{\overline{\bar{z}}}{ }$
WATER LEVEL AT n/a FEET AFTER COMPLETE $\overline{\overline{=}}$
DRILLED BY Van \& Sons DRAFTED BY WLW LOGGED BY

PROJECT: Memial Drive Drainge \& Mobity Project ENGINEERING CORP. BORING
GEOTECHNCAL ENGINEERS \qquad
COH WBS No. N-T17000-031B-4
TYPE 4" Dry Auger
DATE 8/3/15

BORING DRILLED TO 30 FEET WITHOUT DRILLING FLUID
WATER ENCOUNTERED AT n/a FEET WHILE DRILLING 픅
WATER LEVEL AT n/a FEET AFTER COMPLETE $\overline{\overline{=}}$
DRILLED BY Van \& Sons DRAFTED BY WLW LOGGED BY BPJ

PROJECT: Memial Drive Drainge \& Mobity Project
\qquad

COH WBS No. N-T17000-031B-4
TYPE 4" Dry Auger

DESCRIPTION

	$\begin{array}{\|l\|l} \hline \\ \hline \end{array}$		DESCRIPTION Survey Coordinates (TSPC, Surface): Easting: 3060728.295 Northing: 13845531.661 Elevation: 70.43
${ }^{70}$	-5		Pavement: 1" asphalt Base: 11" stabilized sand and crushed shell Very stiff, light gray and tan Fat Clay w/ Sand (CH), with abundant silt partings and siltstone fragments -with calcareous nodules 4'-8' Very stiff to hard, light gray and tan Sandy Lean Clay (CL), with abundant silt partings and calcareous nodules -with siltstone fragments 10'-14'

0 五

PROJECT：Memial Drive Drainge \＆Mobity Project
\qquad

COH WBS No．N－T17000－031B－4
TYPE 4＂Dry Auger
DESCRIPTION

$\begin{aligned} & \text { 出 } \\ & \stackrel{1}{u} \\ & \text { Z } \\ & \text { O} \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \text { 岃 } \\ & \stackrel{\sim}{u} \\ & \stackrel{2}{I} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	㙾	DESCRIPTION Survey Coordinates（TSPC，Surface）： Easting： 3060776.976 Northing：13845031．319 Elevation： 68.55

｜

Pavement：3＂asphalt
Base： 11 ＂stabilized sand and crushed shell

Stiff to hard，tan and light gray Lean Clay w／ Sand（CL），with abundant silt partings and ferrous stains
－with calcareous nodules 4＇－6＇
－with slickensides $10^{\prime}-12^{\prime}$

Stiff to very stiff，tan and light gray Sandy Lean Clay（CL），with abundant silt partings －with ferrous stains 12＇－14＇

Medium dense，tan Poorly Graded Sand w／ Silt（SP－SM）
－tan and light gray 20＇－25＇

Termination Depth＝ 25 feet
＿DATE 8／3／15
SHEAR STRENGTH，TSF
\triangle Confined Compression
－Unconfined Compression
\bigcirc Pocket Penetrometer
\square Torvane
$0.5 \quad 1 \quad 1.5 \quad 2$ $-$

PROJECT: Memial Drive Drainge \& Mobity Project
ENGINEERING CORP.
GEOTECHNLCAL ENGINEERS
BORING \qquad
COH WBS No. N-T17000-031B-4
TYPE 4" Dry Auger

DESCRIPTION

			DESCRIPTION Survey Coordinates (TSPC, Surface): Easting: 3060776.155 Northing: 13844525.380 Elevation: 69.69
65	${ }^{0}$		Pavement: 2.5" asphalt Base: 4.5" asphalt stabilized shell Base: 8" stabilized sand and crushed shell Fill: firm to stiff, gray Sandy Lean Clay (CL), with shell and ferrous stains Very stiff, light gray and tan Sandy Lean Clay (CL), with abundant silt partings and ferrous stains

Light gray and tan Clayey Sand (SC), with abundant silt partings and ferrous stains

Stiff to very stiff, light gray and tan Sandy Fat Clay (CH), with ferrous stains

Medium dense to dense, tan Silty Sand (SM)

Termination Depth $=35$ feet
25
BORING DRILLED TO $\frac{35}{}$ FEET WITHOUT DRILLING FLUID
WATER ENCOUNTERED AT $\quad \mathrm{n} / \mathbf{a}$ FEET WHILE DRILLING $\overline{\overline{\bar{n}}}$
WATER LEVELAT n/a FEET AFTER COMPLETE $\overline{\overline{=}}$
DRILLED BY Van \& Sons DRAFTED BY WLW LOGGED BY
BPJ
PROJECT NO. G178-14

PROJECT: Memore Drive Draine \& Mobity Project
COH WBS No. N-T17000-031B-4

DESCRIPTION

			DESCRIPTION Survey Coordinates (TSPC, Surface): Easting: 3061101.011 Northing: 13844087.151 Elevation: 68.72
	0		Pavement: 12" asphalt and asphalt stabilized base (base thickness not determined)

Base: 8" stabilized sand and crushed shell Fill: gray Sandy Lean Clay (CL), with sand seams and siltstone fragments
Stiff to hard, tan and light gray Lean Clay w/ Sand (CL), with abundant silt partings, siltstone fragments, calcareous nodules, and ferrous stains
Very stiff to hard, tan and light gray Sandy Fat Clay (CH), with abundant silt partings and ferrous stains
-with siltstone fragments 12'-14'

Very stiff to hard, tan and light gray Sandy Lean Clay (CL), with abundant silt partings -with fat clay pockets 14'-16'
-with siltstone fragments and calcareous nodules 18'-20'

Medium dense, tan and light gray Silty Sand (SM)

TYPE 4" Dry Auger

\triangle Confined Compression

- Unconfined Compression
\bigcirc Pocket Penetrometer
\square Torvane

| | 0.5 | 1 | 1.5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SHEAR STRENGTH, TSF

DATE 8/5/15

- 25 (

13
30
 $-$

COH WBS No. N-T17000-031B-4
\qquad

DESCRIPTION

			DESCRIPTION Survey Coordinates (TSPC, Surface): Easting: 3061549.650 Northing: 13843993.500 Elevation: 66.92
65	0		Pavement: 13" asphalt and asphalt stabilized base (base thickness not determined) Base: stabilized sand and crushed shell

Fill: dark gray Clayey Sand (SC), with shell and calcareous nodules
Stiff to hard, tan and light gray Lean Clay w/ Sand (CL), with silt partings, siltstone fragments, and calcareous nodules -with ferrous stains $6^{\prime}-10^{\prime}$

Stiff to very stiff, light gray and tan Sandy Lean Clay (CL), with abundant silt partings -with fat clay pockets and calcareous nodules 10'-12'
-with siltstone fragments 12'-14' and ferrous stains $12^{\prime}-16^{\prime}$

50
stains $1{ }^{\prime}$
. $\mathrm{M}_{\mathrm{M}}^{\mathrm{M}}$

Medium dense, light gray Clayey Sand (SC), moist
Medium dense, light gray Silty Sand (SM), moist
$f^{25}{ }^{25}$

TYPE 4" Dry Auger

MOISTURE CONTENT, \%

$\begin{array}{\|l\|l} \stackrel{y}{2} \\ \underline{1} \\ \underline{1} \\ \hline \underline{O} \\ \hline \end{array}$		

DATE 8/5/15
SHEAR STRENGTH, TSF
\triangle Confined Compression

- Unconfined Compression
- Pocket Penetrometer
\square Torvane
$0.5 \quad 1 \quad 1.5 \quad 2$ -

PROJECT: Memial Drive Drainge \& Mobity Project ENGINEERING CORP.

BORING \qquad

COH WBS No. N-T17000-031B-4
TYPE 4" Wet Rotary

DESCRIPTION Survey Coordinates (TSPC, Surface):
 DESCRIPTION

Pavement: $3^{\text {" }}$ asphalt

Base: 4" asphalt stabilized shell
Base: 8" stabilized sand and crushed shell
Very stiff, dark gray and tan Lean Clay w/ Sand (CL), with abundant silt partings and ferrous stains
-tan and light gray, with siltstone fragments and calcareous nodules 2'-4' Very stiff to hard, tan and light gray Fat Clay $\mathrm{w} /$ Sand (CH), with abundant silt partings, siltstone fragments, calcareous nodules,
($\quad \begin{aligned} & \text { and ferrous stains } \\ & \begin{array}{l}\text { Stiff to very stiff, tan and light gray Lean } \\ \text { Clay w/Sand (CL), with abundant silt } \\ \text { partings and ferrous stains } \\ \text {-with siltstone fragments } 8 \text { '-12' }\end{array}\end{aligned}$
($\begin{aligned} & \text { and ferrous stains } \\ & \text { Stiff to very stiff, tan and light gray Lean } \\ & \text { Clay w/Sand (CL), with abundant silt } \\ & \text { partings and ferrous stains } \\ & \text {-with siltstone fragments } 8 \text { '-12' }\end{aligned}$

-with silt pockets $16^{\prime}-18^{\prime}$
Medium dense to dense, light gray Silty Sand (SM)
-boring caved at 18.3' during drilling
-wet at 23 '
-light gray and tan 28'-30'

Termination Depth $=35$ feet

	-

DATE 8/4/15
SHEAR STRENGTH, TSF

Symbol Description
Strata symbols

Paving

Fill

Low plasticity clay

Silty sand

High plasticity clay

Poorly graded sand with silt

Clayey sand

Misc. Symbols
○ Pocket Penetrometer
$\triangle \quad$ Confined Compression

- Unconfined Compression
$\overline{\overline{7}} \quad$ Water table depth during drilling

Soil Samplers
D Auger

Undisturbed thin wall
Shelby tube
Standard penetration test

SOIL GRAIN SIZE

U.S. STANDARD SIEVE

SOIL GRAIN SIZE IN MILLIMETERS

STRENGTH OF COHESIVE SOILS

	Undrained
Consistency	Shear Strength, Kips per Sq. ft.
Very Soft	less than 0.25
Soft	0.25 to 0.50
Firm	0.50 to 1.00
Stiff	1.00 to 2.00
Very Stiff	2.00 to 4.00
Hard	greater than 4.00

RELATIVE DENSITY OF COHESIONLESS SOILS FROM STANDARD PENETRATION TEST

SPLIT-BARREL SAMPLER DRIVING RECORD
Blows per Foot Description

NOTE: To avoid change to sampling tools, driving is limited to 50 blows during or after seating interval.

DRY STRENGTH ASTM D2488

None	Dry specimen crumbles into powder with mere pressure of handling
Low	Dry specimen crumbles into powder with some finger pressure
Medium	Dry specimen breaks into pieces or crumbles with considerable pressure
High	Dry specimen cannot be broken with finger pressure, it can be broken between thumb and hard surface
Very High	Dry specimen cannot be broken between thumb and hard surface

SOIL STRUCTURE

Slickensided Having planes of weakness that appear slick and glossy. The degree of slickensidedness depends upon the spacing of slickensides and the easiness of breaking along these planes.
Fissured Containing shrinkage or relief cracks, often filled with fine sand or silt; usually more or less vertical.
Pocket Inclusion of material of different texture that is smaller than the diameter of the sample
Parting Inclusion less than $1 / 8$ inch thick extending through the sample.
Seam Inclusion $1 / 8$ inch to 3 inches thick extending through the sample.
Layer Inclusion greater than 3 inches thick extending through the sample.
Laminated Soil sample composed of alternating partings or seams of different soil types.
Interlayered Soil sample composed of alternating layers of different soil types.
Intermixed Soil sample composed of pockets of different soil types and layered or laminated structure is not evident.
Calcareous Having appreciable quantities of calcium material.

MOISTURE CONDITION ASTM D2488

Dry Absence of moisture, dusty, dry to the touch
Moist Damp but no visible water
Wet Visible free water

Very Loose	<4 bpf
Loose	$5-10 \mathrm{bpf}$
Medium Dense	11-30 bpf
Dense	$31-50 \mathrm{bpf}$
Very Dense	>50 bpf

ASTM \& TXDOT DESIGNATION FOR SOIL LABORATORY TESTS

NAME OF TEST	ASTM TEST DESIGNATION	TXDOT TEST DESIGNATION
Moisture Content	D 2216	Tex-103-E
Specific Gravity	D 854	Tex-108-E
Sieve Analysis	$\begin{aligned} & \text { D } 421 \\ & \text { D } 422 \end{aligned}$	$\begin{gathered} \text { Tex-110-E } \\ \text { (Part 1) } \end{gathered}$
Hydrometer Analysis	D 422	$\begin{aligned} & \text { Tex-110-E } \\ & \text { (Part 2) } \end{aligned}$
Minus No. 200 Sieve	D 1140	Tex-111-E
Liquid Limit	D 4318	Tex-104-E
Plastic Limit	D 4318	Tex-105-E
Shrinkage Limit	D 427	Tex-107-E
Standard Proctor Compaction	D 698	Tex-114-E
Modified Proctor Compaction	D 1557	Tex-113-E
Permeability (constant head)	D 2434	-
Consolidation	D 2435	-
Direct Shear	D 3080	-
Unconfined Compression	D 2166	-
Unconsolidated-Undrained Triaxial	D 2850	Tex-118-E
Consolidated-Undrained Triaxial	D 4767	Tex-131-E
Pinhole Test	D 4647	-
California Bearing Ratio	D 1883	-
Unified Soil Classification System	D 2487	Tex-142-E

SUMMARY OF TEST RESULTS				Project Name: Memorial Drive Drainage and Mobility Project													
				WBS Number: N-T17000-031B-3													
Aviles Engineering Corporation				AEC Project Number: G178-14													
Boring No.	Sample				$\begin{gathered} \text { SPT } \\ \text { (blows/ft) } \end{gathered}$	Water Content (\%)	DryDensity Density (pcf)	Atterberg Limits			Percent Passing Sieve \#200 (\%)	Shear Strength (tsf)				Type of Material	
	No.	Depth (ft)		Type				LL (\%)	PL (\%)	PI (\%)		Unconfined Compression	UU (confining pressure, psi)	Torvane	PocketPenetrometer		
		Top	Bottom														
B-9	7	12.0	14.0	UD		16.2		42	13	29	69.8				3.75	CL	
	8	14.0	16.0	UD		19.8									2.50	CL	
	9	16.0	18.0	UD		11.6	116.8						1.64 (11)		3.00	CL	
	10	18.5	20.0	SS	28	18.3					17.3					SM	
	11	23.5	25.0	SS	32	20.0										SM	
	12	28.5	30.0	SS	31	20.5										SM	
	13	33.5	35.0	SS	30	13.4					13.8					SM	
Legend	$\begin{aligned} & \text { UD = } \\ & \text { SS = S } \\ & \text { AG }=1 \\ & \text { SPT } \end{aligned}$		d sample sample ings Penetrati	extrud n Test	d in field			$\begin{aligned} & \mathrm{LL}=\text { Liq } \\ & \mathrm{PL}=\text { Plas } \\ & \mathrm{PI}=\text { Plas } \\ & \mathrm{UU}=\text { Tri } \end{aligned}$	id Limit tic Limit icity Ind axial Com			Notes:					

ENGINEERING CORP.

APPENDIX B

Plates B-1a to B-1b Plates B-2 to B-3

Generalized Soil Profiles
Piezometer Installation Details

AVILES ENGINEERING CORPORATION

GENERALIZED SOIL PROFILE MEMORIAL DRIVE DRAINAGE AND MOBILITY IMPROVEMENTS 17 CIP NO T17318 WBS NO. N17000 031B 4 HOUSTON TEXAS

GROUNDWATER DEPTH FROM SURFACE:	DATE MEASURED:	AVILES ENGINEERING CORPORATION		
		PIEZOMETER INSTALLATION DETAILS BORING B-3 (PZ-1)		
N/A (DRY)	8/6/2015 9/2/2015	MEMORIAL FROM W. S TIRZ 17 CIP NO	DRAINAGE AND uston parkwa B, WBS NO. N-T1	TY IMPROVEMENTS TALLOWWOOD DR 31B-4, HOUSTON, TEXAS
N/A (DRY)			${ }^{\text {DARE }}$ 08-31-15	
		${ }^{\text {scale }}$ N.T.S.	Dramere: BpJ	$\stackrel{\text { Pate }}{\text { Pal }}$

GROUNDWATER DEPTH FROM SURFACE:	DATE MEASURED:	AVILES ENGINEERING CORPORATION		
		PIEZOMETER INSTALLATION DETAILSBORING B-9 (PZ-2)		
18.9 FT	8/6/2015	MEMORIAL FROM W. S TIRZ 17 CIP NO	DRAINAGE AND M USTON PARKWAY B, WBS NO. N-T17	TY IMPROVEMENTS TALLOWWOOD DR 31B-4, HOUSTON, TEXAS
18.6 FT	9/2/2015		${ }^{\text {TE }}$ 08-31-15	
		Scale N.T.S.	Doeamver: BpJ	PLATE B-3

ENGINEERING CORP.

APPENDIX C

Plates C-1 to C-2
Plate C-3
Plate C-4

Recommended Geotechnical Design Parameters
Load Coefficients for Pipe Loading
Live Loads on Pipe Crossing Under Roadway

G178-14 MEMORIAL DRIVE DRAINAGE MOBILITY IMPROVEMENTS

SOIL PARAMETERS FOR UNDERGROUND UTILITIES

Boring	Depth (ft)	Soil Type	$\begin{gathered} \gamma \\ (\text { pcf }) \end{gathered}$	$\begin{gathered} \gamma^{\prime} \\ (\text { pcf }) \end{gathered}$	$\begin{aligned} & \text { OSHA } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { E'n } \\ (\text { psi) } \end{gathered}$	Short-Term					Long-Term				
							$\underset{(\mathrm{psf})}{\mathrm{C}}$	$\begin{gathered} \varphi \\ (\mathrm{deg}) \end{gathered}$	K_{a}	K_{0}	K_{p}	$\begin{gathered} \mathbf{C}^{\prime} \\ (\mathbf{p s f}) \end{gathered}$	$\begin{gathered} \varphi^{\prime} \\ (\mathrm{deg}) \end{gathered}$	K_{a}	K_{0}	K_{p}
B-1	0-4	Fill: very stiff CL	120	58	C	600	1500	0	1.00	1.00	1.00	150	18	0.53	0.69	1.89
	4-8	Stiff to very stiff CL	132	70	B	600	1800	0	1.00	1.00	1.00	175	18	0.53	0.69	1.89
	8-18	Very stiff to hard CL	130	68	B	1000	3200	0	1.00	1.00	1.00	300	18	0.53	0.69	1.89
	18-30	Medium dense SM	120	58	$\begin{gathered} \hline \text { C } \\ (18-20) \\ \hline \end{gathered}$	1000	0	30	0.33	0.50	3.00	0	30	0.33	0.50	3.00
B-2	0-2	Fill: CL	120	58	C	300	1000	0	1.00	1.00	1.00	100	18	0.53	0.69	1.89
	2-10	Very stiff CH	138	76	B	1000	2500	0	1.00	1.00	1.00	250	16	0.57	0.72	1.76
	10-20	Very stiff to hard CL	133	71	B	1000	3000	0	1.00	1.00	1.00	300	18	0.53	0.69	1.89
	20-30	Dense SP-SM	125	63	n/a	1000	0	32	0.31	0.47	3.25	0	32	0.31	0.47	3.25
B-3	0-4	Very stiff CH	137	75	B	1000	2700	0	1.00	1.00	1.00	250	16	0.57	0.72	1.76
	4-10	Very stiff to hard CH	131	69	B	1000	2200	0	1.00	1.00	1.00	200	16	0.57	0.72	1.76
	10-18	Very stiff to hard CL/CH	135	73	B	1000	3200	0	1.00	1.00	1.00	300	16	0.57	0.72	1.76
	18-30	Medium dense SP-SM	120	58	$\begin{gathered} \hline \text { C } \\ (18-20) \\ \hline \end{gathered}$	1000	0	30	0.33	0.50	3.00	0	30	0.33	0.50	3.00
B-4	0-4	Very stiff CH	120	58	B	600	2000	0	1.00	1.00	1.00	200	16	0.57	0.72	1.76
	4-8	Very stiff CH	127	65	B	1000	2800	0	1.00	1.00	1.00	275	16	0.57	0.72	1.76
	8-16	Very stiff to hard CL	131	69	B	1000	3200	0	1.00	1.00	1.00	300	18	0.53	0.69	1.89
	16-25	Dense SM	125	63	$\begin{gathered} \hline \text { C } \\ (16-20) \\ \hline \end{gathered}$	1000	0	32	0.31	0.47	3.25	0	32	0.31	0.47	3.25
B-5	0-2	Fill: stiff CL	120	58	C	300	750	0	1.00	1.00	1.00	75	18	0.53	0.69	1.89
	2-8	Stiff to hard CL	129	67	B	600	2000	0	1.00	1.00	1.00	200	18	0.53	0.69	1.89
	8-12	Very stiff to hard CL	131	69	B	1000	3000	0	1.00	1.00	1.00	300	18	0.53	0.69	1.89
	12-18	Stiff to very stiff CL	139	77	B	600	1600	0	1.00	1.00	1.00	150	18	0.53	0.69	1.89
	18-25	Medium dense SP-SM	120	58	$\begin{gathered} \hline \text { C } \\ (18-20) \end{gathered}$	600	0	28	0.36	0.53	2.77	0	28	0.36	0.53	2.77
B-6	0-2	Fill: firm to stiff CL	125	63	C	300	800	0	1.00	1.00	1.00	75	18	0.53	0.69	1.89
	2-8	Very stiff CL	133	71	B	600	2000	0	1.00	1.00	1.00	200	18	0.53	0.69	1.89
	8-14	SC	133	71	C	600	0	30	0.33	0.50	3.00	0	30	0.33	0.50	3.00
	14-21	Stiff to very stiff CH	121	59	$\begin{gathered} \hline \mathrm{B} \\ (14-20) \\ \hline \end{gathered}$	600	1200	0	1.00	1.00	1.00	100	16	0.57	0.72	1.76

PLATE C-1

G178-14 MEMORIAL DRIVE DRAINAGE MOBILITY IMPROVEMENTS
 SOIL PARAMETERS FOR UNDERGROUND UTILITIES

Boring	Depth (ft)	Soil Type	$\begin{gathered} \gamma \\ (\mathbf{p c f}) \end{gathered}$	$\begin{gathered} \gamma^{\prime} \\ (\mathbf{p c f}) \end{gathered}$	$\begin{aligned} & \text { OSHA } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { E'n } \\ (\mathbf{p s i}) \end{gathered}$	Short-Term					Long-Term				
							$\underset{(\text { psf })}{\mathbf{C}}$	$\begin{gathered} \varphi \\ (\operatorname{deg}) \end{gathered}$	K_{a}	K_{0}	K_{p}	$\begin{gathered} \mathrm{C}^{\prime} \\ (\mathrm{psf}) \end{gathered}$	$\begin{gathered} \varphi^{\prime} \\ (\mathrm{deg}) \end{gathered}$	K_{a}	K_{0}	K_{p}
B-6	21-35	Medium dense SM	120	58	n/a	1000	0	30	0.33	0.50	3.00	0	30	0.33	0.50	3.00
B-7	0-2	Fill: CL	120	58	C	300	750	0	1.00	1.00	1.00	75	18	0.53	0.69	1.89
	2-8	Stiff to very stiff CL	130	68	B	600	1400	0	1.00	1.00	1.00	125	18	0.53	0.69	1.89
	8-14	Very stiff to hard CH	130	68	B	1000	2700	0	1.00	1.00	1.00	250	16	0.57	0.72	1.76
	14-20	Very stiff to hard CL	145	83	B	1000	3200	0	1.00	1.00	1.00	300	18	0.53	0.69	1.89
	20-25	Medium dense SM	120	58	n/a	1000	0	30	0.33	0.50	3.00	0	30	0.33	0.50	3.00
B-8	0-2	Fill: SC	120	58	C	300	0	28	0.36	0.53	2.77	0	28	0.36	0.53	2.77
	2-6	Stiff to hard CL	126	64	B	600	1400	0	1.00	1.00	1.00	125	18	0.53	0.69	1.89
	6-14	Very stiff CL	124	62	C	1000	2500	0	1.00	1.00	1.00	250	18	0.53	0.69	1.89
	14-18	Stiff to very stiff CL	103	41	B	600	1800	0	1.00	1.00	1.00	175	18	0.53	0.69	1.89
	18-25	Medium dense SC/SM	120	58	$\begin{gathered} \hline \text { C } \\ (18-20) \\ \hline \end{gathered}$	1000	0	30	0.33	0.50	3.00	0	30	0.33	0.50	3.00
B-9	0-4	Stiff to very stiff CL	120	58	B	600	1500	0	1.00	1.00	1.00	150	18	0.53	0.69	1.89
	4-8	Very stiff to hard CH	131	69	B	1000	3000	0	1.00	1.00	1.00	300	16	0.57	0.72	1.76
	8-14	Very stiff CL	136	74	B	1000	2800	0	1.00	1.00	1.00	250	18	0.53	0.69	1.89
	14-18	Stiff to very stiff CL	131	69	B	600	1600	0	1.00	1.00	1.00	150	18	0.53	0.69	1.89
	18-35	Medium dense to dense SM	120	58	$\begin{gathered} \hline \text { C } \\ (18-20) \end{gathered}$	1000	0	32	0.31	0.47	3.25	0	32	0.31	0.47	3.25

(1) $\gamma=$ Unit weight for soil above water level, $\gamma^{\prime}=$ Buoyant unit weight for soil below water level. E' $n=$ Soil modulus for native soils;
(2) $\mathrm{C}=$ Soil ultimate cohesion for short term (upper limit of 3,600 psf for design purposes), $\varphi=$ Soil friction angle for short term;
(3) $\mathrm{C}^{\prime \prime}=$ Soil ultimate cohesion for long term (upper limit of 300 psf for design purposes), $\varphi^{\prime}=$ Soil friction angle for long term;
(4) $K_{a}=$ Coefficient of active earth pressure, $K_{0}=$ Coefficient of at-rest earth pressure, $K_{p}=$ Coefficient of passive earth pressure;
(5) CL = Lean Clay, CH = Fat Clay, SC= Clayey Sand, SM = Silty Sand, SP-SM = Poorly Graded Sand w/Silt;
(6) OSHA Soil Types for soils in the top 20 feet below grade:

A: cohesive soils with qu $=1.5$ tsf or greater (qu = Unconfined Compressive Strength of the Soil)
B: cohesive soils with qu $=0.5$ tsf or greater
C : cohesive soils with qu $=$ less than 0.5 tsf, fill materials, or granular soil
C^{*} : submerged cohesive soils; dewatered cohesive soils can be considered OSHA Type C.

ENGINEERING CORP.

Note: 1. The vertical stress was estimated using AASHTO HS20 truck axle loadings on paved surfaces (Reference: ASCE 15-98, "Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standandard Installations").
2. Single truck passing.

ENGIAEERING CORP.

Plate D-1
Plate D-2
Plate D-3
Plate D-4
Plate D-5
Plate D-6
Plate D-7
Plate D-8
Plate D-9
Plate D-10

APPENDIX D

Critical Heights of Cut Slopes in Nonfissured Clays
Maximum Allowable Slopes
A Combination of Bracing and Open Cuts
Lateral Pressure Diagrams for Open Cuts in Cohesive Soil-Long Term Conditions
Lateral Pressure Diagrams for Open Cuts in Cohesive Soil-Short Term Conditions
Lateral Pressure Diagrams for Open Cuts in Sand
Bottom Stability for Braced Excavation in Clay
Thrust Force Calculation
Thrust Force Example Calculation
Design Parameters for Bearing Thrust Block

ENGINEERING CORP.

Critical Heights of Cut Slopes in Nonfissured Clays

Note: The charts are calculated based on NAVFAC DM7.1, Page 7.1-319,
assuming the critical circles are toe circles, and wet unit weight of soils $=125 \mathrm{pcf}$.

ENGINEERING CORP.
MAXIMUM ALLOWABLE SLOPES

SHORT TERM
LONG TERM

NOTES:
(1) For Type A soils, a short term maximum allowable slope of $0.5(\mathrm{H}): 1(\mathrm{~V})$ is allowed in excavations that are 12 feet or less in depth; short term (24 hours or less) maximum allowable slopes for excavations greater than 12 feet in depth shall be $0.75(\mathrm{H}): 1(\mathrm{~V})$.
(2) Maximum depth for above slopes is 20 feet. For slopes deeper than 20 feet, trench protection should be designed by the Contractor's professional engineer.

A COMBINATION OF BRACING AND OPEN CUTS

LATERAL PRESSURE DIAGRAMS

FOR OPEN CUTS IN COHESIVE SOIL - LONG TERM CONDITIONS

(a) Soft to Medium

(b) Stiff Clay

(c) Water Pressure

(d) Surcharge

Pressure

Empirical Pressure Distributions

Where:
H = Total excavation depth, feet
D = Depth to water table, feet
$\mathrm{P} 1=$ Lateral earth pressure $=\gamma \mathrm{H}-4 \mathrm{C}, \mathrm{psf}$
$\mathrm{P} 2=$ Lateral earth pressure $=0.4 \gamma \mathrm{H}, \mathrm{psf}$
$\mathrm{P} 3=$ Water pressure $=\gamma_{\mathrm{w}}(\mathrm{H}-\mathrm{D}), \mathrm{psf}$
$\mathrm{P} 4=$ Lateral earth pressure caused by surcharge $=\mathrm{qK}_{\mathrm{a}}, \mathrm{psf}$
$\gamma=$ Effective unit weight of soil, pcf
$\gamma_{\mathrm{w}}=$ Unit weight of water, pcf
C = Drained shear strength or cohesion, psf
$\mathrm{K}_{\mathrm{a}}=$ Coefficient of active earth pressure

Notes:

1. All pressures are additive.
2. No safety factors are included.
3. For use only during long term construction.
4. If $\gamma \mathrm{H} / \mathrm{C}<4$, use section (b),

If $4<\gamma \mathrm{H} / \mathrm{C}<6$, use larger of section (a) or (b),
If $\gamma \mathrm{H} / \mathrm{C}>6$, use section (a).

Reference: Peck, R.B. (1969), "Deep Excavation and Tunneling in soft Ground", 7th ICSMFE, State of art volume, pp. 225-290.

LATERAL PRESSURE DIAGRAMS

FOR OPEN CUTS IN COHESIVE SOIL - SHORT TERM CONDITIONS

(a) Soft to Medium

Clay

(b) Stiff Clay

(c) Water Pressure

(d) Surcharge Pressure

Empirical Pressure Distributions

Where:
H = Total excavation depth, feet
D = Depth to water table, feet
$\mathrm{P} 1=$ Lateral earth pressure $=\gamma \mathrm{H}-4 \mathrm{~S}_{\mathrm{u}}, \mathrm{psf}$
$\mathrm{P} 2=$ Lateral earth pressure $=0.2 \gamma \mathrm{H}$, psf
P3 $=$ Water pressure $=\gamma_{\mathrm{w}}(\mathrm{H}-\mathrm{D})$, psf
$\mathrm{P} 4=$ Lateral earth pressure caused by surcharge $=\mathrm{qK} \mathrm{K}_{\mathrm{a}}, \mathrm{psf}$
$\gamma=$ Effective unit weight of soil, pcf
$\gamma_{\mathrm{w}}=$ Unit weight of water, pcf
$\mathrm{S}_{u}=$ Undrained shear strength $=\mathrm{q}_{\mathrm{u}} / 2$, psf
$\mathrm{q}_{\mathrm{u}}=$ Unconfined compressive strength, psf
$\mathrm{K}_{\mathrm{a}}=$ Coefficient of active earth pressure
Notes:

1. All pressures are additive.
2. No safety factors are included.
3. For use only during short term construction.
4. If $\gamma \mathrm{H} / \mathrm{S}_{u}<4$, use section (b),

If $4<\gamma \mathrm{H} / \mathrm{S}_{u}<6$, use larger of section (a) or (b),
If $\gamma \mathrm{H} / \mathrm{S}_{u}>6$, use section (a).

Reference: Peck, R.B. (1969), "Deep Excavation and Tunneling in soft Ground", 7th ICSMFE, State of art volume, pp. 225-290.

LATERAL PRESSURE DIAGRAMS

FOR OPEN CUTS IN SAND

(a) Sand

(b) Water Pressure

(c) Surcharge Pressure

Empirical Pressure Distributions

Where:
H = Total excavation depth, feet
D = Depth to water table, feet
P1 $=$ Lateral earth pressure $=0.65^{*} \gamma \mathrm{HK}_{\mathrm{a}}$, psf
$\mathrm{P} 2=$ Water pressure $=\gamma_{\mathrm{w}}(\mathrm{H}-\mathrm{D}), \mathrm{psf}$
$\mathrm{P} 3=$ Lateral earth pressure caused by surcharge $=\mathrm{qK}_{\mathrm{a}}, \mathrm{psf}$
$\gamma=$ Effective unit weight of soil, pcf
$\gamma_{\mathrm{w}}=$ Unit weight of water, pcf
$\mathrm{K}_{\mathrm{a}}=$ Coefficient of active earth pressure $=(1-\sin \varphi) /(1+\sin \varphi)$
$\varphi=$ Drained friction angle
Notes:

1. All pressures are additive.
2. No safety factors are included.

Reference: Peck, R.B. (1969), "Deep Excavation and Tunneling in soft Ground", 7th ICSMFE, State of art volume, pp. 225-290.

BOTTOM STABILITY FOR BRACED EXCAVATION IN CLAY

Factor of Safety against bottom of heave,

$$
F . S=\frac{N c C}{(\gamma D+q)}
$$

where, $\mathrm{Nc}=$ Coefficient depending on the dimension of the excavation (see Figure at the bottom)
$\mathrm{C}=$ Undrained shear strength of soil in zone immediately around the bottom of the excavation,
$\gamma=$ Unit weight of soil,
D = Depth of excavation,
$\mathrm{q}=$ Surface surcharge.
If F.S <1.5, sheeting should be extended further down to achieve stability

$$
\text { Depth of Buried Length, }\left(D_{I}\right)=\frac{1.5(\gamma \mathrm{D}+\mathrm{q})-N c C}{(C / B)-0.5 \gamma} ; D_{\mathrm{I}} \geqslant 5 \mathrm{ft} \text {. }
$$

Pressure on buried length, P_{h}

$$
\begin{aligned}
& \text { For } \mathrm{D}_{\mathrm{l}}<0.47 \mathrm{~B} ; \mathrm{P}_{\mathrm{h}}=1.5 \mathrm{D}_{\mathrm{l}}(\gamma \mathrm{D}-1.4 \mathrm{CD} / \mathrm{B}-3.14 \mathrm{C}) \\
& \text { For } \mathrm{D}_{\mathrm{l}}>0.47 \mathrm{~B} ; \mathrm{P}_{\mathrm{h}}=0.7(\gamma \mathrm{DB}-1.4 \mathrm{CD}-3.14 \mathrm{CB}) \\
& \text { where } ; \mathrm{B}=\text { width of excavation }
\end{aligned}
$$

THRUST FORCE CALCULATION

THRUST FORCE EXAMPLE CALCULATION

Trust Force Example Calculation

$\mathrm{T}=2^{*} \mathrm{P}^{*} \mathrm{~A}^{*} \operatorname{SIN}(\Theta / 2)$
$\mathrm{T}_{\mathrm{x}}=\mathrm{P}^{*} \mathrm{~A}^{*} \operatorname{SIN}(1-\operatorname{COS} \theta)$
$T_{y}=P^{*} A^{*} \operatorname{SIN} \Theta$

Where: $\quad \mathrm{T}=$ resultant thrust force
$T_{x}=$ thrust force component along the X axis
$\mathrm{Ty}=$ thrust force component along the Y axis
$\mathrm{P}=$ maximum sustained pressure
A $=$ cross-section area of pipe $=(\pi / 4)^{*}(D)^{2}$
D = inside diameter of conduit
$U=$ angle of bend
Given: $\quad D=24^{\prime \prime}, P=200 \mathrm{psi}, \theta=60^{\circ}$
Find: $\quad \mathrm{T}, \mathrm{T}_{\mathrm{x}}$ and T_{y}
$\mathrm{A}=(\pi / 4)^{*}(24)^{2}=452.39 \mathrm{in}^{2}$
$\mathrm{T}=2 * 200 * 452.39 * \operatorname{SIN}(60 / 2)=90,478 \mathrm{lb}$
$\mathrm{T}_{\mathrm{x}}=200 * 452 \cdot 39 *(1-\operatorname{COS} 60)=45,239 \mathrm{lb}$
$\mathrm{T}_{\mathrm{y}}=200 * 452.39 *$ SIN60 $=78,356 \mathrm{lb}$

ENGINEERING CORP.

DESIGN PARAMETERS FOR BEARING THRUST BLOCK

$$
\begin{array}{ll}
\\
R 2
\end{array}
$$

ENGINEERING CORP.

APPENDIX E

Plates E-1 to E-3 DARWin v3.0 Computer Program Output

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product

Aviles Engineering Corporation
Rigid Structural Design Module
Memorial Drive, based on turning movement counts

Rigid Structural Design

Pavement Type	JRCP
18-kip ESALs Over Initial Performance Period	$7,200,597$
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	600 psi
28-day Mean Elastic Modulus of Slab	$3,600,000 \mathrm{psi}$
Mean Effective k-value	$74 \mathrm{psi} / \mathrm{in}$
Reliability Level	95%
Overall Standard Deviation	0.35
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1.2
Calculated Design Thickness	9.69 in

Effective Modulus of Subgrade Reaction

| | | Roadbed Soil
 Resilient
 Period
 1 | Description |
| :---: | :---: | :---: | :---: | | Bodulus (psi) |
| :---: |
| 3,000 |

Base Type
Base Thickness
Depth to Bedrock
Projected Slab Thickness
Loss of Support Category

Effective Modulus of Subgrade Reaction

JRCP
7,200,597
4.5
2.5

3,600,000 psi
$74 \mathrm{psi} / \mathrm{in}$
95 \%
0.35
3.2
9.69 in

Modulus
(psi)
30,000
stabilized subgrade 8 in
100 ft
9 in
1
$74 \mathrm{psi} / \mathrm{in}$

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare
Computer Software Product
Aviles Engineering Corporation

Rigid Structural Design Module

Memorial Drive, rounded up to 10" pavement, based on turning movement counts

Rigid Structural Design

Pavement Type	JRCP
Slab Thickness for Performance Period Traffic	10 in
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	600 psi
28-day Mean Elastic Modulus of Slab	$3,600,000 \mathrm{psi}$
Mean Effective k-value	$74 \mathrm{psi} / \mathrm{in}$
Reliability Level	95%
Overall Standard Deviation	0.35
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1.2
18-kip ESALs Over Initial Performance Period	$8,832,161$

Effective Modulus of Subgrade Reaction

Period	Description	Roadbed Soil Resilient Modulus (psi)	Base Elastic Modulus (psi)
1	1	- 3,000	30,000

Base Type	stabilized subgrade
Base Thickness	8 in
Depth to Bedrock	100 ft
Projected Slab Thickness	10 in
Loss of Support Category	1
Effective Modulus of Subgrade Reaction	$74 \mathrm{psi} / \mathrm{in}$

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare
Computer Software Product
Aviles Engineering Corporation
Rigid Structural Design Module
Memorial Drive, $11^{\prime \prime}$ minimum thoroughfare thickness required by IDM

Rigid Structural Design

Pavement Type	JRCP
Slab Thickness for Performance Period Traffic	11 in
Initial Serviceability	4.5
Terminal Serviceability	2.5
28-day Mean PCC Modulus of Rupture	600 psi
28-day Mean Elastic Modulus of Slab	$3,600,000 \mathrm{psi}$
Mean Effective k-value	$74 \mathrm{psi} / \mathrm{in}$
Reliability Level	95%
Overall Standard Deviation	0.35
Load Transfer Coefficient, J	3.2
Overall Drainage Coefficient, Cd	1.2
18-kip ESALs Over Initial Performance Period	$16,537,788$

Effective Modulus of Subgrade Reaction

Period	Description	Roadbed Soil Resilient Modulus (psi)	Base Elastic Modulus (psi)
1	1	- 3,000	30,000

Base Type
Base Thickness
Depth to Bedrock
Projected Slab Thickness
Loss of Support Category

1
1

JRCP
in
.5
600 psi
3,600,000 psi
$74 \mathrm{psi} / \mathrm{in}$
95 \%
0.35
3.2
1.2
$16,537,788$

Effective Modulus of Subgrade Reaction
stabilized subgrade 8 in
100 ft
11 in
1
$74 \mathrm{psi} / \mathrm{in}$

Phase I Envirommental Site Assessment for ThRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

PHASE I ENVIRONMENTAL SITE ASSESSMENT
 TIRZ 17 RECONSTRUCTION OF MEMORIAL DRIVE BETWEEN WEST SAM HOUSTON PARKWAY AND
 TALLOWOOD ROAD HOUSTON, TEXAS

Volume 1 of 2

Prepared for:
Lockwood, Andrews, and Newnam, Inc.
2925 Briarpark Drive, Suite 400
Houston, Texas 77042

Prepared by
Aviles Engineering Corporation
5790 Windfern Road
Houston, Texas 77041
Phone: (713) 895-7645
Fax: (713) 895-7943
AEC Project No. E112-14
Date: April 22, 2015

Phase I Enviroumental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West San Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTION 2
Property Location 2
2.1
Purpose 3
2.3 Scope of Services 3
2.4 Special Terms and Conditions 3
Authorization 3
Limiting Conditions, Deviations, Exceptions, and Significant Assnmptions 3
2.6
USER PROVIDED INFORMATION 4
4.0 RECORDS REVIEW 4
Standard Environmental Records 4
Regulatory Agency Files and Records 11
Additional Environmental Records 16
Physical Settings Sources 16
Topography 16
4.4.1
Soils. 16
4.43 Groundwater and Floodplains. 17
4.4.4 Active Faults 18
4.5 Historical Use Information. 184.5 .1
Aerial Photographs 18
4.5 .2 Historical Topographic Maps 19
4.5.3 … Sanborn Fire Insurance Maps 20
4.5.4 Local Street Directories 20
4.5.5. Harris County Appraisal District Records 24
5.0 SITE RECONNAISSANCE OF SUBJECT PROPERTY WITH OBSERVATIONS OF THE ADJOINING PROPERTIES AND SURROUNDING AREA 25
Methodology and Limiting Conditions 25
5.1
5.2
5.2 Observations. 25
5.2.1 Subject Right-of-Way 25
5.2 .2 Properties Which Adjoin the Subject Right-of Way. 26
5.2 .3 Properties Within Approximately 500 Feet of the Subject Right-of-Way 29
5.2.4 Properties Beyond 500 Feet of the Subject Right-of-Way 31
5.2.5 Site Rcconnaissance Summary 32
6.0 INTERVIEWS. 33
7.0 EVALUATION 37
Findings and Opinions. 37
7.1
Conclusions and Recommendations 44
7.2
Data Gaps, Data Failure, and Deletions. 45
Qualification of Euvironmental Professional 45
7.4
Signaturc of Euviroumental Professional 46
8.0 REFERENCES 46
9.0 NON-SCOPE SERVICES 46

Phase I Environmental Site Assessment for T1RZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Fect East of Tallowood Road, Houston, Texas

APPENDICES

Appendix A: Site Maps, Figures, and General InformationAppendix B: Environmental Records Doeumentation (GeoSearchResults)
Appendix C: Regulatory Agency Record Search Documentation
Appendix D: Physical Setting Source Doeumentation
Appendix E: Historical Research Documentation
Appendix F: Harris County Appraisal District Search Results
Appendix G: Photographs
Appendix H: Interviews
Appendix 1: - Resume

1.0 EXECUTIVE SUMMARY

Lockwood, Andrews, and Newnam, Inc. requested a Phase I Envirommental Site Assessment (ESA-1) for the reconstruction of Memorial Drive between the West Sam Houston Parkway and approximately 100 feet east of Tallowood Drive in western Harris County, Texas (Subject Right-of-Way).

AVILES ENGINEERING CORPORATION (AEC) has conducted an ESA-l of the Subject Right-of-Way in general accordance with the guidelines contained in the American Society for Testing and Materials (ASTM) Designation E1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (ASTM E1527-13) as modified by Chapter 11 of the City of Houston, Department of Public Works and Engineering lnfrastructure Design Manual (July 2012) for conducting ESA-ls on construction projects in City rights-of-way.

The purpose of this ESA-I was to identify recognized environmental conditions in connection with the Project Alignment. As defined in ASTM E1527-13, the term recognized environmental conditions means "the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment."

The ESA-1 included records reviews, site reconnaissance, and interviews. This report was prepared to document the ESA-1 investigation and results.

This ESA-I identified the following RECs in connection with the Subject Right-of-Way.

- REC 1: Chevron LPST site/Wheatley lnvestments at 12860 Memorial Drive (refer to Figure $5 a$ in Appendix A).
- REC 2: The contaminant plume associated with leaks from Your Valet Cleaners at 614 West Bough Lane and A-1 Cleaners LPST and VCP site at 12754 Memorial Drive (refer to Figure 5 a in Appendix A).
- REC 3: Sprint PCS Tower IOP site at 608 West Bough Lane (refer to Figure 5a in Appendix A).
- REC 4: Mobil gas station at 12802 Memorial Drive (refer to Figure 5a in Appendix A).
- REC 5: The contaminant plume associated with Conoco 43059 at 12699 Memorial Drive LPST site (refer to Figure $5 b$ in Appendix A).
- REC 6: Alexan Memorial Bend Apartments lOP site at 12667 Memorial Drive (refer to Figure 5 a in Appendix A).
-. REC 7: The contaminant plume assoeiated with the MW Cleaners/Lantem Lane Shopping Center-Pro Cleaners VCP and IHWCA site at 12534 Memorial Drive and the Memorial Green VCP site at 12601 Memorial Drive (refer to Figure 5a in Appendix A).

Research during the ESA-1 revealed that the West liney Point Fault crosses the western portion of the Subject Right-of-Way. Evidence of the fault was not found in during the site reconnaissance.

AEC recommends that a Phase If Environmental Site Assessment be conducted in the Subject Right-of-Way with soil borings drilled to 5 feet below the maximum depth of construction along the Memorial Drive Subject Right-of-Way. Some of the soil borings should be converted to a temporary monitor wells. Soil samples and a groundwater sample should be collected and analyzed for the following:

- REC I: benzene, toluene, ethylbenzene, and total xylenes (BTEX); methyl tertiary butyl ether (MTBE); and total petroleum hydrocarbons (TPH 1005).
- REC 2: volatile organic compounds, BTEX, MTBE, and TPH 1005, Resource Conservation and Recovery Act (RCRA) 8 metals.
- REC 3: VOCs, TPH 1005, and RCRA 8 metals
- REC 4: BTEX, MTBE, TPH 1005, and RCRA metals.
- REC 5: BTEX, MTBE, and TPH 1005.
- REC 6: VOCs, and TPH 1005.
- REC 7: VOCs

AEC also recommends that a qualified firm conduct a Phase I fault study for the Subject Right-ofWay since based on literature research a mapped fault is located near the western end of the Subject Right-of-Way.

2.0 INTRODUCTION

2.1 Project Location

Lockwood, Andrews, and Newnam, lnc. requested a Phase I Environmental Site Assessment (ESA-1) for the reconstruction of Memorial Drive between the West Sam Houston Parkway and approximately 100 feet east of Tallowood Road in western Harris County, Texas (Subject Right-of-Way). The Subject Right-of-Way will also extend approximately 100 feet into each of the following side streets:

- West Sam Houston Parkway North (Beltway 8) northbound feeder road,
- West Bough Lane,
- Broken Bough Drive,
- Old Oaks Drive,
- Huntingwick Drive,
- Boheme Drive,
- Memorial Bend Drive,
- Hollow Drive,
- Somerset Place,
- Legend Lane, and
- Tallowood Road.

Figure 1 shows a site vicinity map and Figure 2 shows a map with the project limits which LAN provided Aviles Engineering Corporation (AEC; refer to Appendix A). Table 1 in Appendix A shows the limits of the Subject Right-of-Way and Figure 3 shows the location of the Subject Rightof Way on an aerial photograph (refer to Appendix A).

Plase 1 Environmenal Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parliway and 100 Feet East of Tallowood Road, Houston, Texas

2.2 Purpose

The purpose of this ESA-I was to identify recognized environmental conditions (RECs) in comection with the Subject Right-of-Way. As defined in ASTM E1527-13, the term recognized envirommental conditions means "the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment."

2.3 Scope of Services

AEC performed this ESA- 1 in general accordance with the guidelines contained in ASTM E152713, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (ASTM E1527-13), as modified by Chapter 11 of the City of Houston, Department of Public Works and Engineering Infrastructure Design Manual (July 2012) for conducting ESA-Is on construction projects in City rights-of-way.

The following scope of services was performed in completing this ESA-I of the Project Aligment:

- Records Review,
- Site Reconnaissance,
- Intervicws.

This report was prepared to document the ESA-I investigation and results.

2.4 Special Terms and Conditions

No special terms and conditions were agreed to for this ESA-I.

2.5 Authorization

A proposal for an ESA-1 for the Subject Right-of-Way, which was requested by Mr. Ricky Gonzalez, P.E., Project Coordinator at LAN was prepared and submitted by AEC on December 15, 2014. Notification to proceed was given in an email from Mr. Gonzalez on March 3, 2015 and the authorization and notice to proceed was signed by Mr. Muhammad M. Ali, P.E., and Project Manager on February 27, 2015.

2.6 Limiting Conditions, Deviations, Exceptions, and Significant Assumptions

The information and conclusions provided in this report are based on a general knowledge of the Subject Right-of-Way and surrounding region, information provided by LAN, Inc., regulatory agency data, historical information, site reconnaissance findings, and interviews. The site reconnaissance observations in this report summarize conditions as found on the dates the AEC Environmental Professional visited and observed the Subject Right-of-Way and surrounding area. This study has attempted to identify RECs in connection with the Subject Right-of-Way; however, there is a possibility that sources of information have gone undetected because of the limitations of this study, inaccuracy of database records, or the presence of undetected and unreported environmental releases. All discovered information has been disclosed and a good faith effort has been made to consult pertinent sources and appropriately evaluate the information.

This ESA-I was performed in general accordance with ASTM E1527-13. The ESA-1 was limited to information that is "reasonably ascertainable" and "practically reviewable" in accordance with

Phase I Envirommental Site Assessment for TRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

ASTM E1527-13, considering the time and cost associated with the assessment. AEC cannot guarantee the completeness or accuracy of the regulatory agency files and site listings and cannot guarantee that not finding indicators of hazardous substances or petroleum products means that these materials do not exist on the Subject Right-of-Way. AEC cannot be responsiblc for failure to disclose RECs that may exist on or near the Subject Right-of-Way, but were not identified due to limiting the assessment to information that is "reasonably ascertainable" and "practically reviewable".

This investigation was performed using the standard level of care and diligence normally practiced by recognized professional envirommental and engineering firms in this area presently performing similar services under similar circumstances. This report is intended to be used in its cntirety. It has been prepared exclusively for the Subject Right-of-Way. If the location or area of the Subject Right-of-Way changes or otherwise differs from the descriptions contained herein, AEC should be immediately notified and retained to evaluate the effect of the changes on the conclusions presented in this report, and to revise them if necessary. The conclusions presented in this report should not be relied upon for other properties or sites without additional evaluation and/or investigation. This document is not intended to constitute or substitute for legal counsel or guidance in connection with decisions regarding property acquisition or regulatory actions.

3.0 USER PROVIDED INFORMATION

Mr. Ricky Gonzalez of LAN provided general site information and maps showing the location of the Subject Right-of-Way. LAN also provided approximate elevations of the base of proposed storm sewers (the deepest utilities) for the project.

4.0 RECORDS REVIEW

4.1 Standard Environmental Records

Mr. Robert Metzger of AEC submitted a request on March 3, 2015, to GeoSearch L.P. (GeoSearch) to conduct a search of standard environmental records for the Project Alignment. The results of the search were received from GeoSearch on March 5, 2015. GeoSearch conducted a search of environmental agency database records (standard environmental record sources as per ASTM E1527-13) to help identify any recognized environmental conditions (RECs) in connection with the Project Alignment and the surrounding area. The database records contain information on environmental incidents, conditions, notifications, and registrations reported to the United States Environmental Protection Agency (EPA), the Texas Commission on Environmental Quality (TCEQ), and other appropriate federal, state, local, and tribal agencies. The GeoSearch Radius Report is contained in Appendix B. The search radii from the Project Alignment were in accordance with the ASTM E1527-13 minimum search distances. Database records from a total of 22 sites were retrieved.

The environmental rccords identified below are those within a reduced search radius of 500 feet from the Subject Right-of-Way, except for Industrial and Hazardous Waste Sites and Industrial and Hazardous Waste Corrective Action Sites which must maintain a one mile search radius. The search radius has been reduced in accordance with ASTM E1527-13 due to the unlikelihood of a source of contamination beyond that distance impacting the Project Alignment based on geology
and hydrology of the area. The numbers in the below chart correspond to the numbers on the radius map on page ll of the GeoSearch Radius Report (Appendix B) and to the records of the report on pages 17 through 167 .

Radius Report Map ID No. and Site Name \& Location	Database Summary
1. Walgreen 3328 at 12850 Memorial Drive (refer to Figure 4a, Number 18; Section 4.2; and Site Reconnaissance, Section 5.0),	Industrial and Hazardous Waste Sites (HW): Inactive small quantity generator of non-industrial and/or municipal wastes. Waste included fixer used in photo processing. Facility Registry System (FRSTX): Registered with the Resource Conservation and Recovery Act lnformation System (RCRAINFO). No Standard Industrial Classification (SIC) or North American Industry Classification (NAICS) reported.
1. Town and Country Village Shopping Center Dry Cleancrs at 12850 Memorial Drive (refer to Figure 4a, Number 18; Section 4.2; Sitc Reconnaissance, Scction 5.0; and Interviews, Section 6.0). The location of the dry cleaners was not found during the site reconnaissance.	Innocent Owner/Operator Database (IOP): Contaminated groundwater with volatile organic compounds and chlorinated solvents. State Institutional/Engineering Control Sites (SIEC01): Enrolled in Voluntary Cleanup Program. Soils and groundwater contaminated with chlorinated solvents by dry cleaners. Pump and treat and vapor extraction remediation on site. Site conditionally closed in July 1997 with controls. Controls include using area for non-residential land, no groundwater use allowed, and operation and maintenance of remediation systems. Voluntary Cleanup Program (VCP): Refer to SIEC01 above. Groundwater Contamination Cases (GWCC): Enrolled in VCP for cleanup of metals contamination.
1. Town and Country Village Shopping Center at 12850 Memorial Drive (refer to Figure 4a, Number 18; Section 4.2; and Site Reconnaissance, Section 5.0).	FRSTX: Registered with Tcxas Commission on Environmental Quality Contral (TCEQ) Agency Registry. No SIC or NAICS reported.
1. Randall's Food Store \#1066 at 12850 Memorial Drive, Suite 1000 (refer to Figure 4a, Number 18; Section 4.2 and Site Reconnaissance, Section 5.0).	FRSTX: Registered with RCRAINFO. No SIC data reported. NAICS 44511: Supermarket and Other Grocery (Exccpt Convenience) Stores. Resource Conservation \& Recovery ActGenerator Facilities (RCRAGR06): Waste generator of nicotine, salts, pyridine, 3-(1-methyl-2-pyrrolidinyl)-(S)-. No violations reported.
1. Oklahoma Installation Company (Dillards Department Store) at 570 Town \& Country Village. The facility	FRSTX: Registered with RCRAINFO. No SIC or NAICS data reported.

Phase I Environmental Site Assessment for ThRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

Radius Report Map ID No. and Site Name \& Location	Database Summary
and address were not found during the site reconnaissance. (refer to Section 4.2 and Site Recomaissance, Section 5.0).	Resource Conservation \& Recovery ActGenerator Facilities (RCRAGR06): Waste generator of ignitable waste and various hazardous non-halogenated solvents. No violations reported.
2. Post Oak Cleaners at 12645 Memorial Drive, Suite G (refer to Figure 4b, Number 39; Section 4.2; and Site Reconnaissance, Section 5.0).	Dry Cleaner Registration Database (DCR): Drop station registration.
3. Pilgrims Cleaners, Pilgrim Town \& Country Cleaner, and A-1 Cleaners at 12754 Memorial Drive (refer to Figure 4a, Number 22; Section 4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0).	IHW: Inactive small quantity non-industrial and/or municipal generator of waste. Waste generated included pere sludge, perc filters, and other unidentified wastes.
3. Pilgrim Town \& County Cleaner at 12754 Memorial Drive (refer to Figure 4a, Number 22; Section 4.2).	IHW: lnactive conditionally exempt small quantity non-industrial and/or municipal generator of waste. Waste types not specified.
3. A-1 Cleaners at 12754 Memorial Drive (refer to Figure 4a, Number 22; Section 4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0).	Leaking Petroleum Storage Tanks (LPST): LPST 113777. One steel and another underground gasoline tank installed in 1987 were removed from the ground in 1998. Assessment was incomplete, no apparent receptors impacted. Case closed in 1998. Petroleum Storage Tanks (PSTs): Refer to LPST above. VCP: LPST 113777. Soils and groundwater impacted. Site is in investigation phase. DCR: Drop station registration.
4. Alexan Memorial Bend Apartments at 12667 Memorial Drive (refer to Section 4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0). Neither this location nor the address were found during the site recomaissance, but the general area of the former business was identified as near Figure 4b, Numbers $39-42$ and 8283.	1OP: Soil and groundwater impacted by volatile organic compounds and total petroleum hydrocarbons.
5. Conoco 43059 at 12699 Memorial Drive (refer to Figure 4b, Numbers 46 and 47; Section 4.2; and Site Reconnaissance). The Conoco station was not observed during the site reconnaissance. Instead, Tres Market	LPST: LPST 104023. Two 10,000 -gallon fiberglass reinforced plastic (FRP) kerosene underground storage tanks installed in 1982 were removed from the ground in 1992. One-6,000 gallon FRP kerosene underground storage tank installed in 1959 was removed from the ground in

Phase Envirommental Site Assessment for ThZZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Eeet East of Tallowood Road, Houston, Texas

Radius Report Map ID No. and Site Name \& Location	Database Summary
Pantry and Memorial Food Store are	
now located at 12699 Memorial Drive.	1987. One-10,000 gallon FRP gasoline underground storage tank installed in 1987 was removed from the ground in 1992. One 6,000 gallon steel diesel underground storage tank
installed in 1959 was removed in 1987. One 550-	
gallon steel used oil tank installed in 1987 was	
removed from the ground in 1990. Groundwater	
was impacted with no apparent threats or impacts	
to receptors. Case closed in 1992.	
PSTs: Sce LPST information above.	

Phase 1 Envirommental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

Radius Report Map ID No. and Site Name \& Location	Database Summary
Reconnaissance, Section 5.0 and Interviews, Section 6.0).	
8. MW Cleaners/Lantern Lane Shopping Center-Pro Cleaners at 12534 Memorial Drive (refer to Figure 4b; Number 32; Section4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0).	DCR: Drop station registration. Industrial and Hazardous Waste Corrective Action Site (IHWCA): Inactive status, No other information reported. VCP: Soil and groundwater contaminated by chlorinated solvents from dry cleaner. Municipal Settings Designation (MSD) approved. Certificate of Completion issue October 2012. Affected Property Assessment Reports (APAR): Enrolled in VCP. Active Investigation Phase.
9. Pilgram Wycliffe at 12647 Memorial Drive (refer to Site Reconnaissance, Figure 4b, Number 83; Section 4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0). Gulf States Laundry Machinery Company is currently located at this address.	IHW: Conditionally Exempt Small Quantity Generator of non-industrial and/or municipal wastes. Registration inactivated because facility was registered prior to 1994 and no waste activity was reported in 1994 through 1996. No waste records.
9. Pilgrim Cleaners at 12647 Memorial Drive (refer to Site Reconnaissance, Figure 4b, Number 83; Section 4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0). Gulf States Laundry Machinery Company is currently located at this address.	IHW: Conditionally Exempt Small Quantity Generator of non-industrial and/or municipal wastes. Inactive. Waste descriptions not reported.
10. Your Valet Cleaners at 614 West Bough Lane (refer to Figure 4a, Number 63; Section 4.2; Site Reconnaissance, Section 5.0 and Interviews, Section 6.0). Your Valet Cleaners and the address 614 West Bough Lane were not found during the site reconnaissance, but the location of the address was identified during interviews.	IHW: Small Quantity Generator of non-industrial and/or municipal wastes. Registration inactivated because there were only 6 -digit waste codes on the NOR and no waste activity was reported in 1994 through 1996. No waste records,
11. Memorial Green at 12601 Memorial Drive (refer to Figure 4a, Number 34; Section 4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0).	VCP : Groundwater contaminated with volatile organic compounds. Site is vacant and in investigation phase.
12. CVS Pharmacy $\# 6752$ at 12502 Memorial Drive (refer to Figure 4b,	RCRAGR06: Generator of ignitable hazardous waste, corrosive waste, 2H-1-benzopyran-2-one, 4-

Phase 1 Environmental Site Assessment for TiRZ 17 Reconstraction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

Radius Report Map ID No. and Site Name \& Location	Database Summary
Number 32; Section 4.2 and Site Reconnaissance, Section 5.0).	hydroxy-3-(3-oxo-1-phenylbutyl)-, salts, warfarin, 1,2-benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- (R), epinephrine, nicotine and salts, pyridine, 3-(1-methyl-2-pyrrolidinyl)-,(S)-, 1,2,3-propanctriol, trinitrate (R), and nitroglycerine (R). No violations reported.
13. Pilgrims Cleaners 128 at 650 West Bough Lane, Suite 116 (refer to Figure 4a, Number 65; Section 4.2, and Site Reconnaissance, Section 5.0). Sessions Music now occupies this address.	DCR: Drop station registration.
16. Texaco at 12859 Kimberly Lane (refer to Section 4.2; Sitc Reconnaissance, Section 5.0; and Interviews, Section 6.0). The site is beyond 500 feet from the Subject Right-of-Way and Wells Fargo Bank now occupies this address. The location is to the north Figure 4a, Number 56.	LPST: The groundwater was impacted, but no apparent threats or impacts to receptors. Casc was closed May 6, 1988. PST: Four 6,000-gallon stcel gasoline storage tank installed in 1967 were removed from the ground in 1990. Three 9,684-gallon FRP gasoline storage tank installed in 1990 were removed from the ground in 2006. One 550-gallon FRP used oil storage tank installed in 1990 was removed from the ground in 2004. One 550-gallon FRP gasoline storage tank installed in 1967 was removed from the ground in 1990. 1HW: Inactive Small Quantity Generator of nonindustrial and/or municipal wastes. Periodic or oceasional generator of tank water bottoms from condensation and con (meaning not defined in records).
17. CO Polydoros \& Associates at 12727 Kimberly Drive (refer to Section 4.2; Site Reeonnaissance, Section 5.0; and Interviews, Section 6.0). The site is beyond 500 feet from the Subject Right-of-Way. The location is to the northeast of Figure 4a, Number 56. A Medical Center was observed at this address during the site reconnaissance.	IHW: Conditionally Exempt Small Quantity Gencrator of non-industrial and/or municipal wastes. Inactive. Waste descriptions not reported.
18. Mobil Service Station 12-BLY at 770 West Sam Houston Parkway North \#100 (refer to Section 4.2; Site Reconnaissance, Section 5.0; and Interviews, Section 6.0). The site is beyond 500 fect from the Subject Right-of-Way. The Mobil Service	LPST: Groundwater was impacted but no apparent threats or impacts to receptors. Last entry in records. is for groundwater monitoring, May 1988. PST: Onc 5,000-gallon stecl gasoline and two 8,000 -gallon steel gasoline storage tanks installed in 1970 were removed from the ground in 1988. One 12,000-gallon and two 10,000-gallon FRP

Phase 1 Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

Radius Report Map ID No. and Site Name \& Location	Database Summary
Station was not found during the site reconnaissance. The address is now occupied by la Madeleine restaurant.	gasoline storage tanks installed in 1989 were removed from the ground in 1998. Onc tank of unknown volume, material, and contents installed in 1987 was removed from the ground in 1987. One 12,000 -gallon and two 10,000 -gallon FRP empty storage tank installed in January 1988 were removed from the ground in January 1988. One 550-gallon steel used oil storage tank installed in 1970 was removed from the ground in 1988. One 1,000-gallon FRP empty storage tank installed in 1988 was removed from the ground in 1988. One 1,000-galion FRP used oil storage tank installed in 1989 was removed from the ground in 1998. IHW: Small Quantity Generator of non-industrial and/or municipal wastes. Registration inactivated because there were only 6 -digit waste codes on the NOR and no waste activity was reported in 1994 through 1996. No waste records were given.
18. Shell Oil at 12860 Kimberly Lane (refer to Section 4.2; and Site Reconnaissance, Section 5.0). The site is beyond 500 feet from the Subject Right-of-Way. The service station and address were not found during the site reconnaissance, but the address would have been where the current la Madeleine restaurant is located.	PST: Same as Mobil Service Station above,
20. Weatherford US Houston at 10802 Katy Freeway (refer to Section 4.2 and Site Recomaissance, Section 5.0). The site is beyond 500 feet from the Subject Right-of-Way. The facility and address were not found during the site reconnaissance.	Industrial and Hazardous Waste Corrective Action Sítes (IHWCA): Active site, No other information reported.
21. Fluorocarbon Plastic \& Rubber Production at 10420 Katy Freeway (refer to Section 4.2 and Site Rcconnaissance, Section 5.0). The site is beyond 500 feet from the Subject Right-of-Way. The facility and address were not found during the site reconnaissance.	IHWCA: Inactive site. No other information reported.
22. Spring Branch Service Center at 10310 Katy Freeway (refer to Section	IHWCA: Inactive site. No other information reported.

Phase 1 Envirommental Site Assessment for TuRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

Radius Report Map ID No. and Site Name \& Location	Database Summary
4,2 and Site Reconnaissance, Section	
5.0). The site is beyond 500 feet from the Subject Right-of-Way. The facility and address were not found during the site reconnaissance.	

4.2 Regulatory Agency Files and Records

ASTM E1527-13 states that a regulatory agency file and record review should be conducted for the property (Subject Right-of-Way) and adjoining properties if any of these were identified in the standard envirommental record review (refer to Section 4.1 above) unless justification is given by the environmental professional for not conducting the regulatory agency file and record review. An on-line records search on the Texas Commission on Environmental Quality (TCEQ) website was performed for each of the above entries and a visit to the TCEQ office Houston was made to review additional records (Refer to Appendix C for records containing applicable information).

The Walgreens 3328 at the Town and Country Village Shopping Center at 12850 Memorial Drive has an inactive Industrial and Hazardous Waste Solid Registration for one time or intermittent generation of used fixer for photograph processing. The waste was managed off site only.

The Town and Country Village Shopping Center Dry Cleaners at 12850 Memorial Drive is currently enrolled in the Voluntary Cleanup Program (VCP 1D Number 152). The release was from the former "Your Valet Cleaners". The soils and groundwater including at two offsite monitoring wells were contaminated by cis-1, 2-dichloroethylene, tetrachloroethylene, trichloroethylene, and vinyl chloride. Cis-1, 2-dichloroethylene, tetrachloroethylene, and trichloroethylene concentrations required remediation. The site also had an underground injection control permit for remediation injection wells which began on January 28, 2005. The injection zone is from approximately 25 feet to 44 feet deptl and the rate of injection was 20 gallons per minute. An unspecified chemical was being injected for remediation. According to a letter from the TCEQ dated April 23, 2009, 88 monitoring and recovery wells were located onsite at that time and 18 injection wells were located along Memorial Drive. An lmocent Owner/Operator Certificate was issued for this site on September 12, 2012 and a VCP Certificate of Completion with restrictive use covenant was issued in January 2015. The restrictive covenant states that use and exposure to the groundwater at the site is prohibited.

No records were found for the Town and Country Village Shopping Center at 12850 Memorial Drive.

No records were found for the Randall's Food Store at 12850 Memorial Drive, Suite 1000.
No records were found for either the Oklahoma Installation Company or Dillards Department Store at 570 Town and Country Village.

The on-line records search confirmed that the Post Oak Cleaners at 12645 Memorial Drive, Suite G is a drop station for dry cleaning.

LPST 113777 located at A-1 Cleaners at 12754 Memorial Drive resulted from the leak of gasoline and diesel fuel from two underground storage tanks (USTs) at the site. A l-inch hole was observed in one of the tanks during its removal on Deeember 1,1998 . Soil samples were colleeted from the native soil at the base of eaeh tank and the side walls of the tank pit and analyzed for benzene, toluene, ethyl benzene, and xylenes (BTEX), total petroleum hydroearbons (TPH) and total lead. The benzene concentrations exeeeded Texas Natural Resouree Conservation Commission (TNRCC; forerunner of TCEQ) leaking petroleum storage tank (LPST) Action Levels. The case was elosed Mareh 1999 by the TNRCC with contamination in place beeause the site is 100% paved, no phase separated hydrocarbons (PSH) was observed during the tank removals, groundwater was not encountered during the tank removals, and benzene execedanees in soil samples were at 13 feet in the tank pit, but soil samples at 15 feet was below aetion levels.

A-1 Cleaners entered the VCP program August 2003 for a release of tetrachloroethylene from the dry eleaners. The tetrachloroethylene and its degradation byproduets of eis-1, 2-diehloroethene, triehloroethylene, and vinyl chloride have eontaminated the soil and groundwater. In addition, BTEX has also contaminated the soil and groundwater. Concentrations of many of these eontaminants are above TCEQ aeceptable levels. The contaminant plume has moved off site beneath a residential neighbor (records did not indieate which direetion). Five underground injection wells were installed for remediation. The injeetion zone is from 5 feet to 200 feet deep and the injeetion rate is less than 10 pounds per square inch (psi). As of March 4, 2015, the groundwater/media was being monitored. This site also has a drop station registration and had an IHW registration for disposal of tetrachloroethylene sludge and filters. The waste was managed only off-site.

No records were found for Pilgrim Town \& Country Cleaner and Pilgrim's Cleaners at 12754 Memorial Drive, but these were at the same loeation as the A-1 Cleaners.

No records were found for the Alexan Memorial Bend Apartments at 12667 Memorial Drive.
Conoeo 43059 at 12699 Memorial Drive became a registered LPST site in August of 1992. Phaseseparated hydroearbons (PSH) were found floating on the groundwater (amount unknown) and as much as practical was reeovered between Deeember 1993 and September 1997. Remediation was performed at this site through the use of a dual phase extraction system (DPE). The system had seven reeovery wells with pneumatic submersible pumps, oil/water separator, air stripper, and blowers. The remediation system was dismantled in 2006. A total of 30 monitor and recovery wells were onee loeated at the site. TCEQ elosed the projeet, but the date is unknown. The site closure report to the TCEQ is dated August 28, 2007.

Post Oak Cleaners at 12699 Memonial Drive had a drop station dry cleaners registration in 2003 and 2004. The facility was no longer in operation at this address at the time of the site recomaissance (refer to Section 5.2 Numbers 46 and 47).

LPST 091934 and LPST 116132 are loeated at the Wheatley lnvestments/Chevron 60108123 serviee station at 12860 Memorial Drive. LPST 091934 was registered June 10, 1998 after
hydrocarbons were reported to be present in storm drains adjacent to the site. During the assessment, PSH was encountered on the groundwater in one monitor well and recovered to the extent practical. Benzene, BTEX, and TPH concentrations in soil and groundwater and methyl tertiary butyl ether (MTBE) in groundwater at the site exceeded action levels A pump and treat remediation system operated at this site from February 1990 to October 1995. In November 2003, 0.81 feet of PSH was observed in a monitor well and LPST 116132 was assigned. Product fingerprinting showed the PSH was weathered and did not indicate a new release but rather from the original release, so LPST 091934 was reopened and LPST 116132 was cross reference to the case. Depth to groundwater at the site ranged from 22 feet to 33 feet below top of well casing and the groundwater gradient was generally to the north and west. Multiple dual phase extraction (MDPE) was used in 2005 and 2006 for remediation. The case was closed in 2009. An enforcement order was issued by the TCEQ on March 9, 2014 for this site for failure to monitor the USTs for releases at least once evcry month.

At the Sprint PCS Tower Site at 608 West Bough Lane, the groundwater was contaminated with tetrachloroethylene. An linocent Owner Certificate was issued October 26, 2001. No other records were found.

The release at MW Cleaners/Lantern Lane Shopping Center-Pro Cleaners at 12534 Memorial Drive contaminated soils with chlorinated solvents. The site case was under lndustrial and Hazardous Waste Corrective Action (IHCWA) until it became inactive in June 2011. The site was enrolled in the VCP in July 2004. A Municipal Settings Designation (MSD) was applied for in 2012. A VCP certificate of completion was issued on October 11, 2012. A revised MSD with additional properties was applied for in June of 2014. In a letter from the TCEQ dated June 10, 2014, the consultant was advised to evaluate the potential for vapor intrusion from the contaminated groundwater into a residential property. In a letter from the TCEQ dated August 27, 2014 , requested that the well owners within a 5 -mile radius be notified of changes in the Municipal Settings Designation certificate. The site is still an active case.

Pilgram Wycliffe and Pilgrim Cleaners at 12647 Memorial Drive each had industrial and hazardous waste (IHW) registrations (facilities no longer at this address, refer to Section 5.2. Number 83). No specific information about the waste could be found.

Your Valet Cleaners at 614 West Bough Lane had industrial and hazardous waste registrations (the facility no longer exists, refer to Section 5.2 .3). No specific information about the waste could be found.

Groundwater at Memorial Green, a vacant property at 12502 Mcmorial Drive, is contaminated with volatile organic compounds (VOCs). This site has been enrolled in the VCP since October 2014 and is currently an active case. No other records were found.

No records were found for CVS Pharmacy \#6752 at 12502 Memorial Drive, a generator of various hazardous waste.

Pilgrim Cleaners 128 at 650 West Bough Lane had a dry cleaner drop station registration/certification until 2008 (the facility no longer exists, refer to Section 5.2., Number 65).

Phase Environmental Site Assessment for T1RZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Iouston, Texas

The TCEQ IHW registration number for the Texaco gasoline station at 12859 Kimberly Lane was queried. Records for Shell 101101 gasoline station were shown. The Shell station used to be the Texaco station. The Shell station has an inactive IHW registration for periodic or occasional generator of tank water bottoms from condensation and contaminated soil during tank replacement. Neither the Texaco nor the Shell station currently exists (refer to Section 5.2.4).

No additional information was found during the TCEQ records search for CO Polydoros \& Associates beyond that provided in the GeoSearch records search. The facility no longer exists (refer to Section 5.2,4).

Mobil Oil 00BLY at 12860 Kimberly Lane and West Belt had active miscellaneous storage containers with 1HW Solid Waste Registration (the facility no longer exits, refer to Section 5.2.4). Waste material was not recorded. The facility also had an air permit for a soil and groundwater remediation system. No details were given about the types of contamination. This site also had a LPST registration, however it is greater than 500 feet and so the details of the LPST are not presented here.

Shell Oil gasoline station at 12860 Kimberly Lane is a petroleum storage tank sitc. The site is located greater than 500 feet from the Subject Right-of-Way, therefore a TCEQ records search was not performed.

Weatherford US Houston at 10802 Katy Frecway entered the VCP program (VCP \#1137) in 2000. Soil and groundwater were contaminated by chlorinated solvents and VOCs. A response action plan and a response action completion report were prepared. A notice of deficiency was issued by the TCEQ in October 2005 and Weatherford US Houston withdrew from the VCP program in March 2007. Weatherford US Houston ceased to operate in December 1991 and was cnrolled in the IHW Corrective Action Program in 1994 and was still active in the program as of February 2015. The facility had two tanks and a container storage area which had an industrial and hazardous waste solid waste registration. The manufacturer had industrial hazardous waste registrations for varsol, oil, hydraulic and cutting oil, plant refuse, general miscellaneous trash, metal scrap, and some other unidentified waste codes. Soils were contaminated by chlorinated solvents, including methylene chloride, volatile and semivolatile organic compounds, BTEX, and concentrations of trichloroethylene required remediation or other type of remedy. A letter dated January 26,2015 indicated that nine monitor wells were placed in the upper groundwater bearing unit (GWBU) between approximately 24 feet to 45 fect and 10 monitor wells were placed in the second GWBU between approximately 58 feet to 70 feet. The first GWBU is contaminated with tetrachloroethane (PCE), trichloroethenc (TCE), cis-1, 2 dichlorethene (cis-DCE), trans-1, 2dichlorethene (trans-DCE) , 1, 1 dichloroethene (1, 1 DCE) and vinyl chloride (VC). One or more of these contaminant concentrations exceeded applicable TCEQ limits in each of the wells except one. PCE, TCE , 1, 1 DCE and VC exceed acceptable limits in three wells screened in the second GWBU. Other volatile and semivolatile organic compounds were present in the groundwater. The plume extent in the upper GWBU is estimated to be approximatcly 100 feet offsite (no well control). The plume in the second GWBU is estimated to be 350 feet offsite (no well control). The groundwater gradient is to the south to southwest. Groundwater and soil analytical results, groundwater elevations, and groundwater gradient maps are included in Appendix C. The TCEQ

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

concluded that the second GWBU has not been delineated vertically or laterally. Groundwater remediation included injection wells with injection of molasses and soy oil. The consultant recommended an MSD designation for the site, but no application had been submitted by January 2015. The site is currently undergoing groundwater/media monitoring. Threc USTS (one was a 10,000 -gallon tank) were also removed from the site in November 1991. Approximately 4.5 feet of PSH was found in one monitor well in 1996. The site also had a wastewater permit which expired (unknown date). No other information was found concerning the permit.

Fluorocarbon Plastic \& Rubber Production at 10420 Kay Freeway operated from 1962 to 1985 and was enrolled in the 1HWCA Program and currently has an inactive status. The facility had 1HW registrations for general plant refuse, sump sludges containing miscellancous chemicals and organic acids (acetic, formic, propionic, and butyric), some of which was disposed on site. Soils were contaminated with methylene chloride, chlorinated hydrocarbons, acetone, 2 -butanone, TPH, and the upper GWBU (approximately 10 feet to 18 feet) was contaminated with methylene chloride, oil and grease, trichloroethylene, and some other volatile organic compounds (summary of analytical results are included in Appendix C). According to reports in the TCEQ files, groundwater gradient is to the southeast, but no offsite migration has occurred. Contaminated soils were excavated and disposed. On-site structures were demolished, pressure washed, and disposed. Contaminated groundwater was removed and treated with activated carbon and reinjected into the GWBU. The company also has an inactive status transporter IHW registration. No other details were provided in the records.

Spring Branch Service Center owned by Houston Lighting \& Power Company at 10310 Katy Freeway enrolled in the IHW Corrective Action Program in May 1996 for the closure of waste management units. Soils were contaminated by metals and total petroleum hydrocarbons. Contaminated soils were excavated from the site. Closure of the units were approved in July 2011. The records did not indicate whether remediation took place at the site. The site had IHW registrations for the following waste management units: waste oil collection tank, car wash sump, drum storage area, polychlorinated biphenyls (PCB) storage area, bins, and a lift rack sump. Waste descriptions included rags contaminated with solvents, paint, and oily residues; spent solvents; liquid paint waste; waste diesel; waste gasoline; metal grinding waste; machine coolant; paint waste; asbestos; hydrocarbon-contaminated soils; mineral oil contaminated soils; blast grit; Resource Conservation and Recovery Act (RCRA) empty plastic or fiber containers; lift rack sump sludge; spent antifreeze; waste grease; vchicle wash rack sludge; waste oil; spent roofing materials; floorsweep materials; metal grinding wastes; used carbon zinc batteries; hydrocarboncontaminated rags and absorbent material; Class 2 empty metal containers, fiber, or plastic containers; miscellaneous plant trash; creosote treated wood; penta treated wood; paderete; reacted poly set; medical wastes; PCB -contaminated containers; PCB capacitors; non- PCB capacitors; PCB -contaminated oil; PCB -contaminated soil and debris; and waste naphtha.

Spring Branch Service Center also has had three different LPSTs, but these were located almost one mile from the Subject Right-of-Way and therefore details are not presented here. A $10,000-$ gallon steel empty tank was removed from the ground at Spring Branch Service Center in Junc 2007. The site also had a storm water permit to discharge water into Rummel Creck.

Spring Branch Scrvice Center was enrolled in the VCP in November 2007. A Remedial Action Completion Report was submitted in April 2008 and the VCP activity has been inactive since that time. Soils were contaminated by metals, semi-volatile organics, and TPH. Groundwater was contaminated by metals, semi-volatile organics, TPH, and VOCs. Arsenic and naphthalene concentrations in soil and groundwater required remediation or other remedy. The type and amount of remediation at the site and whether performed are unknown.

4.3 Additional Environmental Records

A request for information on spills, releases, other incidents, and emergency responses involving hazardous materials and/or petroleum products at the Subject Right-of-Way and its vicinity (Key Map Cells $489 \mathrm{G}, 489 \mathrm{H}$, and 489 M) was emailed on March 3, 2015 to the City of Houston Fire Department (refer to Appendix C). A response was received on March 6, 2015 (refer to Appendix C). The following records are for locations within 500 feet of the Subject Right-of-Way:

- A turn around (false alarm) at 12850 Memorial Drive.
- A turn around (false alarm) at 12500 Memorial Drive.
- 30 gallons of diesel released at 12516 Memorial Drive (in the Lantern Lane Shopping Center neanly 500 feet from Subject Right-of-Way).

Mr. Metzger did not request records from the Harris County Public Health and Environmental Services (HCPHES). In a telephone conversation to Ms. Evelyn Phillips of HCPHES on Decemher 18,2014, she stated that most of the information the HCPHES has concems grease traps and that they did not have records on oil, gas, and chemical spills. In addition, a request would need to be made for each address. Due to the number of properties along the Subject Right-ofWay and area within 500 feet, these records were not deemed reasonably ascertainable or practically reviewable due to their large numbers.

4.4 Physical Settings Source

4.4.1 Topography

The 2013 Hedwig Village, Texas United States Geological Survey 7.5-Minute topographic map was reviewed to determine the physical setting of the site as required by ASTM E1527-13 (refer to Appendix D). The topographic map shows that the land underlying the Project Alignment area is flat with a surface elevation ranging between 65 feet and 75 feet above Mean Sea Level (MSL). The surface gradient direction is generally to the south or southeast. Buffalo Bayou and Rummel Creek are the major bodies of water shown on the map. At its closest the bayou is approximately 1,300 feet from the Subject Right-of-Way. Besides the water bodies, roads are the only physical features shown on the topographic map. Except for the surface elevations, bayou, streets, and a few buildings, the topographic map contains minimal information on the topography, geology, hydrogeology, or other physical characteristics on or adjoining the Subject Right-of-Way.

4.4.2 Soils

As shown in the Natural Resources Conservation Service Web Custom Soil Resource Report for Harris County, Texas attached in Appendix D, the soil mapping units encountered in the Subject Right-of-Way and the surrounding area are the Addicks-Urban land complex (Ak), Gessner-Urban land complex (Gu), the Hatliff-Pluck-Klan complex (HatA), the Verland-Urban land complex (Mu), and Urban land (URLX).

Addicks-Urban Land Complex (Ak) soils occur in nearly level irregular-shaped areas. The parent material of these soils is loamy fluviomarine deposits. The surface of this soil-mapping unit is generally plane to slightly convex; and slopes range from 0 to l percent and average about 0.3 percent. This complex is composed of 20 to 85 percent Addicks loam, 10 to 60 percent urban land, and 5 to 20 percent other soils. Addicks soils are poorly drained, have slow surface runoff and intemal drainage, moderate permeability, and high available water capacity.

Gessner-Urban Land Complex soils oceur in broad nearly level areas and in depressions that vary from 15 to 180 acres in area with a few occurrences of several hundred acres. The parent material of these soils is loamy fluviomarine deposits. Gessner soils make up approximately 55 percent of this mapping unit, Urban soils compose approximately 35 percent, and other soils make up approximately 10 percent. Down-slope and across-slope shape of the unit is concave. Gessner soils are poorly drained, and are generally saturated in winter and early spring. Surface runoff is very slow, and internal drainage is slow. Water remains in surface depressions of this soil for long periods following rain. The soils have moderate permeability and high available water capacity.

Hatliff-Pluck-Klan Complex (HatA) is a nearly level soil on floodplains. The parent material is loamy alluvium. The surface slope ranges from 0 to 1 percent. The soils are frequently flooded. The Hatliff and similar soils make up about 38 percent of the unit; Pluck and similar soils make up approximately 35 percent of the unit; Klan and similar soils, 24 percent of the unit; and other soils, 3 percent of the unit. The Hatliff soils have a linear down-slope shape and a convex acrossslope shape. The soils are well drained with negligible runoff. Water storage is moderate. Pluck soils have a concave down-slope and across-slope shape. The soils are poorly drained with high runoff. Available water storage is high. Klan soils have a linear down-slope shape and concave and linear across-slope shape. The soils are poorly drained with high runoff. Available water storage is moderate.

The Verland-Urban land complex (Mu; also known as Midland Urban land complex) is present in nearly level in broad irregular areas that vary from 30 to 600 acres. Slopes range from 0 to 1 percent and average 0.5 percent. Both down-slope and across-slope shapes are linear. Approximately 50 percent of this mapping unit is composed of Verland soils, 35 percent is urban land, and 15 percent or less is composed of other soils. Limitations for development on this mapping unit are severe due to poor drainage and shrinking and swelling in underlying layers. Verland series soils are characterized by very slow surface runoff, permeability, and internal drainage and high available water capacity.

Urban land (URLX) has a slope of 0 to 3 percent and has a linear down-slope and across-slope shape. Runoff is very high and available water capacity is very low.

4.4.3 Groundwater and Floodplains

According to the 1994 Texas Water Development Board's Major Aquifers in Texas Map, the Gulf Coast Aquifer, which includes nine geologic formations, is the underlying aquifer in the area of the Subject Property. A map and description of the Gulf Coast Aquifer (modificd from Baker 1979) is attached in Appendix D. The aquifer consists of complex interbedded clays, silts, sands and gravels which are hydraulically connected. The two major aquifers in the Houston area are the Chicot and the Evangeline aquifers. These aquifers are Pliocene and Pleistocene in age and
generally consist of sand layers interbedded with clays and gravels that occur near the surface and continue to a depth in excess of 1,200 feet. Recharge of these aquifers is from precipitation on outcrop areas that occur to the northwest.

To assess the flooding probability, the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map No. 48201C0645L (revised June 18, 2007) for Harris County, Texas and Incorporated Arcas was reviewed (refer to map and legend in Appendix D). As shown on the map, most of the castern portion of the Subject Right-of-Way is located in Zone X Flood Areas. This zone includes areas of 0.2% annual chance of flooding (500 -ycar floodplain); areas of 1% annual chance flood (100-year floodplain) with average depths less than one foot or with drainage areas less than 1 square mile; and areas protected by levees from the 1% annual flood.

4.4.4 Active Faults

As shown on the map of Principal Surface Faults of the Houston Central Metropolitan Area (Terrain Solutions, Inc. after O'Neill and Van Siclen with additions by C. Norman, 2004) in Appendix A, the West Piney Point Fault crosses the western portion of the Subject Right-of-Way. On March 19, 2005, Robert Metzger, AEC Senior Gcologist, visited the Subject Right-of-Way and surrounding area to look for evidence of faulting. He did not obscrve any evidence.

4.5 Historical Use Information

ASTM E1527-13 states that "all obvious uses of the property shall be identified from the present, back to the property's first developed use, or back to 1940 whichever is earlier'. The purpose of consulting historical sources is to "develop a history of the previous uses of the property and surrounding area, in order to help identify the likelihood of past uses having led to recognized envirommental conditions in connection with the property". The following standard historical sources (as identified in ASTM E1527-13) were reviewed: aerial photographs, historical topographic maps, fire insurance maps, and local city/county directories. References were reviewed once every 5 years or as available.

4.5.1 Aerial Photographs

Historical acrial photographs of the Subject Right-of-Way and the surrounding area that were taken in 1944, 1953, 1966, 1978, 1989, 1996, 2004, and 2012 were reviewed (refer to copies of the aerial photographs in Appendix E). Two aerial photographs cover the Subject Right-of-Way for 1953 and 1989. The approximate location of the Subject Right-of-Way is identified on each aerial photograph.

In the 1944 aerial photographs, most of the area is wooded with some farm land. A few circular lakes can be observed. Two roads which became parts of present-day Memorial Drive and Beltway 8 are visible in the upper left-hand comer of the aerial. Buffalo Bayou and a few of its tributaries can be observed near the lower portion of the aerial photograph.

Some of the wooded areas are no longer present in the 1953 aerial photograph. The present-day Memorial Drive is visible on the aerial photograph. Some human activity can be seen along Buffalo Bayou. The remaining area is generally the same as in 1944.

Much growth took place in the Memorial Drive area between 1953 and 1966. The area is now connected with roads including the road which now is occupied by Beltway 8. The area is mostly covered by residential areas with some commercial areas and multi-family dwellings. A cluster of commercial buildings can be seen north of the western end of the Subject Right-of-Way. A gasoline service station appears to be located on the northern side of Memorial Drive near the western end of the Subject Right-of-Way. Some wooded areas are still visible especially in the area south of the eastern end of the Subject Right-of-Way. The Lantern Lane Shopping Center at 12534 Memorial Drive near the end of the Subject Right-of-Way is first visible in the 1966 aerial photograph. A sewage or water treatment plant is visible along Buffalo Bayou.

Additional multi-family dwellings are now visible in the eastern portion of the Subject Right-ofWay in the 1978 aerial photograph. More commercial buildings are located north of the western end of the Subject Right-of-Way than in previous aerial photographs. Most of the wooded areas south of the Subject Right-of-Way have been removed. The remaining portion of the Subject Right-of-Way is similar to the 1966 aerial photograph.

Beltway 8 is now visible in the 1989 aerial photograph. The rest of the area remains largely unchanged.

The 1996 aerial photograph remains largely unchanged from the 1989 one.
The 2004 aerial photograph shows that the buildings in the area north of the western portion of the Subject Right-of-Way have be reconfigured. Little else has changed since the prior aerial photograph.

The 2012 aerial photograph shows little change from the 2004 aerial photograph.
In summary, acrial photographs since 1966 show that the Subject Right-of-Way area is predominantly residential with some commercial and wooded areas. A gasoline service station appears to be located in 1966 and subsequent aerial photographs. There is no evidence of RECs in connection with the Subject Right-of-Way which could be identified during the review of the acrial photographs.

4.5.2 Historical Topographic Maps

The Subject Right-of-Way is located on the 1915 Hillendahl, Texas; 1919 Addicks, Texas; 1928 North Houston, Texas; 1955 Addicks, Texas; 1970, 1982, 1995, and 2013 Hedwig Village, Texas topographic quadrangle maps. Each of these maps were reviewed for this ESA-1 (refer to the topographic maps in Appendix E). The approximate location of the Project Alignment is identified on each map. The maps show that the land underlying the Project Alignment area is very flat. The topography of the area was discussed in Section 4.4.1.

A review of the 1915 topographic map shows the Subject Right-of-Way and surrounding land is mostly undeveloped and wooded. Houston and Katy Road (current Interstate 10) is located north of the Subject Rightwof-Way. Buffalo Bayou and its tributaries including Rummel Creek, are visible in the lower portion of the map. Several unimproved roads are located northeast of the Subject Right-of-Way. The map uses a 1 -foot contour interval.

Phase 1 Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Fouston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

The 1919 and 1928 topographic maps do not show any significant changes. A 5-foot contour interval is used in these maps and in the remaining topographic maps.

The 1955 topographic map shows some roads and buildings in the Subject Right-of-Way and surrounding area including Memorial Drive. U.S. 90 is located at the previous location of Houston and Katy Road.

The 1970 topographic map shows significant residential and some commercial development in the Subject Right-of-Way and surrounding area. Many roads including West Belt Drive (current West Sam Houston Parkway or Beltway 8) are located in the area and most of the wooded areas are gone. A cluster of commercial buildings is now located on the northern side of Memorial Drive at the western end of the Subject Right-of-Way. A sewage disposal facility is now located near Buffalo Bayou near West Belt Drive. A commercial building is located at the northeastern comer of Tallowood Road and Memorial Drive.

In the 1982 topographic map, the commercial area north of the western end of the Subject Right-of-Way is larger. The wooded areas south of the eastern end of the Subject Right-of-Way have been removed and replaced with residential areas. The drainage pattern of one of the tributaries of Buffalo Bayou located just west of Tallowood Street has been modified.

Beltway 8 (West Sam Houston Parkway) is first visible in the 1995 topographic map. Town and Country Mall is also present north of the western area of the Subject Right-of-Way. The remaining portion of the topographic map is similar to the 1982 map.

The 2013 topographic map shows little change compared to the 1995 map. Interstate 10 is first identified on the 2013 topographic map.

Except for the man-made structures previously indicated and the general topographic information, the topographic maps contain minimal information on the topographic, geologic, or hydrologic conditions of the Subject Right-of-Way and the surrounding area. No RECs were observed on the topographic maps.

4.5.3 Sanborn Fire Insurance Maps

Mr. Robert Metzger reviewed the index to Sanborn Fire lnsurance Maps at the Houston Public Library on March 13, 2015. No maps covering the Subject Right-of-Way or adjoining areas were available.

4.5.4 Local Street Directories

Houston City/Harris County directories located in the Houston Public Library from 1956 (first development) to 2015 were reviewed on March 12 and 18, 2015 to determine past land use and locations of possible RECs. Directorics for every five years from 1956 to 1981 and from 1987 to 2012 were reviewed. The 2014 directory was also reviewed. Only Volume 1 and Volume 4 for 2015 were available and these were also reviewed. The following street addresses within approximately 500 feet of the Subject Right-of-Way plus the addresses for the IHW sites out to 1 mile were reviewed:

Phase 1 Envirommental Site Assessment for TlRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Eeet East of Tallowood Road, Houston, Texas

- Entire Bendwood Drive
- 12519 to 12610 and 12699 to 12805 Boheme Drive
- 12702 to 12726 Broken Bough Drive
- 12802 to 12926 Butterfly Lane
- 614 to 631 Cherrybark Lane
- Entire Cobblestone Drive
- Entire Faust Lane
- 510 to 538 Hallie Drive
- 402 to 424 Hollow Drive
- Entire Huntington Drive
- 10310, 10420, and 10802 Katy Road/ Old Katy Road/Katy Freeway
- 12727, 12859, and 12860 Kimberly
- 1 to 10 Legend Lane
- 12500 to 12926 Memorial Drive
- Entire Memorial Bend Drive
- Entire Memorial Park (Center)
- Entire Memorial Park Drive
- 402 to 450 Mignon Drive
- 12702 to 12726 Old Oaks Drive
- 12723 to 12730 Pebblebrook Drive
- Entire Rip Van Winkle Drive
- 401 to 425 Tallowood Drive
- 12707 to 12726 and 12903 to 12927 Taylorcrest Road
- 12802 to 12922 Tosca Lane
- Entire Town and Country Village Shopping Center
- 600 to 660 West Bough Lane
- 500 to 642 and 770 West Belt/West Sam Houston Parkway South

The potential environmental concerns found during the review are listed below.

Address	Occupant	Directories
12707 Boheme Drive	Sweetlake Chemical	2007
12702 Cobblestone Drive	Fusion Motor Mnc.	2007
10802 Katy	Hole Hog Pump and Freeway	1961,1966
Petroleum Supply Freeway	Dixel Manufacturing and Hole Hog Pump Liners	1971,1976
10802 Katy	Weatherford DMC	1981
Freeway	Esso Exploration	1976,1981
12727 Kimberly	$1971,1976,1981,1987-$	
12859 Kimberly	Texaco gas station	$8,1992-3$

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Hoaston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

12859 Kimberly	Town and Country gas station	1997-8, 2002-3
12860 Kimberly	Mobil gas station	$\begin{aligned} & 1971,1976,1981,1987- \\ & 8,1992-3 \end{aligned}$
12860 Kimberly	Shell gas station	1997-8
12526 Memorial Drive	Red Coachman Cleaners	1966, 1971
12534 Memorial Drive	Pro Cleaners, then MW Cleaners	$\begin{aligned} & 2002-3,2007,2012, \\ & 2014 \end{aligned}$
12633 Memorial Drive	Amco Auto Salvage and Car Center	2007
12645 Memorial Drive	Texaco gas station	1966,1976
12645G Memorial Drive	Post Oak Cleaners	2012,2014
12647 Memorial Drive	Gulf State Laundry	1992-3, 1997-8
12651 Memorial Drive	F. Joseph Service Station; Spic \& Span Cleaners	1961
12651 Memorial Drive	Beeler ENCO gas station	1966
12651 Memorial Drive	NABB ENCO Service	1971
12651 Memorial Drive	Exxon gas station/Holiday Cleaners	1976
12651 Memorial Drive	God Bless You Cleaner	1987-8, 1992-3
12699 Memorial Drive	Caldwell Service Station	1961
12699 Memorial Drive	Conoco gas station	1971, 1976, 1992-3
12699 Memorial Drive	Post Oak Cleaners	2002-3,2012
12754 Memorial Drive	Dapper Dan Cleaners	1976
12754 Memorial Drive	Pilgrims Laundry/Cleaners	1981, 1987-8
12754 Memorial Drive	A-1 Dry Cleaners	$\begin{aligned} & 1992-3,1997-8,2002-3, \\ & 2007,2012,2014 \end{aligned}$
12764 Memorial Drive	Phillips 66 gas station	1961, 1966, 1971
12802 Memorial Drive	Jims Mobil gas station	1976
$\begin{aligned} & 12850 \text { Memorial } \\ & \text { Drive } \end{aligned}$	Pilgrims Launderers and Cleaners	1971, 1976, 1981

Phase 1 Environmental Site Assessment for ThRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

12858 Memorial Drive \#10	Pilgrims Laundry	$1992-3$
12858 Mcmorial Drive \#46	Pilgrims Launders	1976
12860 Memorial Drive	Gulf gas station and auto service	$1971,1976,1981$, $1987-8$
12860 Memorial Drive	Town and Country Chevron	$1997-8,2002-3,2014$
12862 Mcmorial Drive	Gulf gasoline station	1961,1966
10420 Old Katy Road	Plastic and Rubber Products	1981
10802 Old Katy Road	Weatherford Custom and lnternational	$1987-8$
614 West Bough Lane	Memorial Martinizing	$1966,1971,1976$
614 West Bough Lane	Your Valet Cleaners and Laundry	$1981,1987-8$
650 West Bough Lane	Pilgrims Cleaners	

A summary of potential environmental concerns found during the search of local city directories include:

- A chemical company and motor company operated at 12707 Boheme Drive for at least one year.
- An oil company operated at 12702 Cobblestone Drive for at least one year.
- A pump, manufacturing facility and petroleum supply company operated at 10802 Katy Freeway and 10802 Old Katy Freeway for at least 28 years (refer to Environmental Records, Section 4.1, Record \#20).
- An oil exploration company operated at 12727 Kimberly for at least six years (refer to Environmental Records, Scetion 4.1, Record \#17).
- Gasoline service stations have operated at 12859 Kimberly for at least 33 years (refer to Environmental Records, Section 4.1, Record \#16).
- Gasoline scrvice stations have operated at 12860 Kimberly for at least 28 years (refer to Environmental Records, Section 4.1, Record \#18).
- A dry cleaners operated at 12526 Memorial Drive for at least six years.
- Dry cleaners operated at 12534 Memorial Drive for at least 13 years (refer to Environmental Records, Section 4.1, Record $\ddagger+8$).
- An auto salvage and car care center operated at 12633 Memorial Drive for at least one year.
- A gasoline station operated at 12645 Memorial Drive for at least 11 years (refer to Environmental Records, Section 4.1, Record \#2).
- A dry cleaners operated at 12645 Memorial Drive for at least three years (refer to Environmental Records, Section 4.1, Record \#2).
- A laundry business operated at 12647 Memorial Drive for at least eight years (refer to Environmental Rccords, Section 4.1, Record ${ }^{49} 9$).
- A gasoline station operated at 12651 Memorial Drive for at least 16 years.
- A dry cleaners operated at least one year in the early 1960 s and periodically from the 1970 s to the 1990s at 12651 Memorial Drive.
- A gasoline station operated periodically for at least 33 years at 12699 Memorial Drive (refer to Environmental Records, Section 4.1, Record \#5).
- A dry cleaners operated periodically for at least 11 years at 12699 Memorial Drive (refer to Environmental Records, Section 4.1, Record \#5).
- A dry cleaners has operated at 12754 Memorial Drive for at least 39 years (refer to Environmental Records, Section 4.1, Record \#3).
- A gasoline station has operated for at least 11 years at 12764 Memorial Drive.
- A gasoline station operated at 12802 Memorial Drive for at least one year.
- A dry cleaners operated at 12850 Memorial Drive for at least 11 years (refer to Environmental Records, Section 4.1, Record \#1).
- A dry cleaners operated at 12858 Memorial Drive Suite \#10 for at least one year and at \#46 for at least one year.
- A gasoline station operated at 12860 Memorial Drive for most of the time during at least a 44 year period of time (refer to Environmental Records, Section 4.1, Record \#6).
- A gasoline station operated at 12862 Memorial Drive for at least 6 years.
-. A plastic and rubber manufacturer operated for at least 1 year at 10420 Old Katy Road (refer to Environmental Records, Section 4.1, Record \#21).
-. Dry cleaners operated at 614 West Bough Lane for at least 22 years (refer to Environmental Records, Section 4.1, Record \#10).
- A dry cleaners operated at 650 West Bough Lane for at least 11 years.

4.5.5 Harris County Appraisal District Records

A review of the Harris County Appraisal District Records (HCAD) for the commercial properties adjacent to and within 500 feet of the Subject Right-of-Way were reviewed. The records are updated annually in January. The following HCAD files provided useful information to develop the past history of the properties adjacent and within 500 feet of the Subject Right-of-Way. A copy of HCAD records with useful information are included in Appendix F. The numbers at the top of the HCAD records correlate with the numbers in Site Reconnaissance, Section 5.2 and the numbers on Figures 4 a and 4 b in Appendix A .

According to HCAD record 040-160-000-0029, the Chevron Station located at 12860 Memorial Drive has been owned since December 2003 by Wheatley Investments, Ltd (refer to Section 5.2, Number 16). Between January 1988 and December 2003 the station was owned by Chevron USA, Inc. Gulf Oil Company owned the facility between January 1984 and January 1988. No ownership records are available prior to that date.

According to HCAD record 040-160-000-0011, 12699 Memorial Drive was owned by the Continental Oil Company (Conoco) from 1984 to 1986 (refer to Section 5.2, Numbers 46 and 47).

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

5.0 SITE RECONNAISSANCE OF SUBJECT RIGHT-OF-WAY WITH OBSERVATIONS OF THE ADJOINING PROPERTIES AND SURROUNDING AREA

5.1 Methodology and Limiting Conditions

Site reconnaissance of the Subject Right-of-Way, adjoining properties, and surrounding area within approximately 500 feet of the Subject Right-of-Way was conducted on March 17 through 19, 2014 and April 9, 2015. Mr. Robert J. Metzger conducted the reconnaissance. He viewed the Subject Right-of-Way, adjoining properties, and surrounding areas from a vehicle and on foot from the Subject Right-of-Way, nearby public roadways, or rights-of-way.

5.2 Observations

5.2.1 Subject Right-of-Way

The Subject Right-of-Way is approximately 6,900 feet long. Most of the Subject Right-of-Way is located along Memorial Drive from the Wesi Sam Houston Parkway North (Beltway 8) to approximately 100 feet east of its intersection with Tallowood Road. The Subject Right-of-Way, according to the information provided by LAN also consists the first 100 feet of each of the following roads: northbound Beltway 8 feeder road (north and south of Memorial Drive), Broken Bough Drive, West Bough Lane, Old Oaks Drive, Huntingwick Drive, Boheme Drive, Memorial Bend Drive, Hollow Drive, Somerset Place, Legend Lane, and Tallowood Road. A map provided by LAN and an aerial photograph showing the Subject Right-of-Way are included as Figure 2 in Appendix A).

The following is a description of the Subject-of-Way (the numbers correspond to the numbers on Figures 4 a and 4 b in Appendix A):

1. The northbound Beltway 8 feeder road consists of three lanes and a turn lane and is a one-way street (refer to Figure 4 a and Photograph 1 in Appendix G). The road is constructed of concrete with curbs with storm drains and is lined with trees and landscaping. Overhead utilities cross the road.
2. Memorial Drive is a four lane road constructed of asplalt with turn lanes (refer to Figures 4 a and 4 b and Photograph 2 in Appendix G). The road is a mixture of curbed and uncurbed strctches. Ditches are present alongside the road in some areas. Harris County Flood Control District Channel W153, which is approximately 10 feet deep, is oriented perpendicular to the northern side of the road between Hollow Drive and Tallowood Road. The chanel crosses beneath the road through a culvert with metal pipes and connects with the storm sewer system beneath Memorial Drive (refer to Photograph 3 in Appendix G). Storm sewer drains are located along portions of the road. Overhead utilities parallel and cross the road. Transformers are located on some power poles. The transformers are in fair to good condition and show no evidence of leakage. Two environmental monitor wells were observed on the western edge of the right-of-way; one was across from the Chase Bank at 12802 Memorial Drive and the other across from the Bank of Texas at 12764 Memorial Drive (refer to numbers 19 and 21 below and Photographs 4 and 5 in Appendix G). An additional monitor well was observed in the eastern edge of the Memorial Drive right-of-way just west of the A-1 Cleaners at 12754 Memorial Drive (refer to number 22 below). Two plugged monitor wells were also observed on the southern edge of the Memorial Drive right-of-way across from Tallowood Road (refer to number 31 below and Photograph 7 in Appendix G). A mixture of commercial and residential land use adjoins Memorial Drive.
3. Broken Bough Drive is a two lane concrete road with sloped concrete curbs (refer to Figure 4a). No storm drains are present in the street right-of-way. Overhead utilities parallel and cross the road. Residential land use adjoins the street.
4. West Bough Lane consists of a two lane asphalt road (refer to Figure 4 a and Photograph 8 in Appendix G). Some of the road has curbs with storm drains. Overhead utilities cross and parallel the road. Transformers are located on some utility poles. The transformers are in good condition and show no evidence of leakage. A monitor well was observed in the street right-of-way at the northern corner of West Bough Lane and Memorial Drive (refer to Photograph 9 in Appendix G). Land use adjacent to the road is commercial.
5. Old Oaks Drive consists of a two lane concrete road with curbs (refer to Figure 4a). Adjacent land use is residential.
6. Huntingwick Drive consists of a two lane concrete road with curbs (refer to Figure 4 b). Adjacent land use is commercial.
7. Boheme Drive is a two lane concrete road with curbs (refer to Figure 4b). Overhead utilities parallel and cross the road. Adjacent land use is commercial and residential.
8. Rip Van Winkle Drive is a two lane concrete road with curbs (refer to Figure 4b). The street sign indicates this road as Rip Van Winkle Drive, however some maps show the portion of Rip Van Winkle which is in the Subject Right-of Way as Memorial Bend Drive. Commercial land use adjoins the road.
9. Hollow Drive consists of a two lane asphalt road with ditches (refer to Figure 4b). Adjacent land use is residential (refer to Photograph 10 in Appendix G).
10. Somerset Place is a two lane road into an apartment/condominium complex at 12625 Mcmorial Drive (refer to Figure 4b). The road has storm drains and overhead utilities which cross the road and has a guard shack in the middle of the road.
11. Legend Lane is a two lane asphalt lane with concrete curbs (refer to Figure 4b). Overhead utilities cross the road. Plugged monitor wells were observed in the pavement of this street approximately 100 feet south of Memorial Drive (refer to Photograph 11 in Appendix G). Residential land use adjoins the road.
12. Tallowood Road is a two lane asphali road with ditches (refer to Figure 4b). The road is partially curbed. Overhead utilities parallel and cross the road. Land use adjoining the road is a mixture of commercial and residential.

Except for the monitor wells observed, no evidence of any environmental concerns were observed during the site reconnaissance of the Subject Right-of-Way.

5.2.2 Properties Which Adjoin the Subject Right of Way

Properties adjoining the Subject Right of Way is a mixture of commercial, residential, and roads. The following nonresidential properties and conditions were observed adjacent to the Subject Right of Way duxing the site reconnaissance. The numbers correspond to the numbers on Figures $4 a$ to $4 b$ in Appendix A:
13. Main lanes of Beltway 8 which adjoin west of the Subject Right-of-Way (refer to Figure 4 a). This road is a multilane concrete freeway with curbs and storm drains.
14. Bridge on Memorial Drive Bridge over Beltway 8 (refer to Figure 4a).
15. Beltway 8 feeder roads (refer to Figure $4 a$).
16. Chevron gasoline station with convenience store and car wash at 12860 Memorial Drive (refer to Figure 4 a and Photograph 12 in Appendix G). This site is registered as LPST \#091934 and

LPST \#116132 (refer to Sections 4.1, Record \#6 and Section 4.2). Three plugged monitor wells and three plugged recovery wells were observed on site (refer to Photograph 13 in Appendix G). 17. Various retail shops (refer to Figure 4a).
18. Town and Village Shopping Center at 12850 Memorial Drive. The slopping center includes a Randalls groeery store, Walgreens, and various retail shops and businesses (refer to Figure 4 a and Section 4.1, Record \# \ddagger and Section 4.2). The Dillard store identified in Section 4.1, Record \#1 was not found during the site reconnaissance. This shopping center is the site of the Town and Country Village Shopping Center Dry Cleaners release (refer to Sections 4.1, Record \#t 1 and Section 4.2). A Pilgrims Launderers and Cleaners was also once located in this shopping center. A total of 26 monitor wells and at least nine recovery wells were observed throughout the shopping center but no dry cleaners was observed during the site reconnaissance. Five monitor wells are located in the grass area adjoining Memorial Drive (refer to Photograph 14 in Appendix G).
19. Clase Bank at 12802 Memorial Drive (refer to Figure 4a). This site was once occupied by a Mobil gasoline station (refer to Section 4.5.4, Local Street Directories), but no evidences of former leaks were observed during the reconnaissance.
20. West Bough Lane (refer to Figure 4a).
21. Bank of Texas at 12764 Memorial Drive (refer to Figure 4a). A Phillips 66 gasoline station was once located at this address (refer to Section 4.5.4, Local Street Directories). Five monitor wells were observed in the parking lot along Memorial Drive (refer to Photograph 15 in Appendix G). This site is not listed in any of the environmental records searched. The site is also loeated adjacent to A-1 Cleaners which is a leaking dry cleaner site.
22. A-1 Cleaners at 12754 Memorial Drive (refer to Figure 4a and Photograph 16 in Appendix G). This site is a leaking dry cleaner facility (refer to Figure 4a and Sections 4.1, Record \#3 and Section 4.2). Pilgrim Town \& Country Cleaner and Pilgrim's Cleaners were also once located herc. Four monitor wells are located on site and a remediation system is located in the northwestem corner of the site (refer to Photograph 17 in Appendix G). One offsite monitor well is located in front of the strip shopping center at 12748 Memorial Drive and another is loeated at the western edge of Memorial Drive just west of the A-1 Cleaners property. A utility pole with transformer was located on the opposite side of the northern fence of this property. No evidence of leaks were observed from the transformer.
23. Strip shopping center at 12740 to 12748 Memorial Drive (refer to Figure 4a), Businesses located at the shopping center included More Hands maid service, a beauty salon, and Baskin Robbins ice cream parlor. A monitor well was observed in front of More Hands.
24. Old Oaks Drive (refer to Figure 4a).
25. Memorial Drive Townhouses (refer to Figure 4b). Some power poles lave transformers on this property. One is rusting but no evidence of leaks from this or the other transformers was observed.
26. Huntingwick Drive (refer to Figure 4b).
27. Memorial Bend Drive (refer to Figure 4b).
28. Prosperity Bank at 12602 Memorial Drive (refer to Figure 4 b).
29. Whinney Bank at 12600 Memorial Drive (refer to Figure 4b).
30. Hollow Drive (refer to Figure 4b).
31. Tallowood Road (refer to Figure 4b). Two plugged monitor wells were observed on the sonthern edge of the Memorial Drive right-of-way opposite the end of Tallowood Road (refer to Photograph 7 in Appendix G).
32. Lantern Lane Shopping Center from 12502 to 12538 Memorial Drive (refer to Figure 4b). The shopping center includes CVS Pharmacy at 12502 Memorial Drive and MW Cleaners (former location of Pro Cleaners) at 12534 Memorial Drive which is the site of a dry cleaner leak (refer to Sections 4.1, Records \#8 and \#12; Section 4.2; and Photograph 18 in Appendix G). No evidence of monitor or recovery wells were observed at this site.
33. Memorial Drive (refer to Figure 4b).
34. Vacant lot (Memorial Green Property) at 12601 Memorial Drive (refer to Figure $4 b$ and Photograph 19 in Appendix G). This is location of VCP site (refer Sections 4.1, Record \#11 and Section 4.2). No monitor wells or recovery system were observed on the site.
35. Legend Lane (refer to Figure 4b). Two plugged monitor well were observed in this section of Legend Lane.
36. Somerset Place apartments or condominiums at 12625 Memorial Drive (refer to Figure 4b).
37. Somerset Place (refer to Figure 4b).
38. The Pines Condominiums at 12633 Memorial Drive (refer to Figure 4b). An auto salvage and car center at 12633 Memorial Drive (refer to Section 4.5.4, Local Strect Directories), but no evidence of the facility was observed.
39. Post Oak Cleaners at 12645G Memorial Drive (refer to Figure 4b). This site is a drop station (refer to Section 4.1, Record \#2 and Section 4.2)
40. Two story strip shopping center at 12645 Memorial Drive (refer to Figure 4b). The center includes a spa; gym; restaurant; jewelers; massage center;, a packing, mail, and copy center; finess studio; and stylist (type not identified). A Texaco gasoline station was once located at this address (refer to Section 4.5.4, Local Street Directories). No evidence of the gasoline station or releases was observed during the site reconnaissance.
41. Weidner Hasou \& Co. at 12649B, a home furnishing store (refer to Figure 4b). A power pole with transformer is located northeast of this facility. No evidences of leaks from the transformer were obscrved.
42. Building at 12649E through G includes a bank, dance studio, music shop, and title agency (refer to Figure 4b).
43. A beauty salon at 12651A (refer to Figure 4b).
44. Town and Country Tailors \& Alterations at 12651B (refer to Figure 4b).
45. Robert's China Crystal and Gifts at 12651C-E (refer to Figure 4b).
46. Memorial Food Store at 12699A Memorial Drive (refer to Figure 4b and Photograph 20 in Appendix G). This site was part of the former Conoco gas station LPST site (refer to Sections 4.1, Record \#5 and Section 4.2) and Caldwell Service Station (refer to Section 4.5.4, Local Street Directories). No evidence of the gasoline station or releases was observed. Post Oak Cleaners (refer to Section 4.1, Record \#5 and Scetion 4.2) was once located either here or at adjacent 12699B-C Memorial Drive (see Number 47 below).
47. Tres Market Pantry at 12699B-C Memorial Drive (refer to Figure 4b and Photograph 20 in Appendix G). This site was part of the former Conoco gas station LPST site (refer to Sections 4.1, Record \#5 and Section 4.2) and Caldwell Service Station (refer to Section 4.5.4, Local Street Directories). No evidence of the gasoline station or releases was observed. Post Oak Cleaners (refer to Section 4.1, Record \#5 and Section 4.2) was once located either here or at adjacent 12699A Memorial Drive (sec Number 46 above).
48. Boheme Drive (refer to Figure 4b).
49. Broken Bough Drive (refer to Figure 4a). A monitor well was observed on the pavement of this drive approximately 120 feet southwest of Memorial Drive (refer to Photograph 21).

The following addresses or businesses were not found during the site reconnaissance of adjacent propertics:

- Red Coachman Cleaners at 12526 Memorial Drive, which was listed in the 1966 and 1971 Houston City/Harris County Directories (refer to Section 4.5.4, Local Street Directories). The area where this address would have been is all residential with some apartment and condominium complexes.
- . 12667 Memorial Drive: Alexan Memorial Bend Apartments an IOP site (refer to Section 4.1, Record \#4). The area of this address would have been in the area of Numbers 39-42 and 82. 83 in Figure 4b.
- Pilgrims Laundry at 12858 Memorial Drive, which was listed in the 1992-3 Houston City/Harris County Directory (refer to Section 4.5.4, Local Street Directories). This address was not found during the site reconnaissance, but would have been located adjacent to the east side of the Chevron station at 12860 Memorial Drive (refer to Number 16). No evidence of the laundry or releases from it were observed during the site reconnaissance.
- Gulf gasoline station at 12862 Memorial Drive, which was listed in the 1961 and 1966 Houston City/Harris County Directory (refer to Section 4.5.4, Local Street Directories). Neither the address nor the facility were found during the site recomaissance. The address would have been located west of the Chevron Station at 12860 Memorial Drive, an area now occupied by the Beltway 8 feeder road.

5.2.3 Properties within Approximately 500 Feet of the Subject Right-of-Way

The following properties and conditions were observed within approximately 500 feet of the Project Alignment during the site reconnaissance (the numbers correspond to the numbers on Figures $4 a$ and $4 b$ in Appendix A).
50. Taylorcrest Road (refer to Figure 4a).
51. Cherry Bark Lane (rcfer to Figure 4a),
52. Continuation of Memorial Drive (refer to Figure 4a).
53. Southbound Beltway 8 feeder road (refer to Figure 4a). A power pole with transformer was observed. No evidences of leaks was observed.
54. Continuation of Beltway 8 main lanes (refer to Figure 4a).
55. Continuation of northbound Beltway 8 feeder road (refer to Figure 4a).
56. Building with vacant space and an art gallery (refer to Figure 4a).
57. Texas Children's Urgent Care (refer to Figure 4a).
58. Cell tower at 608 West Bough Lanc (refer to Figure 4a and Photograph 22 in Appendix G), This site is an lnnocent Owner/Operator site (refer to Sections 4, Record \#7 and Section 4.2).
59. Trina Morgan at 608AWest Bough Lane is a clothing shop (refer to Figure 4a).
60. Nail salon and spa at 608B West Bough Lane (refer to Figure 4a),
61. Florist at 612 West Bough Lane (refer to Figure 4a). A transformer on a power pole was observed in the residential area behind the eastern fence of this property. No evidence of leaks from the transformers was observed.
62. Strip shopping center at 650 West Bough Lane (refer to Figure 4a). The center contains various retail stores and businesses which provide various services. The following businesses are located within approximately 500 feet of the Subject Right-of-Way: restaurants, eye glasses center, haircutters, music store, café, shoe store, fitness center, and nail salon/ear piercing business. Twenty-seven monitor wells and some recovery wells were observed (refer to Photograph 23
between the southern side of the shopping center (Suite 100) and the adjoining florist, the parking lot on the western side of the center, and in the alley on the eastern side of the shopping center. No remediation system was observed. Several power poles with transformers were observed in the residential area behind the eastern wall of this property. The transformers were in good condition and no evidence of leaks were observed.
63. Orangetheory, a fitness center, is located in Suite 100 of the shopping center at 650 West Bough Lane (refer to Figure 4 a and Interviews in Section 5.0). According to an intervicw, this is the former location of Your Valet Cleancrs at 614 West Bough Lane (refer to Interviews, Section 6.0) 64. Cocos is a café located in Suite 112 of the shopping center at 650 West Bough Lane (refer to Figure 4a, and Interviews in Section 6.0).
65. Sessions Music at Suite 116 in the shopping center at 650 West Bough Lane (refer to Figure $4 a$ and Number 62 above) is the former loeation of Pilgrims Cleaner's dry cleaner drop off station (no dry cleaning done on site; refer to Figure 4a; Section 4.1, Record \#13; and Section 4.2).
66. West Bough Lane (refer to Figure 4a). Power poles with transformers were observed. The transformers were in good condition and no evidence of leaks from the transformers was observed.
67. Taylorcrest Road (refer to Figure 4a).
68. Broken Bough Drive (refer to Figure 4a),
69. Cobblestone Drive (refer to Figure 4a).
70. Hallic Drive (refer to Figure 4a).
71. Old Oaks Drive (refer to Figure 4a).
72. Huntingwick Drive (refer to Figure 4b).
73. Bendwood Drive (refer to Figure 4b).
74. Rip Van Winkle Drive (refer to Figure 4b).
75. Hollow Drive (refer to Figure 4b).
76. Tallowood Road (refer to Figure 4b). A power pole with transformer was observed. The transformer was in good condition and no evidence of leaks was observed.
77. Old Oaks Drive (refer to Figure 4b).
78. Memorial Drive (refer to Figure 4b). A power pole with transformer was obseryed. The transformer was in good condition and no evidence of leaks was observed.
79. Legend Lane (refer to Figure 4b).
80. Somerset Place (refer to Figure 4b).
81. Faust Lane (refer to Figure 4b). A power pole with transformer was observed behind a residence at the dead end of Faust Lane. From the vantage point of the observation, the transformer was in good condition and no evidence of leaks was observed.
82. Memorial Town \& Country Animal Clinic at 12661 Memorial Drive (refer to Figure 4b).
83. Gulf States Laundry Machinery Company at 12647 Memorial Drive (refer to Figure $4 b$ and Photograph 24 in Appendix G). This facility is the former location of several dry cleaners (refer to Sections 4.1, Record \#9 and Section 4.2). A fenced in area with loading dock was observed at the southern end of the facility (refer to Photograph 25 in Appendix G). The entire areas was underlain by concrete pavement which appeared in good condition. A dumpster full of trash was observed on the south side of the area. Four 55-gallon drums, eight propane-type tanks on a rack, four gas tanks like those used in welding, were observed in the area. One of the drums was new and labeled Exxon Mobil DF2000 fluid. The remaining tanks and drums appeared in good condition from the point of observation (from the fence) and no evidence of any leaks was observed in the area from the fence. Various types of equipment and parts, wooden pallets, and scrap metal were observed in the fenced compound.

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

84. Strip shopping center at 12649 to 12655 Memorial Drive (refer to Figure $4 b$). The center includes a Domino's pizza parlor, a hair salon, a realtor, and a shop which makes dress and clothing alterations. Various gasoline service stations and cleaners were located at 12651 Memorial Drive (refer to Section 4.5.4. Local Strect Directories), but no evidence of the gasoline stations was observed. A plugged monitor well associated with a release from the Conoco LPST (refer to Sections 4.1, Record \#5 and numbers 46 and 47 in this section) was observed in the parking lot north of this location (refer to Photograph 26 in Appendix G).
85. Izakaya Wa, a sushi, tapa, and wine bar and restaurant at 12665A Memorial Drive (refer to Figure 4b).
86. Compass drive-through bank (refer to Figure 4b).
87. Mcmorial Bend Place at 12707 Boheme Drive (refer to Figure 4b). This is a condominium complex. This was once the location of Sweetlake Chemical and Fusion Motor Inc. which was histed in the 2007 Houston City/Hanris County Directory (refer to Section 4.5.4, Local Street Directories). No evidence of contamination at this location was visible from the vantage point of the site reconnaissance.
88. Boheme Drive (refer to Figure 4b),
89. Faust Lanc (refer to Figure 4a).
90. Mignon Lane (refer to Figure 4a).
91. Broken Bough Drive (refer to Figure 4a).
92. Butterfly lane (refer to Figure 4a). A monitor well was observed in the pavement of this street across from the residence at 12810 Butterfly Lane (refer to Photograph 27 in Appendix G).
93. Tosca Lane (refer to Figure 4a).
94. Beltway 8 north bound feeder road (refer to Figure 4a).
95. Main lanes of Beltway 8 (refer to Figure $4 a$).
96. Beltway 8 south bound feeder road (refer to Figure 4a).
97. Butterfly Lane (refer to Figure 4a).

The following addresses or businesses were not found during the site reconnaissance of the area within 500 feet of the Subject Right-of-Way:

- Firethom Oil Company at 12702 Cobblestone which was listed in the 2007 Houston City/Harris County Directory (refer to Section 4.5.4, Local Street Directories). This address was found, but a house was located there. The surrounding area was all residential.
-. Memorial Martinizing and Your Valet Cleaners and Laundry at 614 West Bough Lane (refer to Section 4.1. Record \#9; Section 4.2; and Section 4.5.4, Local Strect Directories). This address and these facilities were not found during the site reconnaissance, but based on currently addresses on West Bough Lane, these facilities and address hikely would have been where the current strip shopping center is at 650 West Bough Lane. Intervicws identified Suite 100 of the Shopping Center were Orangetheory is currently located as the location of the cleancrs (refer to Interviews, Section 6.0)

5.2.4 Properties Beyond 500 Feet of the Subject Right-of-Way

The following Industrial and Hazardous Waste and Industrial Hazardous Waste Corrective Action Sites (refer to Section 4.1, Records \#16, \#17, \#18, \#20, \#21, and \#22 and Section 4.2) are located beyond 500 feet from the Subject Right-of-Way but within the required 1.0 miles Environmental Records search radius.

- Texaco at 12859 Kimberly Lane (refer to Section 4.1, Record \#16 and Section 4.2). This gasoline service station has been replaced with a Wells Fargo Bank.
-. CO Polydoros \& Associates at 12727 Kimberly Lane (refer to Section 4.1, Record \#17 and Section 4.2). The address is now occupied by a medical center.
- Mobil Service Station at 770 West Sam Houston Parkway North \#100 (refer to Section 4.1, Record 18 and Section 4.2). The facility no longer exists and the address is occupied by a la Madeleine restaurant.
- Shell Oil at 12860 Kimberly Lane (refer to Section 4.1, Record \#18 and Section 4.2). The facility and address were not found. The address would have been where the la Madeleine restaurant is now located across the street from the current Wells Fargo Bank at 12860 Kimberly Lane.
- Weatherford US Houston industrial and hazardous waste corrective action site at 10802 Katy Freeway (refer to Section 4.1, Record \#20 and Section 4.2). The address and facility were not found during the site reconnaissance. An internet search of the address indicated it was approximately 0.9 miles to the north-northwest from the closest part of the Subject Right-ofWay.
- Fluorocarbon Plastic \& Rubber Production industrial and hazardous waste corrective action site at 10420 Katy Freeway (refer to Section 4.1, Record \#21 and Section 4.2). The address and facility were not found during the site recomnaissance. An internet search of the address indicated it was approximately 0.9 miles to the north-northwest from the closest part of the Subject Right-of-Way.
- Spring Branch Service Center at 10310 Katy Freeway (refer to Section 4.1, Record \#22 and Section 4.2). The address and facility were not found during the site reconnaissance. An internet search of the address indicated it was approximately 1 mile to the north-northeast from the closest part of the Subject Right-of-Way.

5.2.5 Site Reconnaissance Summary

During the site reconnaissance, monitor/recovery wells indicating a soil or groundwater release or plugged monitor wells/recovery wells indicating a previous release were observed at the Subject Right-of-Way or adjoining the Subject Right-of-Way at:

- Chevron gasoline station at 12860 Memorial Drive.
- Town and Village Shopping Center at 12850 Memorial Drive.
- Memorial Drive right of way near West Bough Lane.
- West Bough Lane right-of-way near Memorial Drive.
- Bank of Texas at 12764 Memorial Drive.
- A-1 Cleaners at 12754 Memorial Drive. A groundwater/soil remediation system was also observed on the site.
- More Hands at 12748 Memorial Drive.
- Lantern Lane right-of-way.

Monitor wells or plugged monitor wells which were observed at locations not adjoining the Subject Right-of-Way but within 500 feet of the Subject Right-of-Way include:

- Strip shopping center at 650 West Bough Lane.
- Butterfly Lane right-of-way near Broken Bough Drive.
- Broken Bough Drive right-of-way.

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

- Plugged monitor wells in parking lot north of strip shopping center at 12649 to 12655 Memorial Drive.

Four 55-gallon drums, eight propanc-type tanks on a rack, four gas tanks like those used in welding, were observed on concrete in the fenced in area of Gulf States Laundry Machinery Company at 12647 Memorial Drive which is not adjacent to Subject Right-of-Way, but within 500 feet. Various types of equipment and parts, wooden pallets, and scrap metal were observed in the fenced compound. No evidence of releases or spills were observed at this location.

No evidence of any of the following were obscrved on properties adjacent to or within 500 feet of the Subject Right-of-Way during the reconnaissance:

- Above-ground storage tanks (AST).
- Sumps, pits, ponds, pools, or standing water etc. containing liquids likely to be hazardous substances or petroleum products.
- Evidence of lcaking electrical or hydraulic equipment known or likely to contain PCBs.
- Discarded, abandoned, or disposed equipment, solid wastes, etc. that could potentially contain or relcase hazardous substances or petroleum products.
- Odors indicative of hazardous substances or petroleum products.
- Drains and sumps containing petroleum products or hazardous substances or such materials draining into drains and sumps.
- Stained soil.
- Stressed vegetation.
- Dry wells, irrigation wells, injection wells, and abandoned wells.
- Waste water or septic systems.
- Suspect fill material or landfills.
- Medical waste, grcase traps, or grease disposals.
- Hydraulic lifts that potentially released hydraulic fluids.
- Leaking tanks, drums, or hazardous substance containers.

6.0 INTERVIEWS

On March 5, 2015, Mr. Robert Metzger of AEC contacted Mr. Michael Marcon of In Contro Technologies Inc. to discuss the dry cleaner release at MW Cleaners/Pro Cleaners VCP site at 12534 Memorial Drive in the Lantern Lane Shopping Center (refer to Figure 4a, Number 32; Section 4.1 Record \#8; and Site Reconnaissance, Section 5.2, Number 32). He stated that the case had been closed in 2012 and that a Municipal Settings Designation (MSD) had been approved. The last groundwater monitoring rcport was prepared in October 2011 and the results were similar to the April 2011 report. He indicated that he would try to send a copy of it, but the report was not received by the completion time of this report. The applicable portions of the report are included in Appendix H. AEC reviewed the April 2011 report during the ESA-1 conducted in 2011 for the local drainage project at 12522 Old Oaks (AEC report E115-11, December 12, 2011). Review of that report indicated that in March 2011, groundwater samples were collected from 34 wells in two groundwater bearing units impacted by the release of chlorinated solvents from the VCP site. The depth to groundwater in the wells in the first (upper) groundwater bearing unit (GWBU) varies from approximately 16 to 19 fect below the ground surface (bgs) and in the sccond (lower) GWBU varies from approximately 23 to 28 feet bgs. The report indicated that groundwater flow direction
in both groundwater bearing units is to the southwest. Concentration maps shows the contamination in the upper GWBU extends slightly northward of the shopping center beneath a residential area and westward and southwestward beneath Tallowood Road (refer to Figure 4b, Numbers 12,31, and 76), a residential area west of Tallowood Road and north of Memorial Drive, and Memorial Drive. Contaminants in the second GWBU migrated southwestward beneath Tallowood Road, the residential area west of Tallowood Road and north of Memorial Drive, Memorial Drive from approximately 100 feet east of Tallowood Road to near the entrance of the Somerset Place Condominiums (refer to Figure 4b, Numbers 2 and 36), the Memorial Green property at 12601 Memorial Drive (refer to Figure $4 b$, Number 34), Legend Lane and its residential area (refer to Figure 4 b , Numbers 11,35 , and 79), and a portion of the condominium complex at 12625 Memorial Drive (refer to maps in Appendix H).

AEC performed a Phase Il ESA for the local drainage project at 12522 OId Oaks Road in early 2012 (AEC Phase Il ESA report E102-12 dated February 27, 2012). Four soil borings were advanced along Tallowood Road from Memorial northward to Boheme Drive to 11 feet below the top of the pavement. No groundwater was encountered in the borings, but concentrations of $4-$ isopropyltoluene, methyl ethyl ketone, toluene, and tetrachloroethylene in some of the soil samples collected exceeded their respective laboratory sample detection limit. The compound 1,2dibromoethane was also detected at a concentration exceeding the TCEQ Texas Risk Reduction Program (TRRP) Tier l Residential Soil ${ }^{\text {GW }}$ Soil ${ }_{\text {lng }}$ Protective Concentration Level (PCL) action level from a soil sample taken from 10 to 11 feet depth (refer to Table 2 from AEC ESA-ll report in Interviews, Appendix H). A potentially petroleum contaminated area (PPCA) was identified extending from Memorial Drive northward along Tallowood Road.

On March 17, 2015, Mr. Metzger interviewed Ms. Potesta, owner of Orangetheory at 650 West Bough Lane, Suite 100 to determine the location of the Your Valet Cleaners at 614 West Bough Lane (refer to Figure 4a, Number 63 and Site Reconnaissance, Section 5.2, Number 63). She did not know where the address or cleaners was.

Mr. Metzger interviewed on March 17, 2015 the counter clerk at the Colony Florist at 612 West Bough Lane to determine the location of the Your Valet Cleaners at 614 West Bough Lane (refer to Figure 4 a , Number 61 and Site Recomaissance, Section 5.2 , Number 61 She did not know where the address or cleaners was.

Mr. Metzger interviewed on March 17, 2015 the owner of CoCos café at 650 West Bough Lane, Suite 100 to determine the location of the Your Valet Cleaners at 614 West Bough Lane (refer to Figure 4a, Number 64 and Site Reconnaissance, Section 5.2, Number 64). She did not know where the address or cleaners was, but recommended that Mr. Metzger speak with Moody Rambin Realty since the company owns a lot of property in that area.

On March 18, 2015, Mr. Metzger spoke with the receptionist at Moody Rambin Realty about the former Your Valet Cleaners at 614 West Bough Lane. She indicated they did not have any information about a dry cleaners at that address.

On March 18, 2015 during the site reconnaissance, Mr. Metzger spoke with a person at the front counter at the Gulf States Laundry Machinery Company at 12647 Memorial Drive regarding

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas
environmental conditions at the site and about the previous dry cleaners located at that address (refer to Figure 4b, Number 83 and Site Reconnaissance, Section 5.2, Number 83). Mr. Metzger was instructed to speak to the owner who was not in at the time. Mr. Metzger contacted the owner on April 13, 2015. He was not in his office and a message was left for him to call Mr. Metzger. The owner retumed the phone call on April 14, 2015. He stated that to the best of his knowledge no dry cleaners were located at that address prior to the current business. His business accepts dry cleaner parts and machines in boxes and then boxes them for redistribution to purchasers. Their company does not store any chemicals. The drums on the concrete in the fenced-in area are either emply or contain water. The gas cylinders in the same area are empty and are given to customers when they purchase machines. They do not have any USTs. He was unaware of any leaks in the area except at a nearby former gasoline station (Mr. Metzger believes this refers to the Conoco gasoline station LPST site.

On April 7, 2015, Mr. Metzger attempted to contact Ms. Susan Litherland of Weston Solutions, Inc. to inquire about the extent of the contaminant plume at the Town and Country Village Shopping Center (refer to Figure 4a, Number 18; Section 4.1, Record \#1; and Site Reconnaissance, Section 5.2, Number 18). Ms Litherland no longer worked for Weston, but Mr. Alan Lea of the administrative staff said he would email the staff to see if anyone could provide information about the location and would have them contact Mr, Metzger. Mr. Metzger called Mr. Lea again on April 10, 2015 and transferred to Mr. Jeff Henke about the site. Mr. Henke stated that the plume from the shopping center traveled heneath Memorial Drive. There were at one time six monitor wells and one recovery well on the Memorial Drive right-of-way between West Bough Lane to the western-most entranced to the Town and Country Village Shopping Center. Mr. Henke sent a map showing the monitor wells along Memorial Drive (refer to Appendix H, Interviews). The wells have been removed as the site has received closure although wells still remain on the site of the Town and Country Village Shopping Center and the strip shopping center at 650 West Bough Lane (the field reconnaissance indicated that not all the monitor wells have been plugged yet). The source of the release was Your Valet Cleaners which was located at the south end of the strip shopping center at 650 West Bough Lane and the monitor wells at that location and at the Town and Country Village Shopping Center to the west are all part of the same project (refer to Figure 4a, Numbers 18, 62, and 63; and Site Recomnaissance, Section 5.2, Numbers 18, 62, and 63). The A-1 Cleaners release was found as a result of the work done on the Your Valet Project and assessment work of the two releases was at times combined together. Mr. Henke also indicated that a contaminant plume from a previous gasoline station is located at 12802 Memorial Drive which is now occupied by the Chase Bank.

Mr. Metzger telephoned Mr. Dan Moody of WB Holding Corporation on April 7, 2015 to obtain information about the release from the dry cleaners at the Town and Country Village Shopping Center (refer to Figure 4a, Number Section 4.1 Record \#1 and Site Reconnaissance, Section 5.2, Number 18), and the release at A-1 Cleaners at 12754 Memorial Drive (refer to Figure 4a, Number 22; Section 4.1 Record \#3 and Site Reconnaissance, Section 5.2, Number 22). Mr. Moody was not in the office, so a message was left to return Mr. Metzger's phone call. The phone call was not retumed but information about the shopping center was obtained from other interviews.

Mr. Larry Nettles of Vinson \& Elkins, LLP was contacted on April 7, 2015 to discuss the release from the dry cleaners at the Town and Country Village Shopping Center (refer to Figure 4 a ,

Number 18; Section 4.1 Record \#1; and Site Recomaissance, Section 5.2, Number 18), the release at A-1 Cleaners at 12754 Memorial Drive (refer to Figure 4a, Number 22; refer to Section 4.1 Record \#3; and Site Reconnaissance, Section 5.2, Number 22), and the lnnocent Owner/Operator certification at Alexan Memorial Bend Apartments at 12667 Memorial Drive (refer to Section 4.1 Record \#4). Mr. Nettles was listed as the contact for these sites on the GeoSearch environmental reeords. He stated that the release at Town and Country Village Shopping Center was from a historic dry cleaners in the shopping center. The case had been issued a certificate of completion. Groundwater gradient was to the south and depth of groundwater was approximately 25 feet. The monitor wells in the strip shopping center on the east side of West Bough Lane were also associated with this release (refer to Figure 4a, Number 62 and Site Recomnaissance, Section 5.2, Number 62). Mr. Nettles stated that the monitor wells have been or are being plugged.

Mr. Nettles also stated that the contamination at A-1 Cleaners had extended offsite. The monitor wells at the adjacent Bank of Texas (refer to Site Reconnaissance, Section 5.2, Number 21) and the adjacent strip shopping center (refer to Site Reconnaissance, Section 5.2, Number 23) are associated with this release. The groundwater depth is about 25 feet. Mr. Nettles indicated that he would send a map of the monitor well locations and groundwater information if requested by email (refer to Appendix H). He sent a map showing the monitor wells associated with the A-1 Cleaners release that were located in the right-of-way of West Bough Lane near Memorial Drive, in the eastern right-of-way adjacent to A-1 Cleaners at 12754 Memorial Drive, on the western right-ofway of Memorial Drive across from Chase Bank and Bank of Texas, the monitor well on Broken Bough Drive, and the monitor well on Butterfly Lane (refer to map in Appendix H and Site Reconnaissance, Section 5.2, Numbers $2,4,19,21,22,49$, and 89). The map showed the location of the former Your Valet Cleaners at 614 West Bough Lane to be at the southern end of the shopping eenter at 650 West Bough Lane where Orangetheory is located (refer to refer to Figure 4a, Number 63; Site Reconnaissance, Section 5.2, Number 63). He also stated in the email that the contaminated groundwater zone is between 25 and 30 feet below ground surface.

Mr. Nettles was not very familiar with the Alexan Memorial Bend Apartments IOP case. He thought it was related to a release from a former dry cleaners where the Gulf States Laundry Machinery Company is located at 12647 Memorial Drive, however record searches did not support this information.

Mrs. Rina Chang was contacted on April 7, 2015 to discuss the Sprint cell tower IOP case (refer to Section 4.1 Environmental Record 7 and Site Reconnaissance, Section 5.2, Number 58). Her phone number was disconnected. Mr. Metzger then spoke with Mr. Andrew Mintz of Bracewell \& Giuliana, another contact for the site. He did not have personal knowledge of the site or situation, so he indicated he would send Mr. Metzger another contact number. He sent the telephone number by email, and Mr. Metzger called the number (refer to Appendix H). The receptionist who answered the phone transferred the phone to Mr. Tracy Hester, but Mr. Hester did not answer. The receptionist indicated that she would email him Mr. Metzger's contact information so he could contact him. Mr. Metzger telephoned Mr. Hester on April 10, 2015 and left a message for him to call back. The call was not returned.

On April 7, 2015, Mr. Metzger attempted to telephone Mr. Joe Thai, contact for Your Valet Cleaners (refer to Section 4.1 Environmental Record 10). The phone number was disconnected.

Mr. Metzger contacted, on April 7, 2015, Mr. Scott Leafe, President of SKA Consulting LP, a contact for the Memorial Green VCP case at 12601 Memorial Drive (refer to Section 4.1 Environmental Record 11 and Site Reconnaissance, Section 5.2, Number 34). Mr. Leafe indicated that the northwestern corner of the property has been impacted by the dry cleaner release from MW Cleaners/Pro Cleaners across Memorial Drive at Lantern Lane Shopping Center and the northeastern portion of the property has been impacted by a leak from a Pilgrim's Dry Cleaners east of the shopping center.

Mr. Scott Burkey of Shell Oil Products/Motiva was contacted on April 7, 2015 to discuss the industrial and hazardous wastes generated at the Mobil Service Station and Texaco service station previously located at the intersection of Kimberly Lane and Beltway 8. He said the wastes generated were water from the tanks. It was taken off site to a water treatment facility.

Mr. Metzger attempted to contact, on April 7, 2015, Mr. Steve Aucoin, contact for CO Polydoros \& Associates at 12727 Kimberly Drive to discuss the type of wastes the Industrial and Hazardous Waste registration was issued for. The phone had been disconnected.

7.0 EVALUATIONS

7.1 Findings and Opinions

The findings from this ESA-1 which could bc of environmental concern are listed below. An opinion is expressed after each finding as to whether the situation is a recognized environmental condition (REC) or a de minimis condition. As defined in ASTM E1527-13, the term recognized environmental conditions means "the presence or likcly presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment." ASTM E1527-13 defines de minimis conditions as "a condition that generally does not present a threat to human health or the environment and that generally would not be subject of an environmental enforcement action if brought to the attention of appropriate governmental agencies. Conditions determined to be de minimis conditions are not recognized environmental conditions nor controlled environmental conditions."

- Gulf gasoline station at 12862 Memorial Drive (refer to Local Street Directories, Seetion 4.5.4): This gasoline station was listed in the 1961 and 1966 city directories. The address was not found during the site reconmaissance. No records of releases or spills at Phillips 66 gas station were found, therefore the site is not a REC with respect to the Subject Right-of-Way.
e. Chevron LPST site/Wheatley Investments at 12860 Memorial Drive (refer to Section 4.1, Record \# 6 and Figure 4a, Nnmber 16 in Appendix A): A gasoline station (Chevron or Gulf) has existed at this site for most of the time for at least the past 45 years. This facility was registered twice as a leaking petroleum storage tank (LPST) site. During the first time, hydrocarbons were reported in the stom drains adjacent to the site. Plaseseparated hydrocarbons (PSH) was found floating on the water in one monitor well installed. Benzene, toluene, ethyl benzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) concentrations in soil and water at the site exceeded Texas Commission Environmental Quality (TCEQ) action levels as was methyl tertiary butyl

Phase I Envirommental Site Assessment for TrZZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas
ether (MTBE) coneentrations in groundwater. A remediation system was installed and operated between 1990 and 1995. The second LPST resulted when the first case was reopened. Approximately 0.8 feet of PSH was observed in a monitor well. Depth to groundwater ranged from 22 to 33 feet below top of the well casings and groundwater gradient was generally to the north and west. Remediation took place during 2005 and 2006. Three plugged monitor and three plugged reeovery wells were observed during the site reconnaissanee. Even though the groundwater gradient is away from Memorial Drive, the site is a REC with respect to the Subject Right-of-Way due to the time a gasoline station has been at this location, and the number of LPSTs at the site.

- Pilgrims Launders and Pilgrims Laundry at 12858 Memorial Drive (refer to Section 4.5.4): The former facilities were listed in the 1976 city directory and the later in the 1992 3 directory. The facilities and address could not be found during the site reconnaissance. No records of releases or spills at this site were found, therefore the site is not a REC with respect to the Subject Right-of-Way.
- Walgreen 3328 at 12850 Memorial Drive (refer to Section 4.1, Record \#1 and Figure 4a, Number 18 in Appendix A): This location had an HW registration as a small quantity generator of non-industrial and/or municipal wastes. The waste was managed offsite and no records of spills or releases were found, therefore the location is not an REC.
- Town and Country Village Shopping Center Dry Cleaners at 12850 Memorial Drive; Strip Shopping Center at 650 West Bough Lane; Your Valet Cleaners at 614 West Bough Lane; A-1 Cleaners LPST aud VCP site at 12754 Memorial Drive; Bank of Texas at 12764 Menorial Drive; More Hands Maid Service at 12748 Memorial Drive; West Bough Lane, Memorial Drive, Butterfly Lane, Broken Bough Drive rights-ofway, and residential areas northwest of Menıorial Drive (refer to Section 4.1, Records \#1 and \#3, Figure 4a, Numbers 2, 3, 4, 18, 21, 22, 23, 49, 62, 63, and 92 in Appendix A): A release oeeurred from the former Your Valet Cleaners at 614 West Bough Lane (refer to Section 5.2, Number 63). According to interviews, record searches, and site reconnaissance observations of existing and plugged monitor and recovery wells, the contaminant plume spread westward beneath West Bough Lane and the Town and Country Village Shopping Center to near the westernmost entrance of the shopping center, and beneath Memorial Drive. Soil and groundwater were contaminated with chlorinated hydrocarbons and VOCs. The Geosearch environmental record seareh also indicated that groundwater at 12850 Memorial Drive was contaminated with metals. According to the record searches, there were onee 88 monitor wells in the area of the plume and 18 remediation injection wells along Memorial Drive. Injection was into the zone between 25 and 44 feet deep at 20 gallons per minute. During the reconnaissance, 26 monitor wells and at least 9 recovery wells were observed on site at the 12850 address and 27 monitor wells were observed in the shopping center at 650 West Bough Lane. Five monitor or reeovery wells were observed in the grassy area adjoining Memorial Drive. According to a records search, an IOP certificate was issued on April 23, 2009. A VCP certificate of completion was issued on January 2015. The certificate has a restrictive covenant which prohibits the use and exposure to groundwater at the site.

During the assessment field work for the Your Valet Cleaners, a second dry cleaner contaminant plume was discovered associated with A-l Cleaners (refer to Figure 4a, Number 22). According to the search of local telephone directories a dry cleaners has been
located at the A-1 Cleaners address for at least 39 years. A release from the dry cleancrs contaminated soil and groundwater with tetrachloroethylene, some of its degradation by products, and BTEX. Concentrations of many of these contaminants exceed TCEQ acceptable levels. Based on field observations of monitor wells and a recovery system, record searches, and interviews, this plume extended southeastward to near the More Hands facility (refer to Figure 4a, Number 23), northwestward beneath the Bank of Texas property (refer to Figure 4 a , Number 21), beneath Memorial Drive (refer to Figure 4 a , Number 2), West Bough Lane (refer to Figure 4a, Number 4), Broken Bough Drive (refer to Figure 4a, Numbers 3 and 49) and the residential area south of Memorial Drive to Butterfly Lane (refer to maps in Appendix H. Injection wells were installed for remediation of this contamination. As of March 2015, the groundwater/media was being monitored. Underground storage tanks were also removed from this site in December 1998 and a l-inch diameter hole was obscrved in one of the tanks. Benzene concentrations in soil exceeded TCEQ LPST Action Levels. The case was closed in March 1999 with contamination in place down to about 15 feet below grade.

Based on information provided to AEC by LAN, the storm sewer boxes would be placed between 20 and 22.5 feet below the road surface. Therefore contamination could be encountered while excavating the soil for the storm water sewer boxes. These two dry cleaner contaminant plumes and the benzene contamination from the A-1 Cleaners site are RECs with respect to the Subject Right-of-Way because of the large expanse of the plumes, the contamination crosses and is located adjacent to the Subject Right-of-Way. These three plumes are so close together that it is difficult to determine the exact location of each, therefore the plumes from Your Valet Cleaners and A-1 Cleaners area and the benzene contamination at A-1 Cleaners are considered to be one REC.

- Pigrims Launderers and Cleaners at 12850 Memorial Drive (refer to Figure 4a, Number 18 in Appendix A): This facility was listed in the 1971, 1976, and 1981 city directories. No records of releases or spills at this site were found, therefore the site is not a REC with respect to the Subject Right-of-Way.
- Randall's Food Store \#1066 at 12850 Memorial Drive (refer to Section 4.1, Record \#1 and Figure 4a, Number 18 in Appendix A): This facility is registered as a RCRA waste generator. The environmental record search stated that no violations have been reported. No records of releases or spills were found. The site is nearly 500 feet from the Subject Right-of-Way. This site is not an REC with respect to the Subject Right-of-Way.
- Oklahoma Installation Company (Dillards Department Store) at 12850 Memoríal Drive (refer to Section 4.1, Record \#1): This facility was not found within 500 feet of the Subject Right-of-W ay during the site reconnaissance. The environmental record search stated that no violations have been reported. The site is not a REC with respect to the Subject Right-of-Way.
- Sprint PCS Tower IOP site at 608 West Bough Lane (refer to Section 4.1, Record \#7 and Figure 4a, Number 58 in Appendix A): The groundwater at this innocent owner/operator program (IOP) site is contaminated by tetrachloroethylene. The source of the contamination is unknown and additional infomation about the site could not be obtained from record searches and interviews, however the location of the tower is near the juncture of the contaminant plumes from A-l Cleaners and the dry cleaners at the Town and Country Village Shopping Center Dry Clcaners to the north, northwest, and south.

This location is not adjacent to the Subject Right-of-Way but within 500 feet. It is a REC with respect to the Subject Right-of-Way since contamination is located at that site.

- Pilgrims Cleaners 128 at 650 West Bough Lane, Suite 116 (refer to Section 4.1, Record Number 13 and Figure 4a, Number 65 in Appendix A): Record searches revealed this former dry cleaners had a drop station registration/certification (no dry cleaning done on site) and therefore is not a REC with respect to the Subject Right-of-Way.
- Mobil gas station at 12802 Memorial Drive (refer to Section 4.5.4): This gasoline station was listed in the 1976 city directory. The address is currently occupied by a Chase Bank. According to Mr. Jeff Henke of Weston Solutions, an old gasoline plume is located at this site. This site is a REC with respect to the Subject Right-of-Way due to the presence of the gasoline plume at the site.
- Phillips 66 gas station at 12764 Memorial Drive (refer to Section 4.5.4): This gasoline station was listed in the 1961, 1966, and 1971 city dircctories. Bank of Texas currently occupies the address. Though five monitor wells were located at this address, the monitor wells are for the dry cleaner release at adjacent A-1 Cleaners. No records of releases or spills at Phillips 66 gas station were found, therefore the site is not a REC with respect to the Subject Right-of-Way.
- Conoco 43059 at 12699 Memorial Drive LPST site (refer to Section 4.1, Record \#5 and Figure 4b, Numbers 46 and 47 in Appendix A): Groundwater was impacted at this LPST site. Phase-separated hydrocarbons (PSH) were found floating on the groundwater and were removed to the cxtent practical between December 1993 and September 1997. A remediation system operated at this site until 2006. A total of 30 monitor and recovery wells were once located at this site and in the right-of-way of Memorial Drive, Faust Street and offsite properties. According to the local street directory reviews, gasoline stations periodically operated at this location for at least 33 years. No evidence of the gasoline station were observed during the site reconnaissance, however one plugged monitor well was observed in the parking lot north of the shopping center at 12649 to 12655 Memorial Drive (refer to Site Reconnaissance, Section 5.2, Number 84). This contaminated area associated with the former Conoco gas station is a REC since it is adjacent to the Subject Right-of-Way and monitor wells were once located on the eastern portion of the Memorial Drive right-of-way.
- Post Oak Cleaners at 12699 Memorial Drive (refer to Section 4.1, Record \#5 and Figure 4b, Numbers 46 aud 47 in Appendix A): Record searches confirm this dry cleaners was a drop-off station, therefore this is not a REC with respect to the Subject Right-of-Way.
- Sweetlake Chemical and Fusion Motor Company at 12707 Boheme Drive (rcfer to Section 4.5.4): These businesses were listed in the 2007 City of Houston directory. A house was observed at this location during the site reconnaissance. No evidences of spills or releases were observed and no records of spills or releases at this location were found. This location is not a REC with respect to the Subject Right-of-Way.
- Alexan Memorial Bend Apartments 1OP site at 12667 Memorial Drive (refer to Section 4.1, Record \#4 and bulleted items at end of Section 5.2.2): Soil and groundwater were impacted hy volatile organic compounds (VOCs) and TPH at this location. Neither these apartments, address, nor any additional information was found for this IOP case during the site reconnaissance and search of records. Mr. Larry Nettles of Vinson \& Elkins, LLP indicated during an interview that he thought the IOP case was
rclated to a former relcase from a dry cleaners which was located at 12647 Memorial Drive where the Gulf States Laundry Machinery Company is now locatcd. No information was found which confirmed this, however based on current addresses, this sitc could have been close to the 12647 Memorial Drive address. This site though it could not be exactly located is a REC with respect to the Subject Right-of-Way.
- Pilgram Wyeliffe and Pilgrims Cleaners at 12647 Memorial Drive (refer to Seetion 4.1, Reeord \#9 and Figure 4b, Number 83 in Appendix A): Thesc two dry cleaners were generators of small quantities of industrial and hazardous wastes. These facilities were not observed at this address during the site reconnaissance and no specific information about the waste was found during record searches. Review of the local city dircctories indicated a dry cleaners at this address for at least 8 years. Gulf States Laundry Machinery Company is now located at this address (refer to next bulleted item). Mr. Larry Nettles of Vinson \& Elkins, LLP, during an interview, stated that he thought this was the location of a former dry cleaner leak (Alexan Memorial Bend Apartments IOP site), but the records and an interview with the owner of Gulf States Laundry Machinery Company at this address do not support this information. This location is not an REC with respect to the Subject Right-of-Way.
- Gulf States Laundry Maehinery Company at 12647 Memorial Drive (refer to Figure 4b, Number 83 in Appendix A): This facility is at the former Pilgram Wycliffe and Pilgrims Cleaners location at 12647. Four 55-gallon drums, including one labeled Exxon Mobil DF2000 fluid, eight propane-type tanks, four gas tanks like those used in welding were observed at the site. No evidence of leaks from these tanks and drums was observed and each of these tanks and drums along with various equipment, dry cleaner parts, wooden pallets, scrap metal, and a dumpster full of trash were located on concrete which appeared to be in good condition. No records of spills or leaks were found during the environmental record searches. During an interview, the owner stated that no chemicals were stored on site and that the drums were either empty of full of water. The tanks were empty and were given to customers with their purchase of machinery. The site is not a REC with respect to the Subject Right-of-Way because of lack of evidence of leaks, the location of the tanks and other materials located on conerete in good condition, and the fact that the site is not adjacent to the Subject Right-of-Way.
- Post Oak Cleaners at 12645 Memorial Drive (refer to Section 4.1, Reeord \#2 and Figure 4b, Number 39 in Appendix A): A TCEQ record search indicated this facility is a drop-off dry cleaners (no dry cleaning performed on site). According to the search of local city directories, the dry cleaners has been at this location for at least 3 years. The scarch indicated a Texaco gasoline station was once located at this address for at least 11 years. No records of spills or releases were found and no evidence of spills, relcases, or the former gasolinc station was observed in the field. This site is not a REC with respect to the Subject Right-of-Way.
- Firehorn Oil Company at 12702 Cobblestone Drive (refer to Seetion 4.5.4): This business was listed in the 2007 City of Houston directory. A house was observed at this location during the site reconnaissance. No evidences of spills or releases were obscrved and no records of spills or releases at this location were found. This location is not a REC with respect to the Subject Right-of-Way.
- Various gasoline serviee stations and cleaners at 12651 Memorial Drive (refer to Section 4.5.4): Gasoline stations were listed for this address in the 1961, 1966, 1971, and

1976 and a dry cleaners was listed in the 1987-8 and 1992-3 city directories. The address is currently occupied by a strip shopping center. No records of releases or spills at this site were found, therefore the site is not a REC with respect to the Subject Right-of-Way,

- Amco Auto Salvage and Car Center at 12633 Memorial Drive (refer to Section 4.5.4): This facility was listed in the 2007 City of Houston directory. The address is currently occupied by The Pines Condominiums. No records of releases or spills at this site were found, therefore the site is not a REC with respect to the Subject Right-of-Way.
- Red Coachman Cleaners at $\mathbf{1 2 5 2 6}$ Memorial Drive (refer to Section 4.5.4): This facility was listed in the 1966 and 1971 City of Houston directories. The address and business was not found during the site reconnaissance. No records of releases or spills at this site were found, therefore the site is not a REC with respect to the Subject Right-ofWay.
- CVS Pharmaey \#6752 at 12502 Memorial Drive (refer to Seetion 4.1, Record \#12 and Figure 4 b , Number 32 in Appendix A): This pharmacy is a generator of RCRA wastes. This site is not a REC with respect to the Subject Right-of-Way since the GeoSearch record search indicated that no violations have been levied against this site
- Thirty gallon diesel spill at 12516 Memorial Drive (refer to Section 5.3.3): According to the Houston Fire Deparment Records, this small spill occurred in the Lantem Lane Shopping Center approximately 500 feet from the Subject Right-of-Way. No details surrounding the spill were given, but the spill would have been cleaned up by the fire department. This spill is not an REC with respect to the Subject Right-of. Way because of its distance from the Subject Right-of-Way and no further records were found indicating groundwater or soil was contaminated.
- MW Cleaners/Lantern Lane Sbopping Center-Pro Cleaners VCP and IHWCA site at 12534 Memorial Drive, Memorial Green VCP site at 12601 Memorial Drive, Tallowood Road Right-of-Way, Memorial Drive Right-of-Way, Legend Lane Rigbt-of-Way, residential area north of Lantern Lane Shopping Center, residential area between Tallowood Road and Somerset Plaee north of Memorial Drive, residential area adjoining Legend Lane, and condominium eomplex at 12625 Memorial Drive (refer to Seetion 4.1, Records \#8 and \#11, Figure 43, Numbers 2, 11, 12, 31, 32, 34, 35, 76, and 79 in Appendix A): The soil and groundwater at this site and offsite were eontaminated with chlorinated solvents from a dry cleaner at the Lantem Lane Shopping Center (refer to Figure 4b, Number 32). Dry cleaners have been located at this address for at least 13 years. A March 2011 groundwater monitoring report prepared by InControl Technologies indicated that 34 wells had been installed in two groundwater bearing zones. Depth to groundwater in the wells completed in the upper zone vary from approximately 16 to 19 feet below ground surface and in the second unit the depth to groundwater in wells completed in that zone ranged from approximately 23 to 28 feet below ground surface. Groundwater gradient maps show the gradient is to the southwest. Concentration maps shows the contamination in the upper zone extends slightly northward of the shopping center beneath a residential area; westward and southwestward beneath Tallowood Road (refer to Figure 4b, Numbers 12, 31, and 76) and a residential area west of Tallowood Road and north of Memorial Drive; and southwestward beneath Memorial Drive. Contaminants in the second groundwater bearing zone migrated southwestward beneath Tallowood Road, the residential area west of Tallowood Road and north of Memorial Drive, Memorial Drive from approximately 100 feet east of Tallowood Road to near the
entrance of the Somerset Place Condominiums (refer to Figure 4b, Numbers 2 and 36), the Memorial Green property at 12601 Memorial Drive (refer to Figure 4b, Number 34), Legend Lane and its residential area (refer to Figure 4b, Numbers 11, 35, and 79), and a portion of the condominium complex at 12625 Memorial Drive (refer to maps in Appendix H). An MSD with restrictions on groundwater usage is being considered for this site and surrounding area. The Memorial Green property at 12601 Memorial Drive is also contaminated with a leak from a dry cleaners located east of the Lantern Lane Shopping Center. The entire area discussed above is a REC with respect to the Subject Right-ofWay since the plumes extended beneath the Subject Right-of-Way and adjacent properties.
- Transformers mounted on utility poles throughout Subjeet Right-of-Way and surrounding properties: No evidence of leaks or spills were observed from the transformers or on the ground around the transformers, therefore these are not RECs.
- Mobil Serviee Station 12-BLY IHW and LPST site at 770 West Sam Houston Parkway North and Shell Oil at 12860 Kimberly Lane (refer to Seetion 4.1, Reeord \#18 and Seetion 5.2.4): This former gasoline station, now occupied by a la Madeleine restaurant, was a small quantity generator of non-industrial and/or municipal waste. According to an interview with Mr. Scott Burkey Shell Oil/Motiva, the contact for this site, the wastes generated were occasional water from the tanks which was transported offsite for treatment and disposal. This site was an LPST site but is farther than 500 feet from the Subject Right-of-Way. This site is not a REC due to its distance from the Subject Right-of-Way and because the wastes were only occasionally generated and treated offsite.
-.. Texaeo IHW and LPST site at 12859 Kimberly Lane (refer to Seetion 4.1, Reeord \#16 and Seetion 5.2.4): This former gasoline station, now occupied by a Wells Fargo bank, was a small quantity generator of non-industrial and/or municipal waste. A Shell gasoline station was also located here. According to the environmental record search and an interview with Mr. Scott Burkey Shell Oil/Motiva, the contact for this site, the wastes generated were occasional water from the tanks and contaminated soil generated during tank replacement. All the wastes were transported offsite for treatment and disposal. This site was an LPST site but is farther than 500 feet from the Subject Right-of-Way. This site is not a REC due to its distance from the Subject Right-of-Way and the wastes were only occasionally generated and treated offsite.
- CO Polydoros \& Assoeiates IHW site at 12727 Kimberly Lane (refer to Seetion 4.1, Reeord \#17 and Section 5.2.4): This facility, now occupied by a medical center was a conditionally exempt small generator of non-industrial and/or municipal wastes. No records of spills or leaks were found during the environmental record searches. This site is over 500 feet from the Subjeet Right-of-Way. This is not a REC with respect to the subject right-of-way due to the distance and the small quantities of waste generated.
- Weatherford US Houston IHWCA site at 10802 Katy Freeway (refer to Seetion 4.1, Record \#20 and Seetion 5.2.4): Soil and groundwater in two zones at this site were contaminated by chlorinated solvents and VOCs. The extent of a plume in the upper groundwater zone was estimated during the environmental work performed at the site to be approximately 100 feet offsite to the south. The plume in the lower groundwater zone was estimated to be approximately 350 feet offsite to the south. The location and facility could not be found in the field, but an internet search of the address indicated it was approximately 0.9 miles to the north northwest from the closest part of the Subject Right-
of-Way. This site is not a REC with respect to the subject right-of-way due to the distance from the Subject Right-of-Way,
- Flourocarbon Plastic \& Rubber Production IHWCA site at 10420 Katy Freeway (refer to Section 4.1, Record \#21 and Section 5.2.4); Soils were contaminated with methylene chloride, chlorinated hydrocarbons, acetone, 2 -butanone, TPH, and the upper groundwater unit was contaminated with methylene chloride, oil and grease, trichloroethylene, and some other VOCs. According to reports in the TCEQ files, groundwater gradient is to the southeast, but no offsite migration has occurred. The location and facility could not be found in the field, but an intemet search of the address indicated it was approximately 0.9 miles to the north-northeast from the closest part of the Subject Right-of-Way. This site is not a REC with respect to the subject right-of-way due to the distance from the Subject Right-of-Way and the lack of offsite migration.
- Spring Branch Service Center IHWCA site at 10310 Katy Freeway (refer to Section 4.1, Record \#22 and Section 5.2.4): Soils at this site were contaminated with metals and TPH, but were excavated from the site. The site had industrial and hazardous waste registrations for many waste management units. Three different LPSTs were located at the site and the site was enrolled in the VCP program for soils contaminated by metals, semivolatile organics, and TPH; and groundwater contaminated by metals, semi-volatile organics, TPH, and VOCs. The location and facility could not be found in the field, but an internet search of the address indicated it was approximately 1 mile to the northnortheast from the closest part of the Subject Right-of-Way. This site is not a REC with respect to the subject right-of-way due to the distance from the Subject Right-of-Way.

7.2 Conclusions and Recommendations

AEC has performed a Phase I Environmental Site Assessment (ESA-1) for the reconstruction of Memorial Drive between the West Sam Houston Parkway and approximately 100 feet east of Tallowood Drive in western Harris County in conformance with the scope and limitations of ASTM Practice E1527-13. Any exceptions to or deletions from this practice are described in Sections 2.6 and 7.3 of this report.

This ESA-1 identified the following RECs in connection with the Subject Right-of-Way.

- REC 1: Chevron LPST site/Wheatley Investments at 12860 Memorial Drive (refer to Figure 5a in Appendix A).
- REC 2: The contaminant plume associated with leaks from Your Valet Cleaners at 614 West Bough Lane and A-1 Cleaners LPST and VCP site at 12754 Memorial Drive (refer to Figure 5 a in Appendix A).
- REC 3: Sprint PCS Tower IOP site at 608 West Bough Lane (refer to Figure 5a in Appendix A).
- REC 4: Mobil gas station at 12802 Memorial Drive (refer to Figure 5a in Appendix A).
- REC 5: The contaminant plume associated with Conoco 43059 at 12699 Memorial Drive LPST site (refer to Figure 5b in Appendix A).
- REC 6: Alexan Memorial Bend Apartments IOP site at 12667 Memorial Drive (refer to Figure 5 b in Appendix A).
- REC 7: The contaminant plume associated with the MW Cleaners/Lantern Lane Shopping Center-Pro Cleaners VCP and IHWCA site at 12534 Memorial Drive and the Memorial Green VCP site at 12601 Memorial Drive (refer to Figure 5b in Appendix A).

Research during the ESA-1 revealed that the West Piney Point Fault crosses the western portion of the Subject Right-of-Way. Evidence of the fault was not found in during the site reconnaissance.

AEC recommends that a Phase II Environmental Site Assessment be conducted in the Subject Right-of-Way with soil borings drilled to 5 feet below the maximum depth of construction along the Memorial Drive Subject Right-of-Way. Some of the soil borings should be converted to temporary monitor wells. Soil samples and a groundwater sample should be collected and analyzed for the following:

- REC 1: benzene, toluene, ethylbenzene, and total xylenes (BTEX); methyl tertiary butyl ether (MTBE); and total petroleum hydrocarbons (TPH 1005).
- REC 2: volatile organic compounds, BTEX, MTBE, and TPH 1005, Resource Conservation and Recovery Act (RCRA) 8 metals.
- REC 3: VOCs, TPH 1005, and RCRA 8 metals
- REC 4: BTEX, MTBE, TPH 1005, and RCRA 8 metals.
- REC 5: BTEX, MTBE, and TPH 1005.
- REC 6: VOCs, and TPH 1005 .
- REC 7: VOCs

Even though no evidence of faulting was observed during the site reconaaissance, AEC recommends that a qualified firm conduct a Phase l fault study for the Subject Right-of-Way since the West Piney Point Fault is a known mapped fault which is located near the western end of the Subject Right-of-Way.

7.3 Data Gaps, Data Failures, and Deletions

Data gaps are defined by ASTM E 1527-13 as "a lack of or inability to obtain information required by this practice despite good faith efforts by the environmental professional to gather such information, Data gaps may result from incompleteness in any of the activities required by this practice...". There were no data gaps in this ESA-l.

Data failure, a type of data gap, as defined in ASTM E1527-13 is a failure to "develop a history of the previous uses of the property and surrounding area, in order to help identify the likelihood of past uses having led to recognized environmental conditions in comection with the property even after reviewing the standard hisiorical sources.... that are reasonably ascertainable and likely to be useful". There are no data failures in this ESA-1 or deletions from the ASTM E1527-13 Standard Practice.

7.4 Qualifications of Environmental Professional

Robert J. Metzger, Senior Geologist, conducted the ESA-1 and prepared this report. He has 26 years of comprehensive environmental experience including performing and managing Phase I and Phase II Environmental Site Assessments for government and private clients, Robert J. Metzger's resume is included in Appendix I.

7.5 Signature of Environmental Professional

I declare to the best of my professional knowledge and belief 1 meet the definition of Environmental Professional as defined in $\S 312.10$ of 40 CFR 312 and 1 have the specific qualifications based on education, training, and experiencc to assess a property of the nature, history, and setting of the subject property (Subject Right-of-Way). 1 have developed and preformed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

8.0 REFERENCES

The following references were used in preparation of this ESA-1 report:

1. ASTM International, 2013, ASTM E1527-13, ASTM Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, 47 pp.
2. Geo Seareh, Austin, Texas, Radius Report, Historical Aerial Photographs (Texas) and Historical Topographic Maps searches of March 5, 2015, www.geo-search.com.
3. Harris County Appraisal District Online Records and Maps, www. hcad.org.
4. Coles Directories (city directories for Houston, Texas), every 5 years from 1956 to 1981 inclusive and 1987-2012 inclusive, 2014, and Volumes 1 and 4 (only ones available) of 2015.
5. Natural Resource Conservation Service, March 10, 2015, Web Soil Survey, National Cooperative Soil Survey, http://wcbsoilsurvey.sc.egov.usda.gov/App/HomePagc.htm.
6. Terrain Solutions, Inc., Revised 2004, Principal Surface Faults of the Houston Central Metropolitan Area (After O'Neill \& Van Siclen with additions by C. Norman), map.
7. Texas Commission on Environmental Quality, On-Line Central Registry Query, http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction-regent.RNSearch, March 9, 2015
8. Texas Water Development Board, 1994, Map of Major Aquifer in Texas.
9. U.S. Department of Homeland Seeurity, Federal Emergency Management Agency, Flood Insurance Rate Map 4820IC0645L, Revised June 18, 2007, online map generator at https://msc.fema.gov.

9.0 NON-SCOPE SERVICES

There were no additional services contracted between LAN, Inc and AEC associated with the performance of this ESA-I.

Phase I Environmental Site Assessment for TORZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

APPENDIX A

SITE MAPS, FIGURES, AND GENERAL INFORMATION

Streets	From	To	Quantity (LF)
Memorial	west line of north bound feeder of Sam Houston Pkwy	Tallowood Drive	5,900
Broken Bough	Memorial	100' to the south	100
W. Bough	Memorial	100' to the north	100
Old Oaks	Memorial	100' to the east	100
Huntingwick	Memorial	100^{\prime} to the east	100
Boheme	Memorial	100' to the west	100
Memorial Bend	Memorial	100' to the east	100
Hollow Drive	Memorial	100' to the north	100
Somerset Place	Memorial	100 to the south	100
Legend	Memorial	100' to the south	100
Tallowood	Memorial	100 to the north	100
Total			6,900

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet Last of Tallowood Road, Houston, Texas

APPENDIXB

ENVIRONMENTAL RECORDS DOCUMENTATION (GeoSearch Results)

Ge@Search

On time. On target. In touch."

Radius Report

Satellite view

Target Property:
Memorial Drive Phase I Environmental Site Assessment MEMORIAL DR hOUSTON, Harris County, Texas 77024

Prepared For:
Aviles Engineering

Order \#: 47227
Job \#: 103133
Project \#: E102-15
Date: 03/05/2015
Target Property Summary 1
Database Findings Summary 2
Locatable Database Findings 6
Radius Map 1 10
Radius Map 2 11
Ortho Map 12
Topographic Map 13
Report Summary of Locatable Sites 14
Unlocatable Summary 166
Environmental Records Definitions 168
Unlocatable Report See AttachmentZip Report . See Attachment

Disclaimer

This roport was designed by GeoSearch to meet or exceed the records search requirements of the AN Appropriate Inquives Rule (40 CFR §312.26) and the current version of the ASTM International E1527, Standard Practice for Enwlonmental Site Assessments: Phase I Environmental Sile Assessment Process or, if applicable, the custom requivements requested by the ontity that ordered this report. The records and databases of records used to compiie this report were collected from various federalistate and local governmental entities. It is the goal of GeoSearch to meet or exceed the 40 CFR $\$ 312.26$ and E1527 requirements for updating racords by using the best available technology. GeoSearch contacts the appropriate govemmental entities on a recuring basis. Depending an the frequency with which a record source or database of records is updated by the governmental entity, the data used to prepare this report may be updated monthly, quarterly, semi-annually, or annually.
The information provided in this report was abtained from a variety of pubfic sources. GeoSearch cannot ansure and makes no warranty or representation as to the accuracy, relisbilty, qually, errors occurring from data convorsion or the customer's interpretation of this report. This report was made by GeoSearch for exclusive use by its cients onily. Therofore, this report may not contain sufficient information for cther pupposes or parties. GeoSearch and its partners, omployees, officers And indopendent contractors cannot be held Nable For acfual, incidentel, consequentlal, special or exemplary damages sufforod by a customer resulling directly or indivectly from any information provided by GeoSearch.

Target Property Summary

```
Memorial Drive Phase I Environmental Site Assessment
MEMORIAL DR
HOUSTON, Harris County, Texas 77024
USGS Quadrangle: Hedwig Village,TX
Target Property Geometry: Corridor
Target Property Longitude(s)/Latitude(s):
(-95.552515, 29.766221), (-95.554983, 29.766174), (-95.555766, 29.766146), (-95.556067, 29.766165),
(-95.556313, 29.766221), (-95.556668, 29.766351), (-95.556968, 29.766491), (-95.557268, 29.766715),
(-95.557526, 29.766975), (-95.557698, 29.767301), (-95.557869, 29.767748), (-95.557869, 29.768009),
(-95.557923, 29.770049), (-95.557998, 29.770449), (-95.558180, 29.770896), (-95.558416, 29.771287),
(-95.558695, 29.771660), (-95.558953, 29.771920), (-95.559285, 29.772163), (-95.559747, 29.772414),
(-95.560380, 29.772647), (-95.560787, 29.772777), (-95.561356, 29.772805), (-95.562429, 29.772777)
```

County/Parish Covered:
Harris (TX)
Zipcode(s) Covered:
Houston TX: 77024, 77042, 77043, 77077, 77079
State(s) Covered:
TX
*Target property is located in Radon Zone 3.
Zone 3 areas have a predicted average indoor radon screening level less than 2 pCi/L (picocuries per liter).

This report may have unlocatable records. Please see the Unlocatables Report, attached to this file.

Database Findings Summary

EEDERAL LISTING

Database	Acronym	Locatable	Unlocatable	Search Radius (miles)
AEROMETRIC INFORMATION RETRIEVAL SYSTEM/ AIR FACILITY SUBSYSTEM	AIRSAFS	0	0	TP/AP
BIENNIAL REPORTNG SYSTEM	BRS	0	0	TP/AP
CLANDESTINE DRUG LABORATORY LOCATIONS	CDL	0	0	TP/AP
EPA DOCKET DATA	DOCKETS	0	0	TP/AP
FEDERAL ENGINEERIWG INSTITUTIONAL CONTROL SITES	EC	0	0	TP/AP
EMERGENCY RESPONSE NOTIFICATION SYSTEM	ERNSTX	0	0	TP/AP
FACILITY REGISTRY SYSTEM	ERSTX	4	0	TP/AP
HAZARDOUS MATERLALS INCIDENT REPORTING SYSTEM	HMMRSRO6	0	0	TP/AP
INTEGRATED COMPLANCE INFORMATION SYSTEM (FORMERLY DOCKETS)	ICIS	0	0	TP/AP
INTEGRATED COMPLLANCE INFORMATION SYSTEM NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM	ICISNPDES	0	0	TP/AP
LAND USE CONTROL INFORMATION SYSTEM	LUCIS	0	0	TP/AP
MATERIAL LICENSING TRACKING SYSTEM	MLTS	0	0	TP/AP
NATIONAL POLLLITANT DISCHARGE ELIMINATION SYSTEM	NPDESR06	0	0	TP/AP
PCB ACTIVITY DATABASE SYSTEM	eads	0	0	TP/AP
PERINTT COMPLIANCE SYSTEM	PCSR06	0	0	TP/AP
RCRA SITES WTH CONTROLS	BCRASC	0	0	IP/AP
CERCLIS LIENS	SELIENS	0	0	TP/AP
SECTION SEVEN TRACKING SYSTEM	SSTS	0	0	TP/AP
TOXICS RELEASE WVENTORY	TR1	0	0	TP/AP
TOXIC SUBSTANCE CONTROL ACT INVENTORY	ISCA	0	0	TP/AP
NO LONGER REGULATED RCRA GENERATOR FACILITIES	MLRRCRAG	0	0	0.1250
RESOURCE CONSERVATION \& RECOVERY ACT - GENERATOR FACILITIES	RCRAGR06	3	0	0.1250
HISTORICAL GAS STATIONS	HISTPSI	0	0	0.2500
BROWNFIELDS MANAGEMENT SYSTEM	BE	0	0	0.5000
COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION \& LIABMITY INFORMATION SYSTEM	CERCLIS	0	0	0.5000
DELISTED NATIONAL PRIORITIES LIST	DNPL	0	0	0.5000
NO FURTHER REMEDIAL ACTION PLANNED SITES	NFRAP	0	0	0.5000
NO LONGER REGULATED RCRA NON.CORRACTS TSD FACIIITIES	OLRRCRAI	0	0	0.5000
OPEN DUMP INVENTORY	ODI	0	0	0.5000
RESOURCE CONSERVATION \& RECOVERY ACT - TREATMENT, STORAGE \& DISPOSAL FACILITIES	RCRAT	0	0	0.5000
DEPARTMENT OF DEFENSE SITES	DOD	0	0	1.0000
FORMERLY USEO DEFENSE SITES	EUJS	0	0	1.0000

Database Findings Summary

				Search Radius (miles)
Database	Acronym	Locatable	Unlocatable	
NATIONAL PRIORITIES LIST	NLRRCRAC	0	0	1.0000
PROPOSED NATIONAL PRIORITIES LIST	PNPL	0	0	1.0000
RESOURCE CONSERVATION \& RECOVERY ACT - CORRECTIVE	RCRAC	0	0	1.0000
ACTION FACILITIES		0	0	1.0000
RECORD OF DECISION SYSTEM	RODS	0	0	1.0000

SUB-TOTAL

	7	0	

STATE (TXX) LISTING

Database	Acronym	Locatable	Unlocatable	Search Radius (miles)
GROUNDWATER CONTAMINATION CASES	GWCC	1	0	TP/AP
HISTORIC GROUNDWATER CONTAMINATION CASES	HISTGWCC	0	0	TP/AP
TCEQ LIENS	LIENS	0	0	TP/AP
MUNICIPAL SETTING DESIGNATIONS	MSO	0	0	TP/AP
NOTICE OF VIOLATIONS	NOV	0	0	TP/AP
STATE INSTITUTIONALENGINEERING CONTROL SITES	SIECOI	1	0	TP/AP
SPILLS LISTING	SPILLS	0	0	TP/AP
TIER I / CHEMICAL REPORTWG PROGRAM FACILITIES	TEERII	0	0	TP/AP
DRY CLEANER REGISTRATION DATAEASE	DCR	6	0	0.2500
INDUSTRIAL AND HAZARDOUS WASTE SITES	HWW	11	0	0.2500
PERMITTED INDUSTRIAL HAZARDOUS WASTE SITES	PIHW	0	0	0.2500
PETROLEUM STORAGE TANKS	PST	6	0	0.2500
AFFECTED PROPERTY ASSESSMENT REPORTS	APAR	1	0	0.5000
BROWNFIEL OS SITE ASSESSMENTS	BSA	0	0	0.5000
CLOSED \& ABANDONED LANDFLL INVENTORY	CALE	0	0	0.5000
DRY CLEANER REMEDIATION PROGRAM SITES	DCRPS	1	0	0.5000
INVOCENT OWNER / OPERATOR DATABASE	$1 O P$	3	0	0.5000
LEAKING PETROLEUM STORAGE TANKS	LPST	7	0	0.5000
MUNICIPAL SOLID WASTE LANDFILL SITES	MSWLE	0	0	0.5000
RAILROAD COMMISSION VCP AND BROWNFIELD SITES	RRCVCP	0	0	0.5000
RADIOACTIVE WASTE SITES	RWS	0	0	0.5000
VOLUNTARY CLEANUP PROGRAM SITES	VCP	4	0	0.5000
RECYCLING FACLITIES	WHARE	0	0	0.5000
INDUSTRLAL AND HAZARDOUS WASTE CORRECTIVE ACTION SITES	HWCA	4	0	1.0000
STATE SUPERFUND SITES	SF	0	0	1.0000
SUB-TOTAL		45	0	

Database Findings Summary

IRIBAL LISTING

Database			
Search			
Radius			
(miles)			

| SUB-TOTAL | | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TOTAL | | 52 | 0 | |

Locatable Database Findings

EEDERAL LISTING

Acronym	Search Radius (miles)	$\begin{aligned} & \text { TP/AP } \\ & (0-0.02) \end{aligned}$	$\begin{aligned} & \text { 1/8 Mile } \\ & (>T P / A P) \end{aligned}$	$\begin{gathered} \text { 1/4 Mile } \\ (>1 / 8) \end{gathered}$	$\begin{gathered} 1 / 2 M / 2 \\ (>1 / 4) \end{gathered}$	$\begin{aligned} & 1 \mathrm{M} / \mathrm{Fo}_{0} \\ & (>1 / 2) \end{aligned}$	> 1 Mile	Total
AIRSAFS	0.0200		NS	NS	NS	NS	NS	0
BRS	0.0200		NS	NS	NS	NS	NS	0
CDL	0.0200		NS	NS	NS	NS	NS	0
DOCKETS	0.0200		NS	NS	NS	NS	NS	0
EC	0.0200		NS	NS	NS	NS	NS	0
ERNSTX	0.0200		NS	NS	NS	NS	NS	0
FRSTX	0.0200	4	NS	NS	NS	NS	NS	4
HIMIRSROG	0.0200		NS	NS	NS	NS	NS	0
ICIS	0.0200		NS	NS	NS	NS	NS	0
ICISNPDES	0.0200		NS	NS	NS	NS	NS	0
lucis	0.0200		NS	NS	NS	NS	NS	0
MLTS	0.0200		NS	NS	NS	NS	NS	0
NPDESR06	0.0200		NS	NS	NS	NS	NS	0
PADS	0.0200		NS	NS	NS	NS	NS	0
PCSR06	0.0200		NS	NS	NS	NS	NS	0
RCRASC	0.0200		NS	NS	NS	NS	NS	0
SFLIENS	0.0200		NS	NS	NS	NS	NS	0
SSTS	0.0200		NS	NS	NS	NS	NS	0
TRI	0.0200		NS	NS	NS	NS	NS	0
TSCA	0.0200		NS	NS	NS	NS	NS	0
NLRRCRAG	0.1250		0	NS	NS	NS	NS	0
RCRAGR06	0.1250	2	1	NS	NS	NS	NS	3
HISTPST	0.2500		0	0	NS	NS	NS	0
BF	0.5000		0	0	0	NS	NS	0
CERCLIS	0.5000		0	0	0	NS	NS	0
DNPL	0.5000		0	0	0	NS	NS	0
NFRAP	0.5000		0	0	0	NS	NS	0
NLRRCRAT	0.5000		0	0	0	NS	NS	0
ODI	0.5000		0	0	0	NS	NS	0
RCRAT	0.5000		0	0	0	NS	NS	0
DOD	1.0000		0	0	0	0	NS	0
FUDS	1.0000		0	0	0	0	NS	0
NLRRCRAC	1.0000		0	0	0	0	NS	0
NPL	1.0000		0	0	0	0	NS	0
PNPL	1.0000		0	0	0	0	NS	0
RCRAC	1.0000		0	0	0	0	NS	0

Locatable Database Findings

Acronym	Search Radius (miles)	$\begin{aligned} & \text { TP/AP } \\ & (0=0.02) \end{aligned}$	$\begin{gathered} \text { 1/8 Mile } \\ \text { (}>\text { TP/AP) } \end{gathered}$	$\begin{gathered} 1 / 4 \text { Mile } \\ (>1 / 8) \end{gathered}$	$\begin{gathered} 1 / 2 \mathrm{MiJe} \\ (>1 / 4) \end{gathered}$	$\begin{aligned} & 1 \text { Mile } \\ & (>1 / 2) \end{aligned}$	> 1 Mile	Total
RODS	1.0000		0	0	0	0	NS	0

SUB-TOTAL

6	1	0	0	0	0	7

STATE (IX) LISTING

Acronym	Search Radius (miles)	$\begin{aligned} & \text { TP/AP } \\ & (0-0.02) \end{aligned}$	$\begin{gathered} \text { 1/8 MiJe } \\ (>\text { TP/AP) } \end{gathered}$	$\begin{gathered} 1 / 4 \text { Mile } \\ (>1 / 8) \end{gathered}$	$\begin{gathered} 1 / 2 \text { Mile } \\ (>1 / 4) \end{gathered}$	$\begin{aligned} & 1 \text { Mi/e } \\ & (>1 / 2) \end{aligned}$	>1 Mile	Total
GWCC	0.0200	1	NS	NS	NS	NS	NS	1
HISTGWCC	0.0200		NS	NS	NS	NS	NS	0
LIENS	0.0200		NS	NS	NS	NS	NS	0
MSD	0.0200		NS	NS	NS	NS	NS	0
NOV	0.0200		NS	NS	NS	NS	NS	0
SIEC01	0.0200	1	NS	NS	NS	NS	NS	1
SPILLS	0.0200		NS	NS	NS	NS	NS	0
TIERVII	0.0200		NS	NS	NS	NS	NS	0
$D C R$	0.2500		4	2	NS	NS	NS	6
IHW	0.2500	1	5	5	NS	NS	NS	11
PWHW	0.2500		0	0	NS	NS	NS	0
PST	0.2500		3	3	NS	NS	NS	6
APAR	0.5000		1	0	0	NS	NS	1
BSA	0.5000		0	0	0	NS	NS	0
CALF	0.5000		0	0	0	NS	NS	0
DCRPS	0.5000		0	1	0	NS	NS	1
IOP	0.5000	1	2	0	0	NS	NS	3
LPST	0.5000		3	4	0	NS	NS	7
MSWLF	0.5000		0	0	0	NS	NS	0
RRCVCP	0.5000		0	0	0	NS	NS	0
RWS	0.5000		0	0	0	NS	NS	0
VCP	0.5000	1	3	0	0	NS	NS	4
WMRF	0.5000		0	0	0	NS	NS	0
IHWCA	1.0000		1	0	0	3	NS	4
SF	1.0000		0	0	0	0	NS	0

SUB-TOTAL		5	22	15	0	3	0	45

Locatable Database Findings

IRIBAL LISTING

Acronym	Search Radius (miles)	$\begin{aligned} & \text { TP/AP } \\ & (0-0.02) \end{aligned}$	$\begin{gathered} \text { 1/8 Mile } \\ \text { \& TP/AP) } \end{gathered}$	$\begin{aligned} & \text { 1/4 Mile } \\ & (>1 / 8) \end{aligned}$	$\begin{gathered} 1 / 2 \text { Mile } \\ (>1 / 4) \end{gathered}$	$\begin{aligned} & 1 \text { MiJe } \\ & (>1 / 2) \end{aligned}$	> 1 Mile	Total
USTR06	0.2500		0	0	NS	NS	NS	0
LUSTR06	0.5000		0	0	0	NS	NS	0
ODINDIAN	0.5000		0	0	0	NS	NS	0
INDIANRES	1.0000		0	0	0	0	NS	0
SUB-TOTAL			0	0	0	0	0	0

TOTAL		11	23	15	0	3	0	52

NOTES:
NS = NOT SEARCHED
TP/AP = TARGET PROPERTY/ADJACENT PROPERTY

Click here to access Satellite view

Click here to access Satollite view

Topographic Map

click here to access Satelite view

Report Summary of Locatable Sites

Map 1D)	Database Name	Site IDIV	Distance From Site	Site Name	Address	City, Zip Code	PAGE g
1	IHW	84841	0.01 N	WALGREEN 3328	12850 MEMORIAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	17
1	IOP	0817	0.01 N	TOWN \& COUNTRY VILLAGE SHOPPING CENTER	12850 MEMORIAL. DR.	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	18
1	SIEC01	0152	0.01 N	TOWN AND COUNTRY VLAGE SHOPPING CENTER	12850 MEMCRJAL DRIVE	HOUSTON	19
1	VCP	0152	0.01 N	TOWN AND COUNTRY VILLAGE SHOPPING CENTER	12850 NEMORUAL DRIVE	HOUSTON	20
1	FRSTX	110035195286	0.01 N	TOWN \& COUNTRY VILLAGE	12850 MEMORIAL OR	HOUSTON, 77024	21
1	FRSTX	110005175452	0.01 N	WALGREENS 3328	12850 MEMORLAL	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	22
1	FRSTX	110046450354	0.01 N	RANDALL'S STORE $\# 1066$	12850 MEMORLAL DR., STE 1000	$\begin{aligned} & \text { HOUSTON. } \\ & 77024 \end{aligned}$	23
1	FRSTX	110003166885	0.01 N	OKLAHOMA INSTALLATIN CO	570 TOWN \& COUNTRY VILLAGE	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	24
1	RCRAGR08	TXR000081221	0.01 N	RANDALL'S STORE 81066	12850 MEMORIAL DR., STE 1000	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	25
1	RCPAGR06	TXD988078226	0.01 N	OKLAHOMA INSTALLATIN CO	570 TOWN \& COUNTRY VLLAGE	HOUSTON, 77024	27
1	GWCC	152	0.01 N	TOWN AND COUNTRY VILAGE SHOPPING CENTER	12850 MEMORJAL DRIVE, HOUSTON, TX	HOUSTON	29
2	DCR	RN104946496	0.03 W	POST OAK CLEANERS	12645 MEMORIAL DR STE G	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	30
3	IHW	51071	0.03 N	PILGRIM Cleaners	12754 MEMORLAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	32
3	H0W	70234	0.03 N	PILGRIM TOWN \& COUNTRY CLEANER	12754 MEMORIAL OR	HOUSTON, 77024	34
3	LPST	0061076	0.03 N	A 1 CLEANERS	12754 MEMORIAL OR	HOUSTON. 77024	35
3	PST	61076	0.03 N	A-1 CLEANERS	12754 MEMORIAL DR	HOUSTON, 77024	32
3	VCP	1621	0.00 N	A-1 CLEANERS	12754 MEMORIAL DRIVE	HOUSTON. 77024	倠
3	DCR	RN100659127	0.03 N	A-1 CLEANERS	12754 MEMORIAL DR	HOUSTON, 77024	45
4	IOP	0219	0.03 W	ALEXAN MEMORIAL BEND APARTMENTS	12667 MEMORIAL DRJVE	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \\ & \hline \end{aligned}$	47
5	LPST	0014936	0.03 W	CONOCO 43059	12699 MEMCFIAL CR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	48
5	PST	14938	0.03 W	CONOCO 43059	12899 MEMORLAL DR	HOUSTON, 77024	54
5	DCR	RN105960738	0.03 W	POST OAK CLEANERS	12899 MEMORLAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \\ & \hline \end{aligned}$	62
6	PST	2926\%	0.03 NW	WHEATLEY INVESTMENTS	12660 MEMORIAL DR	HOUSTON, 77024	61
6	LPST	0029268	0.03 NWV	CHEVRON 60108123	12550 MEMORIAL DR	$\begin{aligned} & \text { HOUSTON. } \\ & 77024 \\ & \hline \end{aligned}$	23
2	IOP	0249	0.05 NE	SPRINT PCS TOWER SITE (HO54XC605LLEONARD	608 WEST BOUGH LANE	HOUSTON, 77024	83

Ge®Search

Report Summary of Locatable Sites

8	DCR	FN103953188	0.06 NE	MW CLEANERS 10244	12534 MEMCRIAL DR	$\begin{aligned} & \text { HOUSTON. } \\ & 77024 \end{aligned}$	84
8	IHWCA	T1936	0.06 NE	MW CLEANERS 10244	12534 MEMORIAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	明
8	VCP	1714	0.06 NE	LANTERN LANE SHOPPING CENTER PRO CLEAN	12534 MEMOPJAL DRIVE	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	87
夏	APAR	1714	0.06 NE	LANTERN LANE SHOPPING CENTER PRO CLEANER	12534 MEMORIAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	88
9	IHW	70233	0.07 W	PILGRAM WYCLIFFE	12647 MEMORLAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	89
9	IHW	70231	0.07 W	Pilgrim cleaners	12647 MEMORLAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	90
10	HPW	90546	0.07 NE	YOUR VALET CLEANERS	614 W BOUGHLN	HOUSTON, 77024	21
11	VCP	2700	0.09 SE	MEMORIAL GREEN	12601 MEMORIAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	92
12	RCRAGR06	TXR000081215	0.12 NE	CVS PHARMACY $\# 6752$	$\begin{aligned} & 12502 \text { MEMORIAL } \\ & \text { DR } \end{aligned}$	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	93
13	DCR	RN103957502	0.14 NE	PILGRAM Clleaners 128	650 W BOUGH LN STE 116	HOUSTON, 77024	25
14	PST	33022	0.17 E	TPG 57307	12490 MEMORIAL OR	HOUSTON, 77024	25
14	LPST	0003022	0.17 E	SHELL	12490 MEMORIAL DR	$\begin{aligned} & \text { HOUSTON } \\ & 77024 \\ & \hline \end{aligned}$	106
15	DCRPS	DC0078	0.21 E	PILGRIM CLEANERS	12442 MEMORIAL DRIVE	HOUSTON	113
15	IHW	51067	0.21 E	PILGRIM CLEANERS BOLTINE	12442 MEMOROAL DR	HOUSTON, 77024	114
15	IHW	70235	0.21 E	PILGRIM MEMORIAL CLEANERS	12442 MEMORIAL DR	HOUSTON, 77024	115
15	DCR	RN100659812	0.21 E	PILGRIM CLEANERS 111	12442 MEMORIAL DR	$\begin{aligned} & \text { HOUSTON, } \\ & 77084 \end{aligned}$	116
18	LPST	0023106	0.21 N	TEXACO	12859 KMBERLY LN	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	118
16	PST	23106	0.21 N	SHELL	12859 KMBERLEY LN	$\begin{aligned} & \text { HOUSTON. } \\ & 77024 \end{aligned}$	126
16	IHW	84068	0.21 N	TEXACO SERVICE STATION 420490390	12859 KMEERLEY LN	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \\ & \hline \end{aligned}$	136
17	IHW	90100	0.21 N	C O POLYDOROS \& ASSOCIATES	12727 KIMBERLEY LN	HOUSTON, 77024	137
18	LPST	0022134	0.24 N	MOBI SERVICE STATION 12-BLY	770 WEST SAM HOUSTON PKWY NORTH \#10	$\begin{aligned} & \text { HOUSTON, } \\ & 77024 \end{aligned}$	138
18	PST	22134	0.24 N	SHELL OL	12060 KIMBERLEY LN	HOUSTON, 77024	149
18	HWW	80248	0.24 N	MOBIL OIL OOBLY	12560 KIMBERCY \& WBELT	$\begin{aligned} & \text { HOUSTON } \\ & 77024 \\ & \hline \end{aligned}$	161
19	LPST	GS091439	0.24 N	LEAK \% INTERSECTION	KMBERLY LN © WEST BELT	$\begin{aligned} & \text { HOUSTON, } \\ & 77000 \\ & \hline \end{aligned}$	162
20	IHWCA	31158	0.9 N	WEATHERFORD US HOUSTON	10802 KATY FWY	$\begin{aligned} & \text { HOUSTON, } \\ & 77043 \end{aligned}$	164

Ge®Search
waw geo-search cam 888-396-0042

Report Summary of Locatable Sites

21	IHWCA	31402	0.95 N	FLUOROCARBON PLASTIC \& RUBBER PROOUCTION	10420 KATY FWVY	$\begin{aligned} & \text { HOUSTON. } \\ & 77043 \end{aligned}$	185
22	IHWCA	34348	0.97 N	SPRING BRANCH SERVICE CENTER	10310 KATY FWY	$\begin{aligned} & \text { HOUSTON, } \\ & 77043 \end{aligned}$	165

Industrial and Hazardous Waste Sites (IHW)

MAP ID\#1 Distance from Property: $0.01 \mathrm{ml} . \mathrm{N}$

```
FACILITY INFORMATION
REGISTRATION#; }84841\mathrm{ EPAID: TXR000018523
TNRCC ID #: }10476
NAME: WALGREEN }332
ADDRESS: 12850 MEMORIAL DR
    HOUSTON, TX }7702
CONTACT: ANNA OHERNIN
PHONE: 713-7227242
BUSINESS DESCRIPTION: DRUGSTORE (PHOTO LAB) FACILITY INACTIVATED AT THE REQUEST OF QUALEX ON-SITE
PITCURES. SEE LTR. DATED 1/23/02. LOG#1223. $/15/02 BB
INDUSTRLAL WASTE PERMIT #: NOT REPORTED
MUNICIPAL WASTE PERMIT #: NOT REPORTED
SIC CODE; NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 04/16/2003
ACTIVITIES
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
WASTE ID: }15559
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: YES
GENERATOR'S DESCRIPTION OF WASTE: USED PPHOTO CHEMISTRY USED IN PHOTO PROCESSING. (USED FIXER)
```

Back to Report Summary

Innocent Owner / Operator Database (IOP)

MAP ID\#1 Distance from Property: $0.01 \mathrm{mi} . \mathrm{N}$

```
FACILITY INFORMATION
ID#: 0817
DATE IOP RECIEVED: 02/24/12
CERTIFICATE ISSUED: 09/12/12
NAME: TOWN & COUNTRY VILLAGE SHOPPING CENTER
ADDRESS: }12850\mathrm{ MEMORIAL DR.
    HOUSTON, TX }7702
CONTAMINANTS: VOCS, CHLORINATED SOLVENTS
MEDIA AFFECTED: GROUNDWATER
PHASE: COMPLETED
PROPERTY USE: COMMERCIAL INDUSTRIAL
ACRES: 27.789
OTHER CONTACTS (CONSULTANT/ATTORNEY)
ORGANIZATION: VINSON & ELKINS, LLP
    LARRY NETTLES ATTORNEY
    1001 FANNIN ST. STE. 2500
    HOUSTON TX 77002
PHONE: 713.756.4586 FAX: 713-758-2346
```


APPLICANT INFORMATION

ORGANIZATION: WB HOLDING CORP.
LARRY NETTLES, PRESIDENT
ADDRESS: 12850 MEMORIAL DR.
HOUSTON, TX, 77024
INTEREST IN SITE: OWNER
PHONE: 713-773-5540 FAX: 713-773-5556

State Institutional/Engineering Control Sites (SIEC01)

MAP ID\# 1 Distance from Property: $0.01 \mathrm{mi} . \mathrm{N}$

```
SITE INFORMATION
IDF: 0152
NAME: TOWN AND COUNTRY VILLAGE SHOPPING CENTER
ADDRESS: 12850 MEMORIAL DRIVE
HOUSTON TX
ACRES: 27.789
FACILITY TYPE: DRY CLEANERS
APPLICATION DATE: 12/21/95
DATE OF AGREEMENT: 04/22/96
CERTIFICATE OF COMPLETION DATE: 07/15/97
TYPE OF CERTIFICATE ISSUED: CONDITIONAL
TYPE LEAD: OWNER
PHASE: CONDITIONAL
CONTAMINANT/S: CHLORINATED SOLVENTS
MEDIA AFFECTED: SOILS/GROUNDWATER
REMEDY: PUMP/TREAT, VAPOR EXTRACTION
CONTROL: NON-RESIDENTIAL,NO GW USE,O&M REMEDIATION
SYSTEMS
TNRCC SOLID WASTE REGISTRATION N: }5214
LPST#: NOT REPORTED
EPA CERCLIS #: 987989621
EPA RCRIS #: NOT REPORTED
PROGRAM: VOLUNTARY CLEANUP PROGRAM
```


Voluntary Cleanup Program Sites (VCP)

MAP ID\# 1 Distance from Property: $0.01 \mathrm{mi} . \mathrm{N}$

```
SITE INFORMATION
ID#: 0152
NAME: TOWN AND COUNTRY VILLAGE SHOPPING CENTER
ADDRESS: }12850\mathrm{ MEMORIAL. DRIVE
HOUSTON TX
ACRES: 27.789
FACILITY TYPE: DRY CLEANERS
APPLICATION DATE: 12/21/95
DATE OF AGREEMENT: 04/22/96
CERTIFICATE OF COMPLETION DATE: 07/15/97
TYPE OF CERTIFICATE ISSUED: CONDITIONAL
TYPE LEAD: OWNER
PHASE: CONDITIONAL
MEDIA AFFECTED: SOILS/GROUNDWATER
TNRCC SOLID WIASTE REGISTRATION #: }5214
REMEDY: PUMPITREAT, VAPOR EXTRACTION
INSTITUTIONAL CONTROL: NON-RESIDENTIAL,NO GW USE,
O&M REMEDIATION SYSTEMS
LPST I:: NOT REPORTED
EPA CERCLIS #: 987989621
EPA RCRIS #: NOT REPORTED
CONTAMINANT/S: CHLORINATED SOLVENTS
```

```
MAP ID#1 Distance from Property: 0.01 mi. N
```

```
EACILITYINFORMATION
REGISTRY ID: 110035195286
NAME: TOWN & COUNTRY VILLAGE
LOCATION ADDRESS: 12850 MEMORIAL DR
    HOUSTON, TX 77024-4972
COUNTY: HARRIS
EPAREGION: 06
FEDERAL FACILITY: NOT REPORTED
TRIBALLLAND: NOT REPORTED
ALTERNATIVE NAME/S:
    TOWN & COUNTRY VILLAGE
PROGRAMS LISTED FOR THIS FACILITY
    TX-TCEQ ACR - TEXAS COMMISSION ON EVIRONMENTAL QUALITY - AGENCY CENTRAL REGISTRY
STANDARD INDUSTRIAL CLASSIFICATIONS (SIC)
    NO SIC DATA REPORTED
NORTH AMERICANINDUSTRY CLASSIFICATION/S (NAICS)
    NO NAICS DATA REPORTED
```


Facility Registry System (FRSTX)

MAP ID\# 1 Distance from Property: 0.01 mi . N

```
EACILITYINFORMATION
REGISTRY ID: 110005175452
NAME: WALGREENS }332
LOCATION ADDRESS: 12850 MEMORIAL
    HOUSTON, TX 77024-4972
COUNTY: HARRIS
EPAREGION: 06
FEDERAL FACILITY: NOT REPORTED
TRIBAL LAND: NOT REPORTED
ALTERNATIVE NAMEIS:
    WALGREENS }332
PROGRAMMS LISTED FOR THIS FACILITY
    RCRAINFO - RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM
STANDARD INDUSTRIAL CLASSIFICATION/S (SIC)
    NO SIC DATA REPORTED
NORTH AMERICAN INDUSTRY CLASSIFICATIONIS (NAICS)
    NO NAICS DATA REPORTED
```


Facility Registry System (FRSTX)

```
MAP ID#1 Distance from Property: 0.01 mi. N
```

EACILITY INFORMATION
REGISTRY ID: 110046450354
NAME: RANDALL'S STORE \#1066
LOCATION ADDRESS: 12850 MEMORIAL DR., STE 1000
HOUSTON, TX 77024-4972
COUNTY: HARRIS
EPA REGION: 06
FEDERAL FACILITY: NOT REPORTED
TRIBAL. LAND: NOT REPORTED
ALTERNATIVE NAME/S:
RANDALL'S STORE \#1066
PROGRAMS LISTED FOR THIS FACILITY
RCRAINFO - RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM
STANDARD INDUSTRIAL CLASSIFICATION/S (SIC) NO SIC DATA REPORTED

NORTH AMERICAN INDUSTRY CLASSIFICATIONIS (NAICS) 44511 - SUPERMARKETS AND OTHER GROCERY (EXCEPT CONVENIENCE) STORES

Facility Registry System (FRSTX)

MAP ID\#1 Distance from Property: 0.01 mi . N

```
EACILITY INFORMATION
REGISTRY ID: 110008166885
NAME: OKLAHOMA INSTALLATIN CO
LOCATION ADDRESS; 570 TOWN & COUNTRY VILLAGE
    HOUSTON, TX 77024
COUNTY: HARRIS
EPA REGION: 06
FEDERAL FACILITY: NOT REPORTED
TRIBAL LAND: NOT REPORTED
ALTERNATME NAME/S:
    OKLAHOMA INSTALLATIN CO
PROGRAM/S LISTED FOR THIS FACILITY
    RCRAINFO - RESOURCE CONSERVATION AND RECOVERY ACT INFORMATION SYSTEM
STANDARD INDUSTRIAL CLASSIFICATION/S (SIC)
    NO SIC DATA REPORTED
NORTH AMERICANINDUSTRY CLASSIFICATION/S (NAICS)
    NO NAICS DATA REPORTED
```


Resource Conservation \& Recovery Act - Generator Facilities (RCRAGR06)

MAP ID\# 1 Distance from Property: $0.01 \mathbf{~ m i} . \mathrm{N}$

FACILITY INFORMATION

EPA IDW: TXR000081221
NAME: RANDALL'S STORE \#1066
ADDRESS: 12850 MEMORLAL DR., STE 1000 HOUSTON, TX 77024-4972

CONTACT NAME: KEITH B POWERS
CONTACT ADDRESS: 12850 MEMORIAL DR., STE 1000 HOUSTON TX 770244972

CONTACT PHONE: 925-226-5655
NON-NOTIFIER: NOT A NON-NOTIFIER
DATE RECEIVED BY AGENCY: 08/29/2012
CERTIFICATION
CERTIFICATION NAME: CERTIFICATION TITLE
KEITH POWERS ENVR COMPLIANCE MGR

OWNER TYPE: PRIVATE
OWNER NAME: TOWN \& COUNTRY PARTNERSHIP
OPERATOR TYPE: PRIVATE
OPERATOR NAME: RANDALL'S

INDUSTRY CLASSIFICATION (NAICS)
44511 - SUPERMARKETS AND OTHER GROCERY (EXCEPT CONVENIENCE) STORES
SITE HISTORY (INCLUDES GENERATORS AND NON-GENERATORS
DATE RECEIVED BY AGENCY: 08/29/2012
NAME: RANDALL'S STORE $\mathbf{\# 1 0 6 6}$
GENERATOR CLASSIFICATION: LARGE QUANTITY GENERATOR

- CURRENT ACTIVITY INFORMATION

GENERATOR STATUS: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR LAST UPDATED DATE: 08/29/2012
SUBUECT TO CORRECTIVE ACTION UNIVERSE: NO
TDSFs POTENTIALLY SUBUECT TO CORRECTIVE ACTION UNDER 3004 (u) (v) UNIVERSE: NO
TDSFs ONLY SUBJECT TO CORRECTIVE ACTION UNDER DISCRETIONARY AUTHORITIES UNIVERSE: NO
NON TSDFs WHERE RCRA CORRECTIVE ACTION HAS BEEN IMPOSED UNIVERSE: NO
CORRECTIVE ACTION WORKLOAD UNIVERSE: NO

IMPORTER: NO
MIXED WASTE GENERATOR: NO
RECYCLER: NO
TRANSPORTER: NO
ONSITE BURNER EXEMPTION: NO
FURNACE EXEMPTION: NO
USED OIL REFINER: NO
USED OIL TRANSFER FACILITY: NO

UNDERGROUND INJECTION: NO
UNIVERSAL WASTE DESTINATION FACILITY: NO
TRANSFER FACILITY: NO
USED OIL FUEL BURNER: NO
USED OIL PROCESSOR: NO
USED OIL FUEL MARKETER TO BURNER: NO
SPECIFICATION USED OIL MARKETER: NO
USED OIL TRANSPORTER: NO

- COUPLIANCE, NONITORING AND ENFORCEMENT INFORMAYION

EVALUATIONS - NO EVALUATIONS REPORTED -
VIOLATIONS - NO VIOLATIONS REPORTED -
ENFORCEMENTS - NO ENFORCEMENTS REPORTED -

```
- HAZARDOUS WASTE
P075 NICOTINE, & SALTS
```


Resource Conservation \& Recovery Act - Generator Facilities

 (RCRAGR06)```
P075 PYRIDINE, 3-(1-METHYL-2-PYRROLIDINYL)-(S)-, & SALTS
UNIVERSAL WASTE -NO UNIVERSAL. WASTE REPORTED -
CORRECTIVE ACTION AREA -NO CORECTIVE ACTION AREA INFORMATION REPORTED -
CORRECTIVE ACTION EVENI -NO CORECTIVE ACTION EVENT REPORTED -
```

Back to Report Summary

## MAP ID\# 1 Distance from Property: 0.01 mi . N

## EACILITY INFORMATION <br> EPA ID\#: TXD988078226

NAME: OKLAHOMA INSTALLATIN CO
ADDRESS: 570 TOWN \& COUNTRY VILLAGE HOUSTON, TX 77024

## OWNER TYPE: PRIVATE

OWNER NAME: DILLARDS DEPT STORE
OPERATOR TYPE: NOT REPORTED
OPERATOR NAME: NOT REPORTED
CONTACT NAME: BRYON DEJARNETTE
CONTACT ADDRESS: PO BOX 740
OWASSO OK 74055
CONTACT PHONE: 918-272-1899
NON-NOTIFIER: NOT A NON-NOTIFIER
DATE RECEIVED BY AGENCY: 09/21/1992
CERTIFICATION - NO CERTIFICATION REPORTED -
INOUSTRY CLASSIFICATION (NAICS) -NO NAICS INFORMATION REPORTED -
SITE HISTORY (INCLUDES GENERATORS AND NON-GENERATORS)
DATE RECEIVED BY AGENCY: 09/21/1992
NAME: OKLAHOMA INSTALLATIN CO
GENERATOR CLASSIFICATION: LARGE QUANTITY GENERATOR

- CURRENT ACTNITY INFORMATION

GENERATOR STATUS: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR LAST UPDATED DATE: 09/02/2000
SUBJECT TO CORRECTIVE ACTION UNIVERSE: NO
TDSFs POTENTIALLY SUBJECT TO CORRECTIVE ACTION UNDER 3004 (u)/(v) UNIVERSE: NO
TDSFs ONLY SUBJECT TO CORRECTIVE ACTION UNDER DISCRETIONARY AUTHORITIES UNIVERSE: NO
NON TSDFs WHERE RCRA CORRECTIVE ACTION HAS BEEN IMPOSED UNIVERSE: NO
CORRECTIVE ACTION WORKLOAD UNIVERSE: NO

IMPORTER: NO
MIXED WASTE GENERATOR: NO
RECYCLER: NO
TRANSPORTER: NO
ONSITE BURNER EXEMPTION: NO
FURNACE EXEMPTION: NO
USED OIL REFINER: NO
USED OIL. TRANSFER FACILITY: NO

UNDERGROUND INJECTION: NO UNIVERSAL. WASTE DESTINATION FACILITY: NO
TRANSFER FACILITY: NO
USED OIL FUEL BURNER: NO
USED OIL PROCESSOR: NO
USED OIL FUEL MARKETER TO BURNER: NO
SPECIFICATION USED OLL. MARKETER: NO
USED OIL. TRANSPORTER: NO

- COMPLIANCE, MONITORING AND ENFORCEMENT INFORMATION
EVALUATIONS -NO EVALUATIONS REPORTED -
VIOLATIONS - NO VIOLATIONS REPORTED -
ENFORCEMENTS - NO ENFORCEMENTS REPORTED -

```
- hazarDous waste
D001 IGNITABLE WASTE
```


## Resource Conservation \& Recovery Act - Generator Facilities (RCRAGR06)

| F003 | THE FOLLOWIN BENZENE, ETHY ALL SPENT SOL NONHALOGENA OR MORE OF TH VOLUME) OF ON FROM THE REC | SPENT NON-HALOGENATED SOLVENTS: XYLENE, ACETONE, ETHER, METHYL ISOBUTYL KETONE, N-BUTYL ALCOHOL, CYCL ENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE d SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS ABOVE NONHALOGENATED SOLVENTS, AND A TOTAL OF TEN OR MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, A ERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXT |
| :---: | :---: | :---: |
| F005 | THE FOLLOWIN DISULFIDE, ISOB SOLVENT MIXTU ONE OR MORE F004; AND STILL | SPENT NONHALOGENATED SOLVENTS: TOLUENE, METHYL ET TANOL, PYRIDINE,BENZENE, 2-ETHOXYETHANOL, AND 2-NITR ESIBLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PER THE ABOVE NONHALOGENATED SOLVENTS OR THOSE SOLV OOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS |
| UNIVE | WASTE - NO | IIVERSAL WASTE REPORTED - |
| CORB | E ACTION AREA | - NO CORECTIVE ACTION AREA INFORMATION REPORTED - |
| CORB | E ACTION EVENI | - NO CORECTIVE ACTION EVENT REPORTED - |

Back to Report Summary

## Groundwater Contamination Cases (GWCC)

MAP ID\#1 Distance from Property: 0.01 mi. N

```
EACILITYINFORMATION
FILE NUMBER: }15
FILE NAME: TOWN AND COUNTRY VILLAGE SHOPPING CENTER
LOCATION: }12850\mathrm{ MEMORIAL DRIVE, HOUSTON,TX
COUNTY: HARRIS
AGENCY: TEXAS COMMISSION ON ENVIRONMENTAL QUALITY
DIVISION: REMEDIATION DIVISION/VOLUNTARY CLEANUP (TCEQ)
DATE OF CONTAMINATION
CONFIRMATION BY AGENCY: 12/21/1995
CONTAMINANT(S): METALS
ENFORCEMENT STATUS: NOT REPORTED
ACTIVITY STATUS: NOT REPORTED
NEW CASE?: NO
```


## Dry Cleaner Registration Database (DCR)

## MAP ID\#2 Distance from Property: 0.03 mi . W

```
EACILITYINFORMATION
REGISTRATION #: RN104946496
CUSTOMER#: NOT REPORTED
NAME: POST OAK CLEANERS
ADDRESS: }12645\mathrm{ MEMORIAL DR STE G
 HOUSTON, TX 77024
ACCOUNT NUMBER: NOT REPORTED
PRINCIPAL NAME: NOT REPORTED
PHONE NUMBER: 713-2660900
SITE TYPE: DROP STATION REGISTRATION
FISCAL YEAR: FY2014
SOLVENT: NOTREPORTED
QUANTITY: NOTREPORTED
FISCAL YEAR: FY2013
SOLVENT: NOTREPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2012
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2011
SOLVENT: NOTREPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2010
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2009
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2008
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2007
SOLVENT: NOTREPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2006
SOLVENT: NOT REPORTED
```


## Dry Cleaner Registration Database (DCR)

QUANTITY: NOT REPORTED

Back to Report Summany

## Industrial and Hazardous Waste Sites (IHW)

MAP ID\# 3 Distance from Property: 0.03 mi . N

```
FACILITY INFORMATION
REGISTRATION#: 51071 EPAID: TXD982561581
TNRCC ID #: 18606
NAME: PILGRIM CLEANERS
ADDRESS: }12754\mathrm{ MEMORIAL DR
 HOUSTON, TX 77024
CONTACT: MARGERY FIRESTONE
PHONE: 713-4641239
BUSINESS DESCRIPTION: NOT REPORTED
INDUSTRIAL WASTE PERMIT #: NOT REPORTED
MUNICIPAL WASTE PERMIT #: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 04/22/2003
ACTIVITIES
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
WASTE ID:43769
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: YES
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED
WASTE ID: }4377
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: YES
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED
WASTE ID: 138542
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: YES
```


## Industrial and Hazardous Waste Sites (IHW)

GENERATOR'S DESCRIPTION OF WASTE: PERC SLUDGE
WASTE ID: 138543
WASTE CODE STATUS: INACTIVE
WIASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: YES
GENERATOR'S DESCRIPTION OF WASTE: PERC FILTERS

Back to Report Summary

## Industrial and Hazardous Waste Sites (IHW)

MAP ID\#3 Distance from Property: $0.03 \mathrm{mi} . \mathrm{N}$

```
FACILITY INFORMATION
REGISTRATION#:70234 EPAID: TXD982561581
TNRCCID H: 25065
NAME: PILGRIM TOWN & COUNTRY CLEANER
ADDRESS: }12754\mathrm{ MEMORIALDR PHONE: NOT REPORTED
 HOUSTON, TX 77024
CONTACT: NOT REPORTED
PHONE: NOT REPORTED
BUSINESS DESCRIPTION: THIS REGISTRATION WAS INACTIVATED BECAUSE THIS FACILITY WAS REGISTERED PRIOR
TO1994 AND NO WASTE ACTIVITY WAS REPORTED IN 1994, 1995 AND }1996
INDUSTRIAL WASTE PERMIT #: NOT REPORTED
MUNICIPAL WASTE PERMIT #: NOT REPORTED
SIC CODE: NOTREPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 0e/04/2010
```


## ACTIVITIES

```
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
NO RECORDS
```


## Leaking Petroleum Storage Tanks (LPST)

## MAP ID\# 3 Distance from Property: 0.03 mi . N

## FACILITY INFORMATION

Geosearch ID: 0061076
FACILITY ID: 0061076
NAME: A 1 CLEANERS
ADDRESS: 12754 MEMORLAL DR HOUSTON, TX 77024

FACILITY DETAILS
LPST ID\#: 113777
NAME: A 1 CLEANERS
FACILITY LOCATION: 12754 MEMORIAL DR
PRIORITY CODE: (4.0) ASSESSMENT INCOMPLETE, NO APPARENT RECEPTORS IMPACTED
STATUS COOE: (6A) FINAL CONCURRENCE ISSUED, CASE CLOSED
REPORTED DATE: 12/4/1998
ENTERED DATE: 2/3/1999
PRP INFORMATION
NAME: EPSTEIN ALTA ESTATE
ADDRESS: 1800 BEING STE 495
HOUSTON TX 77057
CONTACT: JOHN HUTCHINSON
PHONE: 713/974-1777

## UNDERGROUND STORAGE TANK

| TANK ID: 1 | NUMBER OF COMPARTMENTS: 1 |
| :--- | :--- |
| INSTALLATION DATE: 08/31/1987 | REGISTRATION DATE: $10 / 22 / 1991$ |
| TANK CAPACITY (GAL); NOT REPORTED | EMPTY TANK: NOT EMPTY |
| STATUS: REMOVED FROM GROUND | STATUS BEGIN DATE: 12/01/1998 |
| INTERNAL PROTECTION DATE: NOT REPORTED | REGULATORY STATUS: FULLY REGULATED |
| TANK DESIGN SINGLE WALL: YES | TANK DESIGN DOUBLE WALL: NO |
| PIPE DESIGN SINGLE WALL: YES | PIPE DESIGN DOUBLE WALL: NO |

## TANK DETAILS

MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 150193
TANK ID: 1
COMPARTMENT LETTER: A

## Leaking Petroleum Storage Tanks (LPST)

```
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 0
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXYERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS&VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: }
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): NOT REPORTED
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 150193
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT ANO OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
```

nww-geo-search.com 888-396-0042

## Leaking Petroleum Storage Tanks (LPST)

## NOT REPORTED

CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): NOT REPORTED
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
IANK DETAILS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO CORROSION PROTECTION VARIANCE: NO VARIANCE

COMPARTMENT DETAILS
UST COMPARTMENT ID: 150192
TANK ID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 0
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED

## PIPING SYSTEMS

MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANK ID: 2
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): NOT REPORTED
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
waw geo-search.com 888-396.0042

## Leaking Petroleum Storage Tanks (LPST)

```
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
IANK DETAILS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }15019
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY
```


## Petroleum Storage Tanks (PST)

## MAP ID\# 3 Distance from Property: $0.03 \mathrm{mi} . \mathrm{N}$

## FACILITY INFORMATION

ID\#: 61076
NAME: A-1 CLEANERS
ADORESS: 12754 MEMORIAL DR
HOUSTON, TX 77024
COUNTY: HARRIS
REGION: 12
TYPE: FLEET REFUELING
BEGIN DATE: 10/28/1991
STATUS: INACTIVE
EXEMPT STATUS: NO
RECORDS OFF-SITE: NO
NUMBER OF ACTIVE UNDERGROUND TANKS: 0
NUMBER OF ACTIVE ABOVEGROUND TANKS: 0
APPLICATION INFORMATION:-
RECEIVED DATE ON EARLIEST REGISTRATION FORM: 10/22/1991
SIGNATURE DATE ON EARLIEST REGISTRATION FORM: 10/14/1991
SIGNATURE NAME \& TITLE: ALTA J EPSTEIN, OWNER
ENFORCEMENT ACTION DATE: NOT REPORTED

## OWNER

OWNER NUMBER: CN601253842
NAME: ESTATE OF ALTA J EPSTEIN
CONTACT ADDRESS: OWNER ADDRESS NOT REPORTED
CITY NOT REPORTED
TYPE: ORGANIZATION
BEGIN DATE: 10/22/1991
CONTACT ROLE: NOT REPORTED
CONTACT NAME: NOT REPORTED
CONTACT TITLE: NOT REPORTED
ORGANIZATION: NOT REPORTED
PHONE: NOT REPORTED
FAX: NOT REPORTED
EMAIL: NOT REPORTED
OPERATOR
NO OPERATOR INFORMATION REPORTED

## SELF-CERTIFICATION

-NO SELF-CERTIFICATION INFORMATION REPORTED.

## CONSTRUCTION NOTIFICATION

NO CONSTRUCTION NOTIFICATION DATA REPORTED FOR THIS FACILITY

## UNDERGROUND STORAGE TANK

TANK ID: 1
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): NOT REPORTED

## CONTACT INFORMATION

NAME: NOT REPORTED
TITLE: NOT REPORTED
ORGANIZATION: NOT REPORTED
MAlL ADDRESS: MAILING ADDRESS NOT REPORTED CITY NOT REPORTED
PHONE: NOT REPORTED

## Petroleum Storage Tanks (PST)

STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: 150193
TANK ID: 1
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 0
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCEFLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

```
TANKID: 1
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): NOT REPORTED
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
```


## Petroleum Storage Tanks (PST)

```
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }15019
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOTREPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 2 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 08/31/1987 REGISTRATION DATE: 10/22/1991
TANK CAPACITY (GAL): NOT REPORTED EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
```


## TANK DETAILS

```
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 150192
TANK ID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
```


## Petroleum Storage Tanks (PST)

```
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 0
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL); NOT REPORTED
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
IANK DETAILS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTANMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 150192
TANKID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
```


## Petroleum Storage Tanks (PST)

CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY

Back to Report Summary

## Voluntary Cleanup Program Sites (VCP)

MAP ID\#3 Distance from Property: 0.03 mi . N

SITE INFORMATION<br>ID\#: 1621<br>NAME: A- 1 CLEANERS<br>ADDRESS: 12754 MEMORIAL DRIVE<br>HOUSTON TX 77024-4861<br>ACRES: 0.45<br>FACILITY TYPE: DRY CLEANERS<br>APPLICATION DATE: 08/08/03<br>DATE OF AGREEMENT: 09/03/03<br>CERTIFICATE OF COMPLETION DATE: NOT REPORTED<br>TYPE OF CERTIFICATE ISSUED: NOT REPORTED<br>TYPE LEAD: OWNER<br>PHASE: INVESTIGATION<br>MEDIA AFFECTED: SOILS/GROUNDWATER<br>TNRCC SOLID WASTE REGISTRATION \#: NOT REPORTED<br>REMEDY: NOT REPORTED<br>INSTITUTIONAL CONTROL: NOT REPORTED<br>LPST \#: 113777<br>EPA CERCLIS \#: NOT REPORTED<br>EPA RCRIS \#: NOT REPORTED<br>CONTAMINANT/S: VOCS

## APPLICANT INFORMATION

ORGANIZATION: WB HOLDING CORPORATION
DAN, MOODY III
3003 WEST ALABAMA HOUSTON, TX, 77098

PHONE: 713-773-5540
FAX: 713-773-5556
CONSULTANT/ATTORNEY INFORMATION
ORGANIZATION: VINSON \& ELKINS, LLP LARRY W., NETTLES, ATTORNEY 2300 FIRST CITY TOWER, 1001 FANNIN STREET HOUSTON, TX, 77002
PHONE: 713-758-4586
FAX: 713-615-5538

## Dry Cleaner Registration Database (DCR)

MAP ID\# 3 Distance from Property: $0.03 \mathrm{mi} . \mathrm{N}$

EACILITY INFORMATION
REGISTRATION \#: RN100659127
CUSTOMER \#: NOT REPORTED
NAME: A-1 CLEANERS
ADDRESS: 12754 MEMORIAL DR
HOUSTON, TX 77024
ACCOUNT NUMBER: NOT REPORTED
PRINCIPAL NAME: NOT REPORTED
PHONE NUMBER: 713-4676684
SITE TYPE: DROP STATION REGISTRATION
FISCAL YEAR: FY2014
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2013
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2012
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2011
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2010
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2009
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2008
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2007
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2006
SOLVENT: NOT REPORTED

## Dry Cleaner Registration Database (DCR)

QUANTITY: NOT REPORTED

FISCAL YEAR: FY2005
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2004
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

## Innocent Owner / Operator Database (IOP)

MAP ID\# 4 Distance from Property: 0.03 mi . W

## FACILITY INFORMATION

1DN: 0219
DATE IOP RECIEVED: 02/07/01
CERTIFICATE ISSUED: 06/08/01
NAME: ALEXAN MEMORIAL BEND APARTMENTS
ADORESS: 12667 MEMORIAL DRIVE
HOUSTON, TX 77024
CONTAMINANTS: VOCS, TPH
MEDIA AFFECTED: SOILS/GROUNDWATER
PHASE: COMPLETED
PROPERTY USE: APARTMENT COMPLEX
ACRES: 5.6277
OTHER CONTACTS (CONSULTANT/ATTORNEY)
ORGANIZATION: VINSON \& ELKINS, LLP
LARRY NETTLES PARTNER 2300 FANNIN
HOUSTON TX 77002
PHONE: 713-758-4586 FAX: 713-615-5538

## APPLICANT INFORMATION

ORGANIZATION: TCR MEMORIAL BEND HOLDINGS, LARRY NETTLES, VICE PRESIDE
ADDRESS: 10333 RICHMOND AVENUE, SUITE 400 HOUSTON, TX, 77042
INTEREST IN SITE: OWNER
PHONE: 713-781-5775 FAX: 713-781-8988

## Leaking Petroleum Storage Tanks (LPST)

## MAP ID\# 5 Distance from Property: 0.03 mi . W

## FACILITY INFORMATION

```
Geosearch ID: 0014936
FACILITY ID: 0014936
NAME: CONOCO 43059
ADDRESS: }12699\mathrm{ MEMORIAL DR
 HOUSTON, TX }7702
```


## EACILITY DETAILS

```
LPST IDN: 104023
NAME: CONOCO 43059
FACILITY LOCATION: 12699 MEMORIAL DR
PRIORITY CODE: (4.1) GROUNDWATER IMPACTED, NO APPARENT THREATES OR IMPACTS TO RECEPTORS
STATUS CODE: (6A) FINAL CONCURRENCE ISSUED, CASE CLOSED
REPORTED DATE: 5/5/1992
ENTERED DATE: 8/31/1992
PRP INFORMATION
NAME: CONOCO INC
ADDRESS: PO BOX 4784
HOUSTON TX 77210
CONTACT: PAUL TAYLOR
PHONE: 832/379-6423
```


## UNDERGROUND STORAGE TANK

TANK ID: 1 NUMBER OF COMPARTMENTS: 1

INSTALLATION DATE: 01/01/1982 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/23/1992
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

## IANK DETAILS

MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 16238
TANK ID: 1
COMPARTMENT LETTER: A

## Leaking Petroleum Storage Tanks (LPST)

```
SUBSTANCES: KEROSENE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED,
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 2 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1982 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }10000\mathrm{ EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/23/1992
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
```


## TANK DETAILS

```
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }1623
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: KEROSENE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
```


## Leaking Petroleum Storage Tanks (LPST)

NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3
INSTALLATION DATE: 01/01/1959
TANK CAPACITY (GAL): 6000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 16236
TANK ID: 3
COMPARTMENT LETTER: A
SUBSTANCES: KEROSENE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTANMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VAL VES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANKID: 3A
INSTALLATION DATE: 10/01/1987
TANK CAPACITY (GAL): 10000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED

## Leaking Petroleum Storage Tanks (LPST)

```
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
 PIPE DESIGN DOUBLE WALL: NO
IANK DETALLS
MATERIAL:
FRP
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }1623
TANKID:3A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALYES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4 NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 01/01/1959 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 6000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 10V29/1987
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
IANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
```


## Leaking Petroleum Storage Tanks (LPST)

```
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }1624
TANK ID: 4
COMPARTMENT LETTER: A
SUBSTANCES: DIESEL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAQ
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 5 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 08/31/1987 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 550 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 10/24/1990
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
```


## TANK DETAILS

```
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 16241
TANK ID: 5
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
```


## Leaking Petroleum Storage Tanks (LPST)

```
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY
```

Back to Report Summary

## Petroleum Storage Tanks (PST)

## MAP ID\# 5 Distance from Property: 0.03 mi . W

## FACILITY INFORMATION

ID\#: 14936
NAME: CONOCO 43059
ADDRESS: 12699 MEMORIAL DR
HOUSTON, TX 77024
COUNTY: HARRIS
REGION: 12
TYPE: RETAIL
BEGIN DATE: 09101/1988
STATUS: INACTIVE
EXEMPT STATUS: NO
RECORDS OFF-SITE: NO
NUMBER OF ACTIVE UNDERGROUND TANKS: 0
NUMBER OF ACTIVE ABOVEGROUND TANKS: 0
APPLICATIONINFORMATION:
RECEIVED DATE ON EARLIEST REGISTRATION FORM: 05/08/1986
SIGNATURE DATE ON EARLIEST REGISTRATION FORM: 04/16/1986
SIGNATURE NAME \& TITLE: M R BEEVERS, DIR SFTY
ENFORCEMENT ACTION DATE: NOT REPORTED

## OWNER

OWNER NUMBER: CN601674351
NAME: CONOCOPHILLIPS COMPANY
CONTACT ADDRESS: OWNER ADDRESS NOT REPORTED
GITY NOT REPORTED
TYPE: CORPORATION/COMPANY
BEGIN DATE: 09/01/1988
CONTACT ROLE: NOT REPORTED
CONTACT NAME: NOT REPORTED
CONTACT TITLE: NOT REPORTED
ORGANIZATION: NOT REPORTED
PHONE: NOT REPORTED
FAX: NOT REPORTED
EMAIL: NOT REPORTED
OPERATOR
NO OPERATOR INFORMATION REPORTED

## SELF-CERTIFICATION

-NO SELF-CERTIFICATION INFORMATION REPORTED-
CONSTRUCTION NOTIFICATION
NO CONSTRUCTION NOTIFICATION DATA REPORTED FOR THIS FACILITY
UNDERGROUND STORAGE TANK
TANK ID: 1
INSTALLATION DATE: 01/01/1982
TANK CAPACITY (GAL): 10000

## CONTACT INFORMATION

NAME: NOT REPORTED
TITLE: NOT REPORTED
ORGANIZATION: CONOCO 43059
MAIL ADDRESS: MAILING ADDRESS NOT REPORTED CITY NOT REPORTED
PHONE: 713-528-3032

## Petroleum Storage Tanks (PST)

STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO

STATUS BEGIN DATE: 01/23/1992
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

IANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 16238
TANK ID: 1
COMPARTMENT LETTER: A
SUBSTANCES: KEROSENE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): $\mathbf{1 0 0 0 0}$
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARLANCE: NO VARIANCE
TANKID: 2
INSTALLATION DATE: 01/01/1982
TANK CAPACITY (GAL): 10000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 01/23/1992
REGULATORY STATUS: FULLY REGULATED

PIPE DESIGN DOUBLE WALL: NO

## IANK DETAILS

MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)

## Petroleum Storage Tanks (PST)

```
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }1623
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: KEROSENE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOTREPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARLANCE: NO VARIANCE
TANK ID: 3 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1959 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 6000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 10/29/1987
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: 16236
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: KEROSENE
```


## Petroleum Storage Tanks (PST)

```
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALYES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 10/01/1987 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/23/1992
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETALLS
MATERIAL:
FRP
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }1623
TANK ID: 3A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
```


## Petroleum Storage Tanks (PST)

## CORROSION PROTECTION: NOT REPORTED

## PIPE COMPLIANCE FLAG

CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4
INSTALLATION DATE: 01/01/1959
TANK CAPACITY (GAL): 6000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE; NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 16240
TANK ID: 4
COMPARTMENT LETTER: A
SUBSTANCES: DIESEL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED

## PIPING SYSTEMS

MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANKID: 5
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): 550
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE; NOT REPORTED
TANK DESIGN SINGLE WALL: NO

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: $10 / 24 / 1990$
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO

## Petroleum Storage Tanks (PST)

```
PIPE DESIGN SINGLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: }1624
TANK ID: 5
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCEFLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY
```


## Dry Cleaner Registration Database (DCR)

## MAP ID昔 5 Distance from Property: 0.03 mi . W

```
EACILITY INFORMATION
REGISTRATION N: RN103960738
CUSTOMER##: NOT REPORTED
NAME: POST OAK CLEANERS
ADDRESS: }12699\mathrm{ MEMORIAL. DR
 HOUSTON, TX77024
ACCOUNT NUMBER: NOT REPORTED
PRINCIPAL NAME: NOT REPORTED
PHONE NUMBER: NOT REPORTED
SITE TYPE: DROP STATION REGISTRATION
FISCAL YEAR: FY2005
SOLVENT: NOT REPORTED
QUANTITY: NOTREPORTED
FISCAL YEAR: FY2004
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
```


## Petroleum Storage Tanks (PST)

## MAP ID\# 6 Distance from Property: 0.03 mi . NW

## FACILITY INFORMATION

ID\#: 29268
NAME: WHEATLEY INVESTMENTS
ADDRESS: 12860 MEMORIAL DR
HOUSTON, TX 77024
COUNTY: HARRIS
REGION: 12
TYPE: RETAIL
BEGIN DATE: $10 / 29 / 1986$
STATUS: ACTIVE
EXEMPT STATUS: NO
RECORDS OFF-SITE: YES
NUMBER OF ACTIVE UNDERGROUND TANKS: 3
NUMBER OF ACTIVE ABOVEGROUND TANKS: 0
APPLICATION INFQRMATION:
RECEIVED DATE ON EARLIEST REGISTRATION FORM: 05/30/2014
SIGNATURE DATE ON EARLIEST REGISTRATION FORM: 05/27/2014
SIGNATURE NAME \& TITLE: MARK WHEATLEY, NOT REPORTED
ENFORCEMENT ACTION DATE: NOT REPORTED
OWNER
OWNER NUMBER: CN602597478
NAME: WHEATLEY INVESTMENTS LTD
CONTACT ADDRESS: 12860 MEMORIAL DR
HOUSTON TX 77024
TYPE: ORGANIZATION
BEGIN DATE: 12/18/2003
CONTACT ROLE: OWNCON
CONTACT NAME: MARK WHEATLEY
CONTACT TITLE: PARTNER
ORGANIZATION: WHEATLEY INVESTMENTS LTD
PHONE: 713-468-6264
FAX: NOT REPORTED
EMAIL: NOT REPORTED

## OPERATOR

OPERATOR NUMBER: CN602597478
NAME: WHEATLEY INVESTMENTS LTD
CONTACT ADDRESS: 12860 MEMORIAL DR HOUSTON TX 77024
TYPE: ORGANIZATION
BEGIN DATE: 12/18/2003
CONTACT ROLE: OPRCON
CONTACT NAME: MARK WHEATLY
CONTACT TITLE: PARTNER

## Petroleum Storage Tanks (PST)

```
ORGANIZATION: WHEATLEY INVESTMENTS LTD
PHONE: (713) 4686264
FAX: NOT REPORTED
EMAIL: NOT REPORTED
SELF-CERTIFICATION
SELF.CERTIFICATION ID: }23742
SIGNATURE DATE: 05/27/2014
SIGNATURE NAME & TITLE: MARK WHEATLEY, PARTNER
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 219594
SIGNATURE DATE: 05/05/2013
SIGNATURE NAME & TITLE: MARK WHEATLEY, PARTNER
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73766
SIGNATURE DATE: 04/26/2012
SIGNATURE NAME & TITLE: MARK WHEATLEY, PARTNER
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73765
SIGNATURE DATE: 05/10/2011
SIGNATURE NAME & TITLE: MARK WHEATLEY, VP
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73764
SIGNATURE DATE: 04/28/2010
SIGNATURE NAME & TITLE: MARK WHEATLEY, PARTNER
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF.CERTIFICATION ID: }7376
SIGNATURE DATE: 05/26/2009
SIGNATURE NAME & TITLE: MARK WHEATLEY, VP
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73762
SIGNATURE DATE: 05/20/2008
SIGNATURE NAME & TITLE: MARK WHEATLEY, NOT REPORTED
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 73761
SIGNATURE DATE: 06/10/2007
SIGNATURE NAME & TITLE: MARK WHEATLEY, PARTNER
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73760
SIGNATURE DATE: 05/25/2006
```


## Petroleum Storage Tanks (PST)

```
SIGNATURE NAME & TITLE: MARK WHEATLEY, VP
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73759
SIGNATURE DATE: 05/19/2005
SIGNATURE NAME & TITLE: MARK WHEATLEY, PARTNER
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 73758
SIGNATURE DATE: 12/18/2003
SIGNATURE NAME & TITLE: CLARENCE R WHEATLEY, CHAIRMAN
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73757
SIGNATURE DATE: 12/17/2003
SIGNATURE NAME & TITLE: CLARENCE R WHEATLEY, CHAIRMAN
FILING STATUS: INITIAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73756
SIGNATURE DATE: 04/01/2003
SIGNATURE NAME & TITLE: HAROLD CROUTHER, RESH SPECIALIST
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 73755
SIGNATURE DATE: 02/12/2002
SIGNATURE NAME & TITLE: RICHARD S MARTIN, RESH SPECIALIST
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 73754
SIGNATURE DATE: 01/16/2001
SIGNATURE NAME & TITLE: RICHARD MARTIN, RESH SPECIALIST
FILING STATUS: INITIAL
REGISTRATION FLAG: YES
CONSTRUCTION NOTIFICATION
NO CONSTRUCTION NOTIFICATION DATA REPORTED FOR THIS FACILITY
UNDERGROUND STORAGE TANK
TANK ID: 1 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 11/01/1995 REGISTRATION DATE: 01/29/1996
TANK CAPACITY (GAL): 12000 EMPTY TANK: NOT EMPTY
STATUS: IN USE
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
IANK DETALLS
MATERIAL:
FRP
CORROSION PROTECTION:
```


## Petroleum Storage Tanks (PST)

```
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73552
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING,AUTOMATIC TANK GAUGE TEST & INVENTORY
CONTROL,INTERSTITIAL. MONITORING WITHIN SECONDARY WALL/JACKET
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERLAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: YES
CORROSION PROTECTION VARLANCE: NO VARIANCE
TANK ID: 1AA NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 03/01/1987 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 10/01/1995
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
```


## TANK DETARLS

```
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }7354
```


## Petroleum Storage Tanks (PST)

```
TANK ID: 1AA
COMPARTMENT LETTER: A
SUBSTANCES:GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCEFLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 1AB NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1966 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 550 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 03/31/1987
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
IANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73545
TANK ID: 1AB
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL.
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
```


## Petroleum Storage Tanks (PST)

```
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARLANCE: NO VARIANCE
TANK ID: 2 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 11/01/1995 REGISTRATION DATE: 01/29/1996
TANK CAPACITY (GAL): }12000\mathrm{ EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 11/01/1995
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73553
TANK ID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1200
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING,AUTOMATIC TANK GAUGE TEST & INVENTORY
CONTROL,INTERSTITIAL MONITORING WITHIN SECONDARY WALL/JACKET
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 2AB
NUMBER OF COMPARTMENTS: 1
```


## Petroleum Storage Tanks (PST)

```
INSTALLATION DATE: 01/01/1977 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }1000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALLL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }7354
TANK ID: 2AB
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL); 10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
RIPINGSYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL. CONTAINMENT: NOT REPORTED.
CONNECTORS& VALYES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 2AA NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 03/01/1987 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 10/01/1995
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE W/ALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
```


## Petroleum Storage Tanks (PST)

```
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }7354
TANK ID: 2AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3AA NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 03/01/1987 REGISTRATION DATE: 05/03/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 10/01/1995
INTERNAL PROTECTIONDATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73551
TANK ID: 3AA
```


## Petroleum Storage Tanks (PST)

```
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3
INSTALLATION DATE: 11/01/1995
TANK CAPACITY (GAL): 12000
STATUS: IN USE
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: 73554
TANK ID: 3
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING,AUTOMATIC TANK GAUGE TEST \& INVENTORY CONTROL,INTERSTITIAL MONITORING WITHIN SECONDARY WALL/JACKET
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
```


## Petroleum Storage Tanks (PST)

```
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED,
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3AB NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE:01/01/1966 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }12000\mathrm{ EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 03/31/1987
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
StEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }7354
TANK ID: 3AB
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 4A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 03/01/1987 REGISTRATION DATE: 05/08/1986
```


## Petroleum Storage Tanks (PST)

```
TANK CAPACITY (GAL): }100
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73550
TANK ID: 4A
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 1000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED,
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
```

TANK ID: 4
INSTALLATION DATE: 01/01/1966
TANK CAPACITY (GAL): 12000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETALLS
MATERIAL:
STEEL
CORROSION PROTECTION:

EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: $1001 / 1995$
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

```
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73550
TANK ID: 4A
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 1000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
```

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 03/31/1987
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

## Petroleum Storage Tanks (PST)

```
NOT REPORTED
EXTERNAL. CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73547
TANK ID:4
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION; NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANKINFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY
```


## Leaking Petroleum Storage Tanks (LPST)

## MAP ID\# 6 Distance from Property: 0.03 mi . NW

## FACILITY INFORMATION

```
Geosearch ID: 0029268
```

FACILITY ID: 0029268
NAME: CHEVRON 60108123
ADDRESS: 12860 MEMORIAL DR
HOUSTON, TX 77024
EACILITY DETAILS
LPST IDN: 116132
NAME: CHEVRON 60108123
FACILITY LOCATION: 12860 MEMORIAL DR
PRIORITY CODE: (4.0) ASSESSMENT INCOMPLETE, NO APPARENT RECEPTORS IMPACTED
STATUS CODE: (6P) FINAL CONCURRENCE PENDING DOCUMENTATION OF WELL PLUGGING
REPORTED DATE: 11/23/2003
ENTERED DATE: 9/24/2004
PRP INFORMATION
NAME: CHEVRON PRODUCTS CO
ADDRESS: 5959 CORPORATE DR
HOUSTON TX 77036
CONTACT: ADRIANNE ROBINSON
PHONE: 713/219-5266

LPST IDW: 091934
NAME: CHEVRON 60108123
FACILITY LOCATION: 12860 MEMORIAL DR \& W BELT
PRIORITY CODE: (4.1) GROUNDWATER IMPACTED, NO APPARENT THREATES OR IMPACTS TO RECEPTORS
STATUS CODE: (6P) FINAL CONCURRENCE PENDING DOCUMENTATION OF WELL. PLUGGING
REPORTED DATE: 6/10/1988
ENTERED DATE: $6 / 10 / 1988$
PRP INFORMATION
NAME: CHEVRON PRODUCTS CO
ADDRESS: 4800 FOURNACE PL
BELLAIRE TX 77401
CONTACT: RAVELLE JONES
PHONE: 713/219-5224

## UNDERGROUND STORAGE TANK

| TANK ID: 1 | NUMBER OF COMPARTMENTS: 1 |
| :--- | :--- |
| INSTALLATION DATE: 11/01/1995 | REGISTRATION DATE: 01/29/1996 |
| TANK CAPACITY (GAL): 12000 | EMPTY TANK: NOT EMPTY |
| STATUS: IN USE | STATUS BEGIN DATE: 11/01/1995 |
| INTERNAL PROTECTION DATE: NOT REPORTED | REGULATORY STATUS: FULLY REGULATED |
| TANK DESIGN SINGLE WALL: NO | TANK DESIGN DOUBLE WALL: YES |
| PIPE DESIGN SINGLE WALL: NO | PIPE DESIGN DOUBLE WALL: YES |

## Leaking Petroleum Storage Tanks (LPST)

```
IANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }7355
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{12000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING,AUTOMATIC TANK GAUGE TEST & INVENTORY
CONTROL,INTERSTITIAL MONITORING WITHIN SECONDARY WALL/JACKET
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
INSTALLLATION DATE: 03/01/1987
TANK CAPACITY (GAL): }1000
STATUS: REMOVED FROM GROUND
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
```

TANK ID: 1AA

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 10/01/1995
regulatory status: fully regulated
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

## Leaking Petroleum Storage Tanks (LPST)

```
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73549
TANK ID: 1AA
COMPARTMENT LETTER:A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
```

TANK ID: 1AB
INSTALLATION DATE: 01/01/1966
TANK CAPACITY (GAL): $\mathbf{5 5 0}$
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
StEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73545
TANK ID: 1AB
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
COMPARTMENT RELEASE DETECTION: NOT REPORTED

## Leaking Petroleum Storage Tanks (LPST)

```
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 11/01/1995 REGISTRATION DATE: 01/29/1996
TANK CAPACITY (GAL): }12000\mathrm{ EMPTY TANK: NOT EMPTY
STATUS: IN USE
INTERNAL PROTECTION DATE: NOTREPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73553
TANK ID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{12000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING,AUTOMATIC TANK GAUGE TEST & INVENTORY
CONTROL,INTERSTITIAL MONITORING WITHIN SECONDARY WALLJJACKET
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKETISUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
```


## Leaking Petroleum Storage Tanks (LPST)

```
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2AB
INSTALLATION DATE: 01/01/1977
TANK CAPACITY (GAL): 10000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAQ
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73544
TANK ID: 2AB
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): \(\mathbf{1 0 0 0 0}\)
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
```

TANK ID: 2AA
INSTALLATION DATE: 03/01/1987
TANK CAPACITY (GAL): 10000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 10N01/1995
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

## Leaking Petroleum Storage Tanks (LPST)

```
IANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }7354
TANK ID: 2AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS&VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
BIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3AA NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 03/01/1987 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }10000\mathrm{ EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 10/01/1995
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
```


## IANK DETAILS

```
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
```


## Leaking Petroleum Storage Tanks (LPST)

```
COMPARTMENT DETAlLS
UST COMPARTMENT ID: 73551
TANK ID: 3AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLLANCEFLAQ
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 11/01/1995 REGISTRATION DATE: 01/29/1996
TANK CAPACITY (GAL): 12000 EMPTY TANK: NOT EMPTY
STATUS: IN USE
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73554
TANK ID: 3
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING,AUTOMATIC TANK GAUGE TEST & INVENTORY
CONTROL,INTERSTITIAL MONITORING WITHIN SECONDARY WALLJJACKET
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINERIBUCKET/SUMP,FACTORY - BUILT
```


## Leaking Petroleum Storage Tanks (LPST)

```
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
RIPING SYSTEMS
MATERLAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
```

TANKID: 3AB
INSTALLATION DATE: 01/01/1966
TANK CAPACITY (GAL): 12000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETALLS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73546
TANK ID: 3AB
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED

## PIPING SYSTEMS

MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO

## Leaking Petroleum Storage Tanks (LPST)

## CORROSION PROTECTION VARIANCE: NO VARIANCE

TANKID: 4A
INSTALLATION DATE: 03/01/1987
TANK CAPACITY (GAL): 1000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73550
TANK ID: 4A
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL) 1000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANKID: 4
INSTALLATION DATE: 01/01/1966
TANK CAPACITY (GAL): 12000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
IANK DETAILS
MATERIAL:

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 03/31/1987
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

## Leaking Petroleum Storage Tanks (LPST)

## STEEL

CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 73547
TANK ID: 4
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): $\mathbf{1 2 0 0 0}$
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY
Back to Report Summary

## Innocent Owner / Operator Database (IOP)

MAP ID\# 7 Distance from Property: $\mathbf{0 . 0 5} \mathbf{~ m i}$. NE

FACILITY INFORMATION<br>IDE: 0249<br>DATE IOP RECIEVED: 07/17/01<br>CERTIFICATE ISSUED: 10/19/01<br>NAME: SPRINT PCS TOWER SITE (HO54XC695/LEONARD)<br>ADORESS: 608 WEST BOUGH LANE<br>HOUSTON, TX 77024<br>CONTAMINANTS: VOCS<br>MEDIA AFFECTED: GROUNDWATER<br>PHASE: COMPLETED<br>PROPERTY USE: GRASS MEDLAN/PARKING LOT<br>ACRES: 400 SQFT<br>OTHER CONTACTS (CONSULTANT/ATTORNEY)<br>ORGANIZATION: BRACEWELL \& PATTERSON, LLP<br>RINA CHANG ATTORNEY<br>711 LOUISIANA, SUITE 2900<br>HOUSTON TX 77002<br>PHONE: 713-221-1580 FAX: 713-221-1212

## APPLICANT INFORMATION

ORGANIZATION: SPRINT COM, INC.
RINA CHANG, LEASE MANAGEMEN
ADDRESS: 1341 WEST MOCKINGBIRD LANE, SUITE 600E
DALLAS, TX, 75247-4938
INTEREST IN SITE: OPERATOR
PHONE: 214-525-4049 FAX: 214-525-4066

## Dry Cleaner Registration Database (DCR)

## MAP ID茾 8 <br> Distance from Property: 0.06 mi . NE

```
EACILITYINFORMATION
REGISTRATION #: RN103953188
CUSTOMER #: NOT REPORTED
NAME: MW CLEANERS 10244
ADDRESS: }12534\mathrm{ MEMORIAL DR
 HOUSTON, TX }7702
ACCOUNT NUMBER: NOT REPORTED
PRINCIPAL NAME: NOT REPORTED
PHONE NUMBER: 281-3209807
SITE TYPE: DROP STATION REGISTRATION
FISCAL YEAR: FY2014
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL. YEAR: FY2013
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2012
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2011
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2010
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2009
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2007
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2006
SOLVENT: PETROLEUM
QUANTITY: 200 GALLONS
FISCAL YEAR: FY2005
SOLVENT: NOT REPORTED
```


## Dry Cleaner Registration Database (DCR)

QUANTITY: NOT REPORTED

FISCAL YEAR: FY2004
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

Back to Report Summary

## Industrial and Hazardous Waste Corrective Action Sites (IHWCA)

```
MAP ID# 8 Distance from Property: 0.06 mi. NE
PROGRAM ID: T1936
RN NUMBER: RN103953188
NAME: MW CLEANERS 10244
ADDRESS: }12534\mathrm{ MEMORIAL DR
 HOUSTON, TX 77024
STATUS: INACTIVE
STATUS DATE: 6/21/11
LOCATION DESCRIPTION:
NOT REPORTED
```


## Voluntary Cleanup Program Sites (VCP)

## MAP ID\# 8 Distance from Property: 0.06 mi . NE

SITE INFORMATION
ID\#: 1714
NAME: LANTERN LANE SHOPPING CENTER - PRO CLEANERS

ADDRESS: 12534 MEMORIAL DRIVE
HOUSTON TX 77024-6000
ACRES: 6.75
FACILITY TYPE: DRY CLEANERS
APPLICATION DATE: 07/01/04
DATE OF AGREEMENT: 07/19/04
CERTIFICATE OF COMPLETION DATE: $10 / 11 / 12$
TYPE OF CERTIFICATE ISSUED: FINAL
TYPE LEAD: OPERATOR
PHASE: COMPIAFFIDAFIT
MEDIA AFFECTED: SOILSIGROUNDWATER
TNRCC SOLID WASTE REGISTRATION \#: NOT REPORTED
REMEDY: NOT REPORTED
INSTITUTIONAL CONTROL: MSD
LPST \#: NOT REPORTED
EPA CERCLIS\#: NOT REPORTED
EPA RCRIS \#: NOT REPORTED
CONTAMINANT/S: CHLORINATED SOLVENTS

## APPLICANT INFORMATION

## ORGANIZATION: DIFFERENTIAL DEVLOPMENT - 1994, LTD.

BART, RAINEY, VICE PRESIDENT

2001 KIRBY DRIVE, SUITE 1200
HOUSTON, TX, 77010
PHONE: 713-630-9628


ORGANIZATION: SKA CONSULTING, LP
MIKE, SCHULTZ, PE, OPERATIONS MANAGE
10260 WESTHEIMER, SUTTE 605
HOUSTON, TX, 77042
PHONE: 713-266-6056
FAX: 713-266-0996

## Affected Property Assessment Reports (APAR)

## MAP ID\# 8 Distance from Property: $\mathbf{0 . 0 6 ~ m i . ~ N E ~}$

```
FACILITY INFORMATION
PROGRAMID: }171
```


## CONTACTS

RAINEY, BART

```
REFERENCE NUMBER: RN103953188
FACILITY NAME: LANTERN LANE SHOPPING CENTER PRO CLEANERS
ADDRESS: \(\mathbf{1 2 5 3 4}\) MEMORLAL DR
HOUSTON, TX 77024
COUNTY: HARRIS
LOCATION DESCRIPTION: (NO_MEMO_FILE_OPEN)
TYPE OF FACILITY: DRY CLEANER
FACILITY STATUS: INVESTIGATION
PROGRAM: VOLUNTARY CLEANUP
PROGRAM STATUS: ACTIVE
REMEDIATIONS
NO REMEDIATION REPORTED
CATEGORY OF CONTAMINATION
```

DATE
02/01/06 NOT REPORTED
06/17/08 NOT REPORTED
07/02/13 NOT REPORTED

Back to Report Summary

## Industrial and Hazardous Waste Sites (IHW)

MAP ID\# 9 Distance from Property: 0.07 mi . W

```
FACILITY INFORMATION
REGISTRATIONE: 70233 EPAID: TXD982552382
TNRCC ID #: 25064
NAME: PILGRAM WYCLIFFE
ADDRESS: }12647\mathrm{ MEMORIAL. DR PHONE: NOT REPORTED
 HOUSTON, TX 77024
CONTACT: MELVIN WEISER
PHONE: NOT REPORTED
BUSINESS DESCRIPTION: THIS REGISTRATION WAS INACTIVATED BECAUSE THIS FACILITY WAS REGISTERED PRIOR
TO1994 AND NO WASTE ACTIVITY WAS REPORTED IN 1994, 1995 AND 1996.
INDUSTRIAL. WASTE PERMIT #: NOT REPORTED
MUNICIPAL WASTE PERMIT #: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTERECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY); NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTNITIES AND COMPLIANCE SYSTEM): 02/26/2004
ACTIVITIES
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
NO RECORDS
```

Back to Report Summary

## Industrial and Hazardous Waste Sites (IHW)

MAP ID\# 9 Distance from Property: 0.07 ml . W

## FACILITY INFORMATION

```
REGISTRATION\#: 70231
TNRCC ID \#: 25062
NAME: PILGRIM CLEANERS
ADDRESS: 12647 MEMORIAL DR HOUSTON, TX 77024
CONTACT: NANCY BALLARD
PHONE: 713-6660351
BUSINESS DESCRIPTION: NOT REPORTED
INDUSTRIAL. WASTE PERMIT \#: NOT REPORTED
MUNICIPAL WASTE PERMIT \#: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL. ELECTRONIC REPORTING SYSTEM)
THIS FACIIITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 04/22/2003
```


## ACTIVITIES

```
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
```


## WASTE

```
WASTE ID: \(\mathbf{5 0 4 1 7}\)
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: NO
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED
WASTE ID: 50418
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: NO
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED
```


## Industrial and Hazardous Waste Sites (IHW)

MAP ID\# 10 Distance from Property: 0.07 mi . NE

```
FACILITY INFORMATION
REGISTRATION#: 90546 EPAID: TXD987989621
TNRCC ID #: 33547
NAME: YOUR VALET CLEANERS
ADDRESS: 614 W BOUGH LN
 HOUSTON, TX 77024
CONTACT: JOE THAL
PHONE: 713-4687617
BUSINESS DESCRIPTION: THIS REGISTRATION WAS INACTIVATED BECAUSE THERE WERE ONLY 6-DIGIT WASTE CODES
ONTHE NOR AND NO WASTE ACTIVITY WAS REPORTED IN 1994, 1995 AND 1996.
INDUSTRLAL WASTE PERMIT #: NOT REPORTED
MUNICIPAL WASTE PERMIT #: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL AND/OR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 06/04/2010
```


## ACTIVITIES

```
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
```


## WASTE

```
WASTE ID: 63685
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: NO
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED
WASTE ID: 63686
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: NO
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED
```

Back to Report Summary

## Voluntary Cleanup Program Sites (VCP)

MAP ID\# 11 Distance from Property: $\mathbf{0 . 0 9} \mathbf{~ m i}$. SE

## SITE INFORMATION

IDW: 2700
NAME: MEMORIAL GREEN
ADORESS: 12601 MEMORIAL DR HOUSTON TX 77024
ACRES: 13.46
FACILITY TYPE: VACANT PROPERTY
APPLICATION DATE: $10 / 22 / 14$
DATE OF AGREEMENT: NOT REPORTED
CERTIFICATE OF COMPLETION DATE: NOT REPORTED TYPE OF CERTIFICATE ISSUED: NOT REPORTED

TYPE LEAD: OWNER
PHASE: INVESTIGATION
MEDIA AFFECTED; GROUNDWATER
TNRCC SOLID WASTE REGISTRATION \#: NOT REPORTED
REMEDY: NOT REPORTED
INSTITUTIONAL CONTROL: NOT REPORTED
LPST \#: NOT REPORTED
EPA CERCLIS \#: NOT REPORTED
EPA RCRIS \#: NOT REPORTED
CONTAMINANT/S: VOCS

## APPLICANT INFORMATION

## ORGANIZATION: LITCHFIELD MEMORIAL PARTNERS LP

 BO, SANFORD, EVP 800 TOWN \& COUNTRY BLVD STE 200 HOUSTON, TX, 77024PHONE: 713-629-5200
FAX: NOT REPORTED
CONSULTANT/ATTORNEY INFORMATION
ORGANIZATION: SKA CONSULTING LP SCOTT, LEAFE, PRESIDENT 1515 WITTE RD STE 150 HOUSTON, TX, 77080
PHONE: 713-266-6056
FAX: 713-266.0996

# Resource Conservation \& Recovery Act - Generator Facilities (RCRAGR06) 

MAP ID\# 12 Distance from Property: $\mathbf{0 . 1 2} \mathbf{~ m i}$. NE

```
EACILITY INFORMATION
EPA ID#: TXR000081215
NAME: CVS PHARMACY #6752
ADDRESS: 12502 MEMORIAL DR
 HOUSTON, TX 77024-6000
CONTACT NAME: WENDY L BRANT
CONTACT ADDRESS: 1 CVS DR
 WOONSOCKET RI 028956145
CONTACT PHONE: 401-765-1500
NON-NOTIFIER: NOT A NON-NOTIFIER
DATE RECEIVED BY AGENCY: 08/13/2012
CERTIFICATION
CERTIFICATION NAME: CERTIFICATION TITLE: CERTIFICATION SIGNED DATE:
CHARLES SAVAGE CVS AGENT
NOUSTRY CLASSIFICATION (NAICS)
44611 - PHARMACIES AND DRUG STORES
SITE HISTORY (INCLUDES GENERATORS AND NON-GENERATORS)
DATE RECEIVED BY AGENCY; 08/13/2012
NAME: CVS PHARMACY #6752
GENERATOR CLASSIFICATION: LARGE QUANTITY GENERATOR
```

OWNER TYPE: PRIVATE<br>OWNER NAME: AMREIT LANTERN LANE,LPA<br>OPERATOR TYPE: PRIVATE<br>OPERATOR NAME: CVS PHARMACY INC

``` 07/23/2012
INOUSTRY CLASSIFICATION (NAICS)
44611 - PHARMACIES AND DRUG STORES
SITE HISTORY (INCLUDES GENERATORS AND NON-GENERATORS)
DATE RECEIVED BY AGENCY: 08/13/2012
NAME: CVS PHARMACY \#6752
GENERATOR CLASSIFICATION: LARGE QUANTITY GENERATOR
```

[^0]GENERATOR STATUS: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR LAST UPDATED DATE: 08/13/2012
SUBJECT TO CORRECTIVE ACTION UNIVERSE: NO
TOSFs POTENTLALLY SUBJECT TO CORRECTIVE ACTION UNDER 3004 (u)/(v) UNIVERSE: NO
TDSFs ONLY SUBJECT TO CORRECTIVE ACTION UNDER DISCRETIONARY AUTHORITIES UNIVERSE: NO
NON TSDFS WHERE RCRA CORRECTIVE ACTION HAS BEEN IMPOSED UNIVERSE: NO
CORRECTIVE ACTION WORKLOAD UNIVERSE: NO

IMPORTER: NO
MIXED WASTE GENERATOR: NO
RECYCLER: NO
TRANSPORTER: NO
ONSITE BURNER EXEMPTION: NO
FURNACE EXEMPTION: NO
USED OIL REFINER: NO
USED OIL TRANSFER FACILITY: NO

UNDERGROUND INJECTION: NO
UNIVERSAL. WASTE DESTINATION FACILITY: NO
TRANSFER FACILITY: NO
USED OIL FUEL BURNER: NO
USED OLL PROCESSOR: NO
USED OIL FUEL MARKETER TO BURNER: NO
SPECIFICATION USED OIL MARKETER: NO
USED OIL TRANSPORTER: NO

- COMPLIANCE, MONITORING AND ENFORCEMENT INFORMATION

EVALUATIONS - NO EVALUATIONS REPORTED -
VIOLATIONS - NO VIOLATIONS REPORTED -
ENFORCEMENTS - NO ENFORCEMENTS REPORTED -

```
- hazarDOUS WASTE
D001 IGNITABLE WASTE
```


## Resource Conservation \& Recovery Act - Generator Facilities (RCRAGR06)

```
D002 CORROSIVE WASTE
P001 2H-1-BENZOPYRAN-2-ONE, 4-HYDROXY-3-(3-OXO-1-PHENYLBUTYL)*, & SALTS, WHEN PRESENT ATCONCENTRATIONS GREATER THAN \(0.3 \%\)
P001 WARFARIN, & SALTS, WHEN PRESENT AT CONCENTRATIONS GREATER THAN 0.3%
P042 1,2-BENZENEDIOL, 4-[1-HYDROXY-2-(METHYLAMINO]ETHYL]-, (R)-
P042 EPINEPHRINE
P075 NICOTINE, & SALTS
P075 PYRIDINE, 3-(1-METHYL-2-PYRROLIDINYL)-(S)-, & SALTS
P081 1,2,3-PROPANETRIOL, TRINITRATE (R)
P081 NITROGLYCERINE (R)
UNIVERSAL WASTE - NO UNIVERSAL WASTE REPORTED -
CORRECTIVE ACTION AREA - NO CORECTIVE ACTION AREA INFORMATION REPORTED -
CORRECTIVE ACTIONEVENT - NO CORECTIVE ACTION EVENT REPORTED -
```


## Dry Cleaner Registration Database (DCR)

MAP ID\# 13 Distance from Property: $\mathbf{0 . 1 4} \mathbf{~ m i}$. NE

```
EACILITY INFORMATION
REGISTRATION ##: RN103957502
CUSTOMER#: NOT REPORTED
NAME: PILGRIM CLEANERS }12
ADDRESS: 650 W BOUGH LN STE 116
 HOUSTON, TX 77024
ACCOUNT NUMBER: NOT REPORTED
PRINCIPAL NAME: NOT REPORTED
PHONE NUMBER: NOT REPORTED
SITE TYPE: DROP STATION REGISTRATION
FISCAL YEAR: FY2006
SOLVENT: NOTREPORTED
QUANTITY: NOTREPORTED
FISCAL YEAR: FY2005
SOLVENT: NOTREPORTED
QUANTITY: NOTREPORTED
FISCAL YEAR: FY2004
SOLVENT: NOTREPORTED
QUANTITY: NOT REPORTED
```


## Petroleum Storage Tanks (PST)

## MAP ID\# 14 Distance from Property: $\mathbf{0 . 1 7} \mathbf{~ m i}$. E

## FACILITY INFORMATION

ID立: 33022
NAME: TPG 57307
ADDRESS: 12490 MEMORIAL DR HOUSTON, TX 77024
COUNTY: HARRIS
REGION: 12
TYPE: RETAIL
BEGIN DATE: 11/26/1986
STATUS: ACTIVE
EXEMPT STATUS: NO
RECORDS OFF-SITE: YES
NUMBER OF ACTIVE UNDERGROUND TANKS: 4
NUMBER OF ACTIVE ABOVEGROUND TANKS: 0
APPLICATION INFORMATION:-
RECEIVED DATE ON EARLIEST REGISTRATION FORM: 05/05/1986
SIGNATURE DATE ON EARLIEST REGISTRATION FORM: 05/05/1986
SIGNATURE NAME \& TITLE: B R BATY, DIST MGR
ENFORCEMENT ACTION DATE: NOT REPORTED
OWNER
OWNER NUMBER: CN603438003
NAME: TEXAS PETROLEUM GROUP LLC
CONTACT ADDRESS: 11111 WILCREST GREEN DR STE 100 HOUSTON TX 77042
TYPE: CORPORATION/COMPANY
BEGIN DATE: 10131/2008
CONTACT ROLE: OWNCON
CONTACT NAME: J BRANDON DUJKA
CONTACT TITLE: NOT REPORTED
ORGANIZATION: TEXAS PETROLEUM GROUP LLC
PHONE: NOT REPORTED
FAX: NOT REPORTED
EMAIL: NOT REPORTED
OPERATOR
OPERATOR NUMBER: CN603438003
NAME: TEXAS PETROLEUM GROUP LLC
CONTACT ADORESS: 1111 WILCREST GREEN HOUSTON TX 77042
TYPE: CORPORATION/COMPANY
BEGIN DATE: 10/31/2008
CONTACT ROLE: OPRCON
CONTACT NAME: JOHN SALERNO
CONTACT TITLE: MANAGER

## CONTACT INFORMATION

NAME: S J GRISELL
TITLE: ENV COORDINATOR
ORGANIZATION: TPG 57307
MAIL ADDRESS: MAILING ADDRESS NOT REPORTED CITY NOT REPORTED
PHONE: 713.789-2018

```
ORGANIZATION: TEXAS PETROLEUM GROUP LLC
PHONE: (713) 7890310
FAX: (713) 7892907
EMALL: JS@LANDMARKINDUSTRIES.COM
SELF-CERTIFICATION
SELF.CERTIFICATION ID: }23251
SIGNATURE DATE: 02/24/2014
SIGNATURE NAME & TITLE: JOHN B DUJKA, ENV COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF.CERTIFICATIONID: 24400
SIGNATURE DATE: 03/14/2013
SIGNATURE NAME & TITLE: J BRANDON DUJKA, ENV COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: }2439
SIGNATURE DATE: 02/21/2012
SIGNATURE NAME & TITLE: JOHN B DUJKA, ENV COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 24398
SIGNATURE DATE: 02/03/2011
SIGNATURE NAME & TITLE: JOHN B DUJKA, EVV COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 24397
SIGNATURE DATE: 02/23/2010
SIGNATURE NAME & TITLE: STEPHEN J GRISELL, ENV COORDINATOR
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 24396
SIGNATURE DATE: 03/19/2009
SIGNATURE NAME &ै TITLE: STEPHEN J GRISELL, ENVIRONMENTAL COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF.CERTIFICATIONID: 24395
SIGNATURE DATE: 11/07/2008
SIGNATURE NAME & TITLE: STEPHEN J GRISELL, ENV COORDINATOR
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATIONID: 24394
SIGNATURE DATE: 03/24/2008
SIGNATURE NAME & TITLE: TARONZA GRAVES, AUTHORIZED AGENT
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 24393
SIGNATURE DATE: 04/04/2007
```


## Petroleum Storage Tanks (PST)

```
SIGNATURE NAME & TITLE: S DEMARCUS CHAVOUS, PERMITTING MGR
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: }2439
SIGNATURE DATE: 02/20/2006
SIGNATURE NAME & TITLE: DAVID MULKEY, HSE
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: }2439
SIGNATURE DATE: 02/17/2005
SIGNATURE NAME & TITLE: DAVID MULKEY, HSE COMP COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: }2439
SIGNATURE DATE: 01/15/2004
SIGNATURE NAME & TITLE: DAVID MULKEY, HSE COMP COOR
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: }2438
SIGNATURE DATE: 02/20N2003
SIGNATURE NAME & TITLE: DAVID MULKEY, HSE COMP COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 24388
SIGNATURE DATE: 02/16/2002
SIGNATURE NAME & TITLE: DAVID J MULKEY, NOT REPORTED
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 24387
SIGNATURE DATE: 10/20/2000
SIGNATURE NAME & TITLE: DAVID MULKEY, SH&E
FILING STATUS: INITIAL
REGISTRATION FLAG: YES
```


## CONSTRUCTION NOTIFICATION

```
NOTIFICATION CONSTRUCTIONID: 2245
APPLICATION RECEIVED DATE: 02/28/2005
SCHEDULE CONSTRUCTION DATE: 03/22/2005
GENERAL DESCRIPTION OF PROPOSED CONSTRUCTION:
NOT REPORTED
UNDERGROUND STORAGE TANK
TANKID: 1 NUMBER OF COMPARTMENTS: 1
TANK ID: 1 }\quad\mathrm{ NUMBER OF COMPARTMENTS: 1
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 01/01/1979
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO
```


## Petroleum Storage Tanks (PST)

```
IANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2126
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
SPILL CONTAINMENT ANO OVERFILL PREVENTION: TIGHT.FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1979 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 01/01/1979
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
```


## Petroleum Storage Tanks (PST)

```
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 10000
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3 NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 12/31/1970 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }600
STATUS: IN USE
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETALLS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: }2127
TANK ID: 3
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
```


## Petroleum Storage Tanks (PST)

SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP.FACTORY - BUILT SPILL CONTAINER/BUCKETISUMP,DELIVERY SHUT-OFF VALVE PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANK ID: 4
INSTALLATION DATE: 01/01/1976
TANK CAPACITY (GAL): 6000
STATUS: IN USE
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: $\mathbf{2 1 2 6 9}$
TANK ID: 4
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL) 6000
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST \& INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE

## PIPING SYSTEMS

MATERIAL: FRP
CORROSION PROTECTION:
EXTERNAL. CONTAINMENT:
FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT

## Petroleum Storage Tanks (PST)

```
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 5
INSTALLATION DATE: 01/01/1979 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): }100
STATUS: PERM FILLED IN PLACE
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: }2127
TANK ID:5
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: WEEKLY MANUAL TANK GAUGING (TANKS <= 1000 GAL)
SPILL CONTAINMENT AND OVERFILL PREVENTION: N/A - ALL DELIVERIES TO TANK <=25 GAL
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 6
INSTALLATION DATE: 01/01/1979
TANK CAPACITY (GAL); 44
STATUS: IN USE
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
NUMBER OF COMPARTMENTS: 1
```

NUMBER OF COMPARTMENTS: 1 REGISTRATION DATE: 05J05/1986 EMPTY TANK: NOT EMPTY STATUS BEGIN DATE: 01/01/1979 REGULATORY STATUS: EXEMPT TANK DESIGN DOUBLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

## Petroleum Storage Tanks (PST)

```
TANKDETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXYERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: HYDRAULIC LIFT OIL.
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }4
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: }7\mathrm{ NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1979 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): 44 EMPTY TANK: NOT EMPTY
STATUS: IN USE
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
IANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
```


## Petroleum Storage Tanks (PST)

```
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: HYDRAULIC LIFT OIL.
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 44
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 8 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1984 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): 44 EMPTY TANK- NOT EMPTY
STATUS: IN USE
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
```


## TANK DETAILS

```
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 21274
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: HYDRAULIC LIFT OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL) 44
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
```


## Petroleum Storage Tanks (PST)

```
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOTREPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY
```


## Leaking Petroleum Storage Tanks (LPST)

```
MAP ID\# 14 Distance from Property: \(\mathbf{0 . 1 7} \mathbf{~ m i}\). E
```


## FACILITY INFORMATION

Geosearch ID: 0033022
FACILITY ID: 0033022
NAME: SHELL
ADDRESS: 12490 MEMORIAL DR HOUSTON, TX 77024

## EACILITY DETAILS

LPST IDE: 117467
NAME: SHELL
FACILITY LOCATION: 12490 MEMORIAL DR
PRIORITY CODE: (3.1) GROUNDWATER IMPACT, PUBLICIDOMESTIC WATER SUPPLY WELL WתN $0.25-0.5$ MILES
STATUS CODE: (6A) FINAL CONCURRENCE ISSUED, CASE CLOSED
REPORTED DATE: 7/27/2007
ENTERED DATE: 10/26/2007
PRP INFORMATION
NAME: SHELL OIL PRODUCTS/MOTIVA
ADDRESS: 7750 N MACARTHUR PMB319 STE 120
IRVING TX 75063
CONTACT: SCOTT E BURKEY
PHONE: 214/483-S460

## UNDERGROUND STORAGE TANK

TANK ID: 1 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1979 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL); 10000 EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 01/01/1979

INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO

## TANK DETAILS

MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 21268
TANK ID: 1
COMPARTMENT LETTER: A

## Leaking Petroleum Storage Tanks (LPST)

```
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT.FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1979 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 01/01/1979
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
TANK DETALLS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
```


## Leaking Petroleum Storage Tanks (LPST)

```
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 3 NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 12/31/1970 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL) 6000 EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 12/31/1970
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }600
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 4
INSTALLATION DATE: 01/01/1976
NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05NOS/1986
```


## Leaking Petroleum Storage Tanks (LPST)

```
TANK CAPACITY (GAL): 6000
STATUS: IN USE
INTERNAL PROTECTION DATE; NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGGLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2126
TANK ID: 4
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 5
INSTALLATION DATE: 01/01/1979
TANK CAPACITY (GAL); }100
STATUS: PERM FILLED IN PLACE
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
```


## Leaking Petroleum Storage Tanks (LPST)

```
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: 5
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL) NOT REPORTED
COMPARTMENT RELEASE DETECTION: WEEKLY MANUAL TANK GAUGING (TANKS <= 1000 GAL)
SPILL CONTAINMENT AND OVERFILL PREVENTION: N/A - ALL DELIVERIES TO TANK <=25 GAL
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 6 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1979 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): 44 EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 01/01/1979
INTERNAL PROTECTION DATE: NOTREPORTED REGULATORY STATUS: EXEMPT
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
steel
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE ELAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: }
```


## Leaking Petroleum Storage Tanks (LPST)

```
COMPARTMENT LETTER: A
SUBSTANCES: HYDRAULIC LIFT OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }4
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 7 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1979 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): 44 EMPTY TANK: NOT EMPTY
STATUS: IN USE
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WIALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTANMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: HYDRAULIC LIFT OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL); 44
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
```


## Leaking Petroleum Storage Tanks (LPST)

```
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID:8 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1984 REGISTRATION DATE: 05/05/1986
TANK CAPACITY (GAL): 44 EMPTY TANK: NOT EMPTY
STATUS: IN USE STATUS BEGIN DATE: 01/01/1984
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: EXEMPT
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2127
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: HYDRAULIC LIFT OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }4
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL. PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & YALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY
```


## Dry Cleaner Remediation Program Sites (DCRPS)

MAP ID\# 15 Distance from Property: 0.21 mi . E

DCRP ID: DC0078
RN NUMBER: 100659812
NAME: PILGRIM CLEANERS
ADDRESS: 12442 MEMORIAL DRIVE HOUSTON, TX
COORECTIVE ACTION STATUS: REMEDIATION
PRIORITY STATUS: ACTIVE
RANKING SCORE: 385
TCEQ PROJECT MANAGER: STACEY DUNAHOO
Back to Report Summary

## Industrial and Hazardous Waste Sites (IHW)

MAP ID\# 15 Distance from Property: 0.21 ml . E

```
FACILITY INFORMATION
REGISTRATION#: 51067 EPA ID: NOT REPORTED
TNRCC ID ##: 18602
NAME: PILGRIM CLEANERS BOLTIN E
ADDRESS: }12442\mathrm{ MEMORIAL DR
HOUSTON, TX 77024
CONTACT: ANITA BARKER
PHONE: 713-4642729
BUSINESS DESCRIPTION: THIS REGISTRATION WAS INACTIVATED BECAUSE THIS FACILITY WAS REGISTERED PRIOR
TO1994 AND NO WASTE ACTIVITY WAS REPORTED IN 1994, 1995 AND 1996.
INDUSTRLAL WASTE PERMIT #: NOT REPORTED
MUNICIPAL. WASTE PERMIT #: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 06/04/2010
ACTIVITIES
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
NO RECORDS
```


## Industrial and Hazardous Waste Sites (IHW)

## MAP ID\# 15 Distance from Property: 0.21 mi . E

## FACILITY INFORMATION

REGISTRATION\#: 70235
TNRCC ID \#: 25066
NAME: PILGRIM MEMORIAL CLEANERS
ADDRESS: 12442 MEMORIAL DR
HOUSTON, TX 77024

## OWNER INFORMATION

NAME: PILGRIM CLEANERS INC
ADDRESS: 12647 MEMORIAL DR
HOUSTON, TX 77024
PHONE: 1.713-4646710

```
CONTACT: MELVIN WEISER
PHONE: \(\quad \mathbf{7 1 3 - 4 6 4 6 7 1 0}\)
BUSINESS DESCRIPTION: THIS REGISTRATION WAS INACTIVATED BECAUSE THERE WERE ONLY 6-DIGIT WASTE CODES ONTHE NOR AND NO WASTE ACTIVITY WAS REPORTED IN 1994, 1995 AND 1996.
INDUSTRIAL WASTE PERMIT \#: NOT REPORTED
MUNICIPAL WASTE PERMIT \#: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL.
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 06/04/2010
```


## ACTIVITIES

```
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
```


## WASTE

```
WASTE ID: 50420
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: NO
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED
```

Back to Report Summary

MAP ID\# 15 Distance from Property: 0.21 mi . E

```
EACILITY INFORMATION
REGISTRATION #: RN100659812
CUSTOMER#: NOT REPORTED
NAME: PILGRIM CLEANERS }11
ADDRESS: }12442\mathrm{ MEMORIAL DR
 HOUSTON, TX 77024
ACCOUNT NUMBER: NOT REPORTED
PRINCIPAL NAME: NOT REPORTED
PHONE NUMBER: 713-5013976
SITE TYPE: DROP STATION REGISTRATION
FISCAL YEAR: FY2014
SOLVENT: NOTREPORTED
QUANTITY: NOTREPORTED
FISCAL YEAR: FY2013
SOLVENT: NOTREPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2012
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2011
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2010
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2009
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2009
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2008
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED
FISCAL YEAR: FY2007
SOLVENT: NOT REPORTED
```


## Dry Cleaner Registration Database (DCR)

QUANTITY: NOT REPORTED

FISCAL YEAR: FY2006
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2005
SOLVENT: NOT REPORTED
QUANTITY: NOT REPORTED

FISCAL YEAR: FY2004
SOLVENT: NOTREPORTED
QUANTITY: NOT REPORTED

Back to Report Summary

## Leaking Petroleum Storage Tanks (LPST)

## MAP ID\# 16 Distance from Property: $0.21 \mathrm{ml} . \mathrm{N}$

## FACILITY INFORMATION

```
Geosearch ID: 0023106
FACILITY ID: 0023106
NAME: TEXACO
ADDRESS: }12859\mathrm{ KIMBERLY LN
 HOUSTON, TX }7702
FACILITY DETAILS
LPST ID#:; 091860
NAME: TEXACO
FACILITY LOCATION: 12859 KIMBERLY LN
PRIORITY CODE: (4.1) GROUNDWATER IMPACTED, NO APPARENT THREATES OR IMPACTS TO RECEPTORS
STATUS CODE: (6A) FINAL CONCURRENCE ISSUED, CASE CLOSED
REPORYED DATE; 5/6/1988
ENTERED DATE: 5/6/1988
PRP INFORMATION
NAME: SHELL OIL PRODUCTS/MOTIVA
ADDRESS: 7750 N MACARTHUR BLVD }120\mathrm{ PMB }3
 IRVING TX 75063
CONTACT: SCOTT BURKEY
PHONE: 214/483-5460
```


## UNDERGRQUND STORAGE TANK

TANKID: 1B NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1967 REGISTRATION DATE: 05/08/1986

TANK CAPACITY (GAL): 6000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121320
TANK ID: 1B
COMPARTMENT LETTER: A

## Leaking Petroleum Storage Tanks (LPST)

```
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL) 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 1A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 12/01/1990 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 9684 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 07/18/2006
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }12132
TANK ID: 1A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 9684
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST & INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKETISUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOTREPORTED.
```


## Leaking Petroleum Storage Tanks (LPST)

```
CONNECTORS & VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2B
INSTALLATION DATE: 01/01/1967
TANK CAPACITY (GAL): }600
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
```

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05N08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 12/30/1990
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

## TANK DETAILS

```
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121322
TANK ID: 2B
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
```

TANK ID: 2A
NSTALLATION DATE: 12/01/1990
TANK CAPACITY (GAL): 9684
STATUS: REMOVED FROM GROUND

NUMBER OF COMPARTMENTS: 1 REGISTRATION DATE: 05/08/1986 EMPTY TANK: NOT EMPTY STATUS BEGIN DATE: 07/18/2006

## Leaking Petroleum Storage Tanks (LPST)

```
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
```

```
IANK DETAILS
```

IANK DETAILS
MATERIAL:
MATERIAL:
FRP
FRP
CORROSION PROTECTION:
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE ELAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }12132
TANK ID: 2A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 9684
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST \& INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 12/01/1990 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }968
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETALLS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }12132
TANK ID; 3A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 9684
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST \& INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPINGSYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3B NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1967 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 6000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE; 12/30/1990
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }12132
TANKID: 3B
COMPARTMENT LETTER: A

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4B NUMBER OF COMPARTMENTS: }
INSTALLATION DATE:01/01/1967 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }600
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121323
TANK ID: 4B
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL) 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES

```
```

NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANK ID: 4 A	NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: $12 / 01 / 1990$	REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 550	EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND	STATUS BEGIN DATE: 11/23/2004
INTERNAL PROTECTION DATE: NOT REPORTED	REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO	TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO	PIPE DESIGN DOUBLE WALL: NO

IANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
CQMPARTMENT DETAILS
UST COMPARTMENT ID: }12132
TANK ID: 4A
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
COMPARTMENT RELEASE DETECTION: WEEKLY MANUAL TANK GAUGING (TANKS <=1000 GAL)
SPILL CONTAINMENT AND OVERFILL PREVENTION: N/A - ALL DELIVERIES TO TANK <=25 GAL
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 5 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1967 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 550 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 12/30/1990
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: YES
CORROSION PROTECTION VARIANCE; NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }12132
TANK ID: 5
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
COMPARTMENT RELEASE DETECTION: VAPOR MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,ALARM (SET@<=90%)
W3A OR 3B
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTANMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY

```

\section*{Petroleum Storage Tanks (PST)}

\section*{MAP ID\# 16 Distance from Property: \(\mathbf{0 . 2 1 \mathrm { mi } . \mathrm { N }}\)}

\section*{FACILITY INFORMATION}

ID\#: 23106
NAME: SHELL
ADDRESS: \(\mathbf{1 2 8 5 9}\) KIMBERLEY LN
HOUSTON, TX 77024
COUNTY: HARRIS
REGION: 12
TYPE: RETAIL
BEGIN DATE: 09/24/1986
STATUS: INACTIVE
EXEMPT STATUS: NO
RECORDS OFF-SITE: YES
NUMBER OF ACTIVE UNDERGROUND TANKS: 0
NUMBER OF ACTIVE ABOVEGROUND TANKS: 0
APPLICATION INFORMATION:
RECEIVED DATE ON EARLIEST REGISTRATION FORM: 05/08/1986
SIGNATURE DATE ON EARLIEST REGISTRATION FORM: 04/16/1986
SIGNATURE NAME \& TITLE: R L EBERT, DIV. MGR.
ENFORCEMENT ACTION DATE: NOT REPORTED
OWNER
OWNER NUMBER: CN600124051
NAME: MOTIVA ENTERPRISES LLC
CONTACT ADDRESS: 13258 FM 1960 RD W HOUSTON TX 77065
TYPE: CORPORATION/COMPANY
BEGIN DATE: 01/20/1999
CONTACT ROLE: OWNCON
CONTACT NAME: NOT REPORTED
CONTACT TITLE: NOT REPORTED
ORGANIZATION: MOTIVA ENTERPRISES LLC
PHONE: NOT REPORTED
FAX: NOT REPORTED
EMAIL: NOT REPORTED
OPERATOR
OPERATOR NUMBER: CN600124051
NAME: MOTIVA ENTERPRISES LLC
CONTACT ADDRESS: PO BOX 22087
GREENSBORO NC 27420
TYPE: CORPORATIONJCOMPANY
BEGIN DATE: 01/20/1999
CONTACT ROLE: OPRCON
CONTACT NAME: NOT REPORTED
CONTACT TITLE: NOT REPORTED

\section*{CONTACT INFORMATION}

NAME: DAVID MULKEY
TITLE: NOT REPORTED
ORGANIZATION: SHELL
MAIL ADDRESS: MAILING ADDRESS NOT REPORTED CITY NOT REPORTED
PHONE: 281-376-2537
```

ORGANIZATION: MOTIVA ENTERPRISES LLC
PHONE: (800) 2538054
FAX: NOT REPORTED
EMAIL: NOT REPORTED

```

\section*{SELF-CERTIFICATION}
```

SELF-CERTIFICATION ID: 124941
SIGNATURE DATE: 02/20/2006
SIGNATURE NAME \& TITLE: DAVID MULKEY, HSE COMP COOR
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 124940
SIGNATURE DATE: 02/17/2005
SIGNATURE NAME \& TITLE: DAVID J MULKEY, HSE COMP COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 124939
SIGNATURE DATE: 01/15/2004
SIGNATURE NAME \& TITLE: DAVID MULKEY, HSE COMP COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 124938
SIGNATURE DATE: 02/20/2003
SIGNATURE NAME \& TITLE: DAVID MULKEY, HSE COMP COORD
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 124937
SIGNATURE DATE: 02/16/2002
SIGNATURE NAME \& TITLE: DAVID J MULKEY, SH\&E C C
FILING STATUS: RENEWAL
REGISTRATION FLAG: YES
SELF-CERTIFICATION ID: 124936
SIGNATURE DATE: 12/01/2000
SIGNATURE NAME \& TITLE: GEORGE CARTWRIGHT, SH\&E
FILING STATUS: INITIAL
REGISTRATION FLAG: YES

```

\section*{CONSTRUCTION NOTIFICATION}
```

NOTIFICATION CONSTRUCTION ID: 13674
APPLICATION RECEIVED DATE: $10 / 22 / 2004$
SCHEDULE CONSTRUCTION DATE: 11/18/2004
GENERAL DESCRIPTION OF PROPOSED CONSTRUCTION:
NOT REPORTED
NOTIFICATION CONSTRUCTION ID: 13673
APPLICATION RECEIVED DATE: 07/06/2006
SCHEDULE CONSTRUCTION DATE: 07/17/2006
GENERAL DESCRIPTION OF PROPOSED CONSTRUCTION:
NOT REPORTED
UNDERGROUND STORAGE TANK

```

\section*{Petroleum Storage Tanks (PST)}

TANKID: 1B
INSTALLATION DATE: 01/01/1967
TANK CAPACITY (GAL): 6000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: \(\mathbf{1 2 1 3 2 0}\)
TANK ID: 1B
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL); 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED

\section*{PIPING SYSTEMS}

MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 1A
INSTALLATION DATE: 12/01/1990
TANK CAPACITY (GAL): 9684
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: \(12 / 30 / 1990\)
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

\section*{FRP}

CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121328
TANK ID: 1A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL); 9684
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST \& INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2B NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1967 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 6000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 12/30/1990
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

\section*{TANK DETAILS}

MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS

\section*{Petroleum Storage Tanks (PST)}
```

UST COMPARTMENT ID: }12132
TANK 1D: 2B
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }600
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT; NOT REPORTED,
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID:2A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 12/01/1990 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 9684 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 07/18/2006
INTERNAL PROTECTION DATE: NOTREPORTED REGULATORY STATUS: FULLYREGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }12132
TANK ID: 2A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 9684
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST \& INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS

```

\section*{Petroleum Storage Tanks (PST)}

MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT EXTERNAL CONTAINMENT: NOT REPORTED.

CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3A
INSTALLATION DATE: 12/01/1990
TANK CAPACITY (GAL): 9684
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 07/18/2006
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: YES
CORROSION PROTECTION VARLANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121326
TANK ID: 3A
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 9684
COMPARTMENT RELEASE DETECTION: AUTOMATIC TANK GAUGE TEST \&\% INVENTORY CONTROL
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE,FLOW RESTRICTOR VALUE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE),ISOLATED IN OPEN AREA/2ND CONTAINMENT
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE

\section*{Petroleum Storage Tanks (PST)}
```

TANKID: 3B NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 01/01/1967 REGISTRATION DATE: 0N/08/1986
TANK CAPACITY (GAL): }600
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID:121324
TANK ID: 3B
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }600
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTANMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4B NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 01/01/1967 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 6000
STATUS: REMOVED FROM GROUND
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:

```

STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARLANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121323
TANK ID: 4B
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: STEEL
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 12/01/1990 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 550 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 11/23/2004
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: YES
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WIALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121325

\section*{Petroleum Storage Tanks (PST)}

TANK ID: 4A
COMPARTMENT LETTER: A SUBSTANCES: USED OIL OTHER SUBSTANCES: NOT REPORTED

CAPACITY (GAL): \(\mathbf{5 5 0}\)
COMPARTMENT RELEASE DETECTION: WEEKLY MANUAL TANK GAUGING (TANKS <w 1000 GAL)
SPILL CONTAINMENT AND OVERFILL PREVENTION: N/A - ALL DELIVERIES TO TANK <= 25 GAL
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCEFLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANK ID: 5 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1967 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 550
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 121321
TANK ID: 5
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
COMPARTMENT RELEASE DETECTION: VAPOR MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,ALARM (SET@<=90\%)
W3A OR 3B
PIPING SYSTEMS
MATERIAL: FRP

\section*{Petroleum Storage Tanks (PST)}

CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY

Back to Report Summary

\section*{Industrial and Hazardous Waste Sites (IHW)}

MAP ID\# 16 Distance from Property: \(0.21 \mathrm{mi} . \mathrm{N}\)
```

FACILITY INFORMATION
REGISTRATION\#: 84066 EPA ID: TX0000994699
TNRCC ID \#: }10189
NAME: TEXACO SERVICE STATION 42 0490390
ADDRESS: 12859 KIMBERLEY LN
HOUSTON, TX 77024
CONTACT: DARVIN E MAYO
PHONE: 404-4535400
BUSINESS DESCRIPTION: RETAIL GASOLINE SALES
INDUSTRIAL WASTE PERMIT \#: NOT REPORTED
MUNICIPALL WASTE PERMIT \#: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL. WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLLANCE SYSTEM): 01/10/2012
ACTIVITIES
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
WASTE ID: 134277
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: YES
GENERATOR'S DESCRIPTION OF WASTE: PERIODIC OR OCCASIONAL GENERATOR OF TANK WATER BOTTOMS FROM
CONDENSATION AND CON

```

Back to Report Summary

\section*{Industrial and Hazardous Waste Sites (IHW)}

\section*{MAP ID\# 17 Distance from Property: 0.21 mi . N}
```

FACILITY INFORMATION
REGISTRATIONN: 90100 EPA ID: NOT REPORTED
TNRCC ID \#: 33313
NAME: C O POLYDOROS \& ASSOCIATES
ADDRESS: 12727 KIMBERLEY LN
HOUSTON, TX 77024
CONTACT: STEVE AUCOIN
PHONE: 713-6273270
BUSINESS DESCRIPTION: NOT REPORTED
INDUSTRIAL WASTE PERMIT \#: NOT REPORTED
MUNICIPAL WASTE PERMIT \#: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL AND/OR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM): 06/04/2010
ACTIVITIES
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
NO RECORDS

```

\section*{Leaking Petroleum Storage Tanks (LPST)}

\section*{MAP ID\# 18 Distance from Property: \(0.24 \mathrm{mi} . \mathrm{N}\)}

\section*{FACILITY INFORMATION}
```

Geosearch ID: 0022134
FACILITY ID: 0022134
NAME: MOBIL SERVICE STATION 12-BLY
ADDRESS: }770\mathrm{ WEST SAM HOUSTON PKWY NORTH \#100
HOUSTON, TX }7702
FACILITY DETAILS
LPST IDE: 091859
NAME: MOBIL SERVICE STATION 12-BLY
FACILITY LOCATION: 770 WEST SAM HOUSTON PKWY NORTH \$100
PRIORITY CODE: (4.1) GROUNDWATER IMPACTED, NO APPARENT THREATES OR IMPACTS TO RECEPTORS
STATUS CODE: (3) MONITORING
REPORTED DATE: 5/4/1988
ENTERED DATE: 5/4/1988
PRP INFORMATION
NAME: MOTIVA ENTERPRISES LLC
ADDRESS: 7750 N MACARTHUR PMB319 STE 120
IRVING TX 75063
CONTACT: SCOTT BURKEY
PHONE: 214/483-5460

```

\section*{UNDERGROUND STORAGE TANK}
TANK ID: 1 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1970 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 5000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 11/14/1988
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

\section*{TANK DETAILS}
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 20721
TANK ID: 1
COMPARTMENT LETTER: A

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 5000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 1AA NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 05/01/1989 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL) 12000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/07/1998
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS; FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANK ID: 1AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1200
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINERJBUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPINGSYSTEMS
MATERIAL:: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 1A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 08/31/1987 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): NOT REPORTED EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 08/31/1987
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS; FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANKID: 1A
COMPARTMENT LETTER: A
SUBSTANCES: UNKNOWN
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 0
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

```

TANK ID: 1A
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): NOT REPORTED
STATUS: REMOVED FROM GROUND

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 08/31/1987

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE; NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANKID: 1A
COMPARTMENT LETTER: A
SUBSTANCES: UNKNOWN
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

```

TANK ID: 2
INSTALLATION DATE: 01/01/1970
TANK CAPACITY (GAL): 8000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETALLS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986 EMPTY TANK: NOT EMPTY STATUS BEGIN DATE: 11/14/1988 REGULATORY STATUS: FULLY REGULATED TANK DESIGN DOUBLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

\section*{Leaking Petroleum Storage Tanks (LPST)}

\section*{NOT REPORTED}

IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: \(\mathbf{2 0 7 2 0}\)
TANK ID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 8000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANK ID: 2A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1988 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 12000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 20725
TANK ID: 2A
COMPARTMENT LETTER: A
SUBSTANCES: EMPTY
OTHER SUBSTANCES: NOT REPORTED

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2AA NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 05/01/1989 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/07/1998
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANK ID: 2AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL); 10000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONYAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1970 REGISTRATION DATE: 05/03/1986
TANK CAPACITY (GAL): }8000\mathrm{ EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 11/14/1988
INTERNAL PROTECTIONDATE: NOTREPORTED REGULATORY STATUS: FULLYREGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: }2071
TANK ID: 3
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }800
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 3A
INSTALLATION DATE: 01/01/1988
TANK CAPACITY (GAL): }1000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE; 01/01/1988
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL. CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANK ID: 3A
COMPARTMENT LETTER: A
SUBSTANCES: EMPTY
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTANMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

```

TANKID: 3AA
INSTALLATION DATE: 05V01/1989
TANK CAPACITY (GAL): 10000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAQ

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 01/07/1998
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALS
UST COMPARTMENT ID: }2072
TANK ID: 3AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT.FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS\& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1970 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 550 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 11/14/1988
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
IANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 20718
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1988 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/01/1988
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

```

\section*{TANK DETAILS}

\section*{MATERIAL:}

\section*{FRP}
```

CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 20724
TANK ID: 4A
COMPARTMENT LETTER: A
SUBSTANCES: EMPTY
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): $\mathbf{1 0 0 0 0}$
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOTREPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4AA NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 05/01/1989 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }100
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/07/1998
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID; 20727
TANKID: 4AA
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }100
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINERJBUCKET/SUMP
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAQ
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANKINFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY

```

\section*{Petroleum Storage Tanks (PST)}

\section*{MAP ID\# 18 Distance from Property: \(\mathbf{0 . 2 4 \mathrm { mi } . \mathrm { N }}\)}

\section*{FACILITY INFORMATION}

ID\#: 22134
NAME: SHELL OIL
ADDRESS: \(\mathbf{1 2 8 6 0}\) KIMBERLEY LN HOUSTON, TX 77024
COUNTY: HARRIS
REGION: 12
TYPE: RETAIL
BEGIN DATE: 09N01/1989
STATUS: INACTIVE
EXEMPT STATUS: NO
RECORDS OFF-SITE: YES
NUMBER OF ACTIVE UNDERGROUND TANKS: 0
NUMBER OF ACTIVE ABOVEGROUND TANKS: 0
APPLICATION INFORMATION:
RECEIVED DATE ON EARLIEST REGISTRATION FORM: 05/08/1986
SIGNATURE DATE ON EARLIEST REGISTRATION FORM: 04/24/1986
SIGNATURE NAME \& TITLE: JOE DAVIS, MGR
ENFORCEMENT ACTION DATE: NOT REPORTED

\section*{OWNER}

OWNER NUMBER: CN600124051
NAME: MOTIVA ENTERPRISES LLC
CONTACT ADDRESS: OWNER ADDRESS NOT REPORTED
CITY NOT REPORTED
TYPE: CORPORATION/COMPANY
BEGIN DATE: 10/01/1998
CONTACT ROLE: NOT REPORTED
CONTACT NAME: NOT REPORTED
CONTACT TITLE: NOT REPORTED
ORGANIZATION: NOT REPORTED
PHONE: NOT REPORTED
FAX: NOT REPORTED
EMAIL: NOT REPORTED
OPERATOR
NO OPERATOR INFORMATION REPORTED

\section*{SELF-CERTIFICATION}
-NO SELF-CERTIFICATION INFORMATION REPORTED-
CONSTRUCTION NOTIFICATION
NO CONSTRUCTION NOTIFICATION DATA REPORTED FOR THIS FACILITY
UNDERGROUND STORAGE TANK
TANK ID: 1
INSTALLATION DATE: 01/01/1970
TANK CAPACITY (GAL): \(\mathbf{5 0 0 0}\)

\section*{CONTACT INFORMATION}

NAME: NOT REPORTED
TITLE: NOT REPORTED
ORGANIZATION: SHELL OIL
MAIL ADDRESS: MAILING ADDRESS NOT REPORTED CITY NOT REPORTED
PHONE: 713-467-0872

\section*{Petroleum Storage Tanks (PST)}
```

STATUS: REMOVED FROM GROUND INTERNAL PROTECTION DATE: NOT REPORTED TANK DESIGN SINGLE WALL: NO PIPE DESIGN SINGLE WALL: NO

```

\section*{TANK DETAILS}
```

MATERIAL:
STEEL
CORROSION PROTECTION
NOT REPORTED
EXTERNAL CONTANMENT
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 20721
TANK ID: 1
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 6000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTANMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAQ
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANK ID: 1AA	NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 05/01/1989	REGISTRATION DATE: 05N08/1986
TANK CAPACITY (GAL): 12000	EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND	STATUS BEGIN DATE: 01/07/1998
INTERNAL PROTECTION DATE: NOT REPORTED	REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES	TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES	PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS	
MATERIAL:	
FRP	
CORROSION PROTECTION:	
FRP TANK OR PIPING (NONCORRODIBLE)	

```

STATUS BEGIN DATE: 11/14/1988
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

\section*{Petroleum Storage Tanks (PST)}
```

EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLLANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: }2072
TANK ID: 1AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 12000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 1A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 08/31/1987 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): NOT REPORTED EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 08/31/1987
INTERNAL PROTECTIONDATE: NOT REPORTED REGULATORY STATUS: FULLYREGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARLANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 20723
TANKID: 1A
COMPARTMENT LETTER: A

```

\section*{Petroleum Storage Tanks (PST)}
```

SUBSTANCES: UNKNOWN
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 0
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 1A
INSTALLATION DATE: 08/31/1987
TANK CAPACITY (GAL): NOT REPORTED
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO
TANK DETAILS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: 20723
TANK ID: 1A
COMPARTMENT LETTER: A
SUBSTANCES: UNKNOWN
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED

```

\section*{EIPING SYSTEMS}
```

MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:

```

\section*{Petroleum Storage Tanks (PST)}

\section*{NOT REPORTED}

CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1970 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): \(\mathbf{8 0 0 0}\)
STATUS: REMOVED FROM GROUND
INTERNAL. PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO
PIPE DESIGN SINGLE WALL: NO

EMPTY TANK: NOT EMPTY STATUS BEGIN DATE: 11/14/1988 REGULATORY STATUS: FULLY REGULATED TANK DESIGN DOUBLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

\section*{TANK DETAILS}

\section*{MATERIAL:}

STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAQ
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: \(\mathbf{2 0 7 2 0}\)
TANK ID: 2
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): \(\mathbf{8 0 0 0}\)
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCEFLAG
CORROSION PROTECTION COMPLLANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE

TANKID: 2A
INSTALLATION DATE: 01/01/1988
TANK CAPACITY (GAL): \(\mathbf{1 2 0 0 0}\)
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 01/01/1988
REGULATORY STATUS: FULLY REGULATED
```

TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

```

\section*{TANK DETAILS}
```

TANK DETALLS

```
TANK DETALLS
MATERIAL:
MATERIAL:
FRP
FRP
CORROSION PROTECTION
CORROSION PROTECTION
FRP TANK OR PIPING (NONCORRODIBLE)
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
EXTERNAL CONTAINMENT:
NOT REPORTED
NOT REPORTED
TANK COMPLIANCE FLAG
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
UST COMPARTMENT ID: }2072
TANK ID: 2A
TANK ID: 2A
COMPARTMENT LETTER: A
COMPARTMENT LETTER: A
SUBSTANCES: EMPTY
SUBSTANCES: EMPTY
OTHER SUBSTANCES: NOT REPORTED
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1200
CAPACITY (GAL): }1200
COMPARTMENT RELEASE DETECTION: NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
PIPING SYSTEMS
MATERLAL: FRP
MATERLAL: FRP
CORROSION PROTECTION: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED
CONNECTORS& VALVES
CONNECTORS& VALVES
NOT REPORTED
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 2AA NUMBER OF COMPARTMENTS: 1
TANK ID: 2AA NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 05/01/1989 REGISTRATION DATE: 05/08/1986
INSTALLATION DATE: 05/01/1989 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/07/1998
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/07/1998
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO
MATERIAL:
MATERIAL:
FRP
FRP
CORROSION PROTECTION:
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT
EXTERNAL CONTAINMENT
NOT REPORTED
```

NOT REPORTED

```

\section*{Petroleum Storage Tanks (PST)}
```

TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANK ID: 2AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 10000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT.FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERLAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL. CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3 NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1970 REGISTRATION DATE: 05N08/1986
TANK CAPACITY (GAL): 8000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 11/14/1988
INTERNAL. PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
TANK DETAILS
MATERIAL:
STEEL
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2071
TANK ID: }
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED

```
```

                                    Petroleum Storage Tanks (PST)
    ```
```

CAPACITY (GAL): }800

```
CAPACITY (GAL): }800
COMPARTMENT RELEASE DETECTION: NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
PIPING SYSTEMS
MATERIAL: FRP
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALVES:
CONNECTORS & VALVES:
NOT REPORTED
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3A NUMBER OF COMPARTMENTS: }
TANK ID: 3A NUMBER OF COMPARTMENTS: }
INSTALLATION DATE: 01/01/1988 REGISTRATION DATE: 05/08/1986
INSTALLATION DATE: 01/01/1988 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/01/1988
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/01/1988
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
IANK DETAILS
IANK DETAILS
MATERIAL:
MATERIAL:
FRP
FRP
CORROSION PROTECTION
CORROSION PROTECTION
FRP TANK OR PIPING (NONCORRODIBLE)
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
EXTERNAL CONTAINMENT:
NOT REPORTED
NOT REPORTED
TANK COMPLIANCE FLAG
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
UST COMPARTMENT ID: }2072
TANK ID: 3A
TANK ID: 3A
COMPARTMENT LETTER: A
COMPARTMENT LETTER: A
SUBSTANCES: EMPTY
SUBSTANCES: EMPTY
OTHER SUBSTANCES: NOT REPORTED
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 10000
CAPACITY (GAL): 10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
PIPING SYSTEMS
MATERIAL: FRP
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS & VALYES:
CONNECTORS & VALYES:
NOT REPORTED
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
```

CORROSION PROTECTION: NOT REPORTED

```

\section*{Petroleum Storage Tanks (PST)}
```

PIPE COMPLLANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 3AA NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE:05/01/1989 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): }1000
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: YES
PIPE DESIGN SINGLE WALL: YES
IANK DETAILS
MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL. CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANK ID: 3AA
COMPARTMENT LETTER: A
SUBSTANCES: GASOLINE
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }1000
COMPARTMENT RELEASE DETECTION: GROUNDWATER MONITORING
SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP,FACTORY - BUILT
SPILL CONTAINER/BUCKET/SUMP,DELIVERY SHUT-OFF VALVE
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED,
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE

```

TANK ID: 4
INSTALLATION DATE: 01/01/1970
TANK CAPACITY (GAL): \(\mathbf{5 5 0}\)
STATUS: REMOVED FROM GROUND
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NO

NUMBER OF COMPARTMENTS: 1
REGISTRATION DATE: 05/08/1986
EMPTY TANK: NOT EMPTY
STATUS BEGIN DATE: 11/14/1988
REGULATORY STATUS: FULLY REGULATED
TANK DESIGN DOUBLE WALL: NO

\section*{Petroleum Storage Tanks (PST)}
```

PIPE DESIGN SINGLE WALL: NO
PIPE DESIGN DOUBLE WALL: NO

```
```

TANK DETAlLS

```
TANK DETAlLS
MATERIAL:
MATERIAL:
STEEL
STEEL
CORROSION PROTECTION:
CORROSION PROTECTION:
NOT REPORTED
NOT REPORTED
EXTERNAL CONTAINMENT:
EXTERNAL CONTAINMENT:
NOT REPORTED
NOT REPORTED
TANK COMPLIANCE FLAG
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2071
UST COMPARTMENT ID: }2071
TANK ID: 4
TANK ID: 4
COMPARTMENT LETTER: A
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): 550
CAPACITY (GAL): 550
COMPARTMENT RELEASE DETECTION: NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
PIPING SYSTEMS
MATERIAL: FRP
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS& VALYES:
CONNECTORS& VALYES:
NOT REPORTED
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION COMPLIANCE FLAG: NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANKID: 4A NUMBER OF COMPARTMENTS: 1
TANKID: 4A NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 01/01/1988 REGISTRATION DATE: 05/08/1986
INSTALLATION DATE: 01/01/1988 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
TANK CAPACITY (GAL): 10000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/01/1988
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/01/1988
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
INTERNAL PROTECTION DATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
TANK DESIGN SINGLE WALL: NO TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO
```

PIPE DESIGN SINGLE WALL: NO PIPE DESIGN DOUBLE WALL: NO

```

\section*{TANK DETAILS}
```

MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPUIANCE FLAG

```

\section*{Petroleum Storage Tanks (PST)}
```

CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETALLS
UST COMPARTMENT ID: }2072
TANK ID: 4A
COMPARTMENT LETTER: A
SUBSTANCES: EMPTY
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }\mathbf{10000
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NO
CORROSION PROTECTION VARIANCE: NO VARIANCE
TANK ID: 4AA NUMBER OF COMPARTMENTS: 1
INSTALLATION DATE: 05/01/1989 REGISTRATION DATE: 05/08/1986
TANK CAPACITY (GAL): 1000 EMPTY TANK: NOT EMPTY
STATUS: REMOVED FROM GROUND STATUS BEGIN DATE: 01/07/1998
INTERNAL PROTECTIONDATE: NOT REPORTED REGULATORY STATUS: FULLY REGULATED
TANK DESIGN SINGLE WALL: YES TANK DESIGN DOUBLE WALL: NO
PIPE DESIGN SINGLE WALL: YES PIPE DESIGN DOUBLE WALL: NO

```

\section*{TANK DETAILS}
```

MATERIAL:
FRP
CORROSION PROTECTION:
FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT:
NOT REPORTED
IANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
COMPARTMENT DETAILS
UST COMPARTMENT ID: }2072
TANK ID: 4AA
COMPARTMENT LETTER: A
SUBSTANCES: USED OIL
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): }100
COMPARTMENT RELEASE DETECTION: NOT REPORTED

```

\section*{Petroleum Storage Tanks (PST)}
```

SPILL CONTAINMENT AND OVERFILL PREVENTION: TIGHT-FILL FITTING CONTAINER/BUCKET/SUMP PIPING SYSTEMS
MATERIAL: FRP
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: FRP TANK OR PIPING (NONCORRODIBLE)
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: YES
CORROSION PROTECTION VARIANCE: NO VARIANCE
ABOVEGROUND STORAGE TANK INFORMATION
NO ABOVEGROUND STORAGE TANK DATA REPORTED FOR THIS FACILITY

```

Back to Report Summary

\section*{Industrial and Hazardous Waste Sites (IHW)}

MAP ID\# 18 Distance from Property: \(0.24 \mathrm{mi} . \mathrm{N}\)
```

FACILITY INFORMATION
REGISTRATION\#: 80248 EPAID; TXD988038857
TNRCC ID \#: 34958
NAME: MOBIL OIL OOBLY
ADDRESS: 12860 KIMBERLY \& W BELT
HOUSTON, TX 77024
CONTACT: ROBINABUNN
PHONE: 703-8493330
BUSINESS DESCRIPTION: THIS REGISTRATION WAS INACTIVATED BECAUSE THERE WERE ONLY G-DIGIT WASTE CODES
ONTHE NOR AND NO WASTE ACTIVITY WAS REPORTED IN 1994, 1995 AND 1996.
INDUSTRIAL. WASTE PERMIT \#: NOT REPORTED
MUNICIPAL. WASTE PERMIT \#: NOT REPORTED
SIC CODE: NOT REPORTED
WASTE GENERATOR: YES
WASTE RECEIVER: NO
WASTE TRANSPORTER: NO
TRANSFER FACILITY: NO
MAQUILADORA (MEXICAN FACILITY): NO
STATUS: INACTIVE
AMOUNT OF WASTE GENERATED: SMALL QUANTITY GENERATOR
GENERATOR TYPE: NON-INDUSTRIAL ANDIOR MUNICIPAL
THIS FACILITY IS A NOTIFIER
THIS FACILITY IS NOT A STEERS REPORTER - (STATE OF TEXAS ENVIRONMENTAL ELECTRONIC REPORTING SYSTEM)
THIS FACILITY IS NOT REQUIRED TO SUBMIT AN ANNUAL WASTE SUMMARY REPORT
THIS FACILITY IS NOT INVOLVED IN RECYCLING ACTIVITIES
LAST UPDATE TO TRACS (TCEQ REGULATORY ACTIVITIES AND COMPLIANCE SYSTEM) 06/04/2010
ACTIVITIES
ACTIVITY TYPE: UNKNOWN
ACTIVITY DESCRIPTION: NOT REPORTED
WASTE
WASTE ID: }6861
WASTE CODE STATUS: INACTIVE
WASTE IS RADIOACTIVE: NO
WASTE IS TREATED OFF SITE: NO
GENERATOR'S DESCRIPTION OF WASTE: NOT REPORTED

```

Back to Report Summary

\section*{Leaking Petroleum Storage Tanks (LPST)}

MAP ID\# 19 Distance from Property: 0.24 mi . N

\section*{FACILITY INFORMATION}

Geosearch ID: GS091439
FACILITYID: NOT REPORTED
NAME: LEAK @ INTERSECTION
ADDRESS: KIMBERLY LN \& WEST BELT HOUSTON, TX 77000
EACILITY DETAILS
LPST ID\#: 091439
NAME: LEAK § INTERSECTION
FACILITY LOCATION: KIMBERLY LN 』 WEST BELT
PRIORITY CODE: (1D) GROUP 1 GROUNDWATER, PLUME HASILIKELY TO MIGRATE OFF-SITE
STATUS CODE: (6P) FINAL CONCURRENCE PENDING DOCUMENTATION OF WELL PLUGGING
REPORTED DATE: \(8 / 12 / 1987\)
ENTERED DATE: 8/12/1987
PRP INFORMATION
NAME: ENVIRONMENTAL IMPACT
ADDRESS: NOT REPORTED
NOT REPORTED NOT REPORTED NOT REPORTED
CONTACT: NOT REPORTED
PHONE: /-
```

UNDERGROUND STORAGE TANK
TANK ID: NOT REPORTED NUMBER OF COMPARTMENTS; NOT REPORTED
INSTALLATION DATE: NOT REPORTED REGISTRATION DATE: NOT REPORTED
TANK CAPACITY (GAL): NOT REPORTED
STATUS: NOT REPORTED
INTERNAL PROTECTION DATE: NOT REPORTED
TANK DESIGN SINGLE WALL: NOT REPORTED TANK DESIGN DOUBLE WALL: NOT REPORTED
PIPE DESIGN SINGLE WALL: NOT REPORTED PIPE DESIGN DOUBLE WALL: NOT REPORTED
TANK DETALLS
MATERIAL:
NOT REPORTED
CORROSION PROTECTION:
NOT REPORTED
EXTERNAL CONTAINMENT:
NOT REPORTED
TANK COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG: NOT REPORTED
CORROSION PROTECTION VARIANCE: NOT REPORTED
COMPARTMENT DETAILS
UST COMPARTMENT ID: NOT REPORTED
TANK ID: NOT REPORTED
COMPARTMENT LETTER: NOT REPORTED

```

\section*{Leaking Petroleum Storage Tanks (LPST)}
```

SUBSTANCES: NOT REPORTED
OTHER SUBSTANCES: NOT REPORTED
CAPACITY (GAL): NOT REPORTED
COMPARTMENT RELEASE DETECTION: NOT REPORTED
SPILL CONTAINMENT AND OVERFILL PREVENTION: NOT REPORTED
PIPING SYSTEMS
MATERIAL: NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
EXTERNAL CONTAINMENT: NOT REPORTED.
CONNECTORS \& VALVES:
NOT REPORTED
CORROSION PROTECTION: NOT REPORTED
PIPE COMPLIANCE FLAG
CORROSION PROTECTION COMPLIANCE FLAG; NOT REPORTED
CORROSION PROTECTION VARIANCE: NOT REPORTED

```

\section*{ABOVEGROUND STORAGE TANK INFORMATION}
```

AST ID \#: NOT REPORTED MULTIPLE COMPARTMENT FLAG: NOT REPORTED
TANK ID: NOT REPORTED REGISTRATION DATE: NOT REPORTED
INSTALLATION DATE: NOT REPORTED STATUS BEGIN DATE: NOT REPORTED
TANK CAPACITY (GAL): NOT REPORTED REGULATORY STATUS: NOT REPORTED
STATUS: NOT REPORTED SUBSTANCES: NOT REPORTED
MATERIAL OF CONSTRUCTION
STEEL: NOT REPORTED CORRUGATED METAL: NOT REPORTED
FIBERGLASS: NOT REPORTED CONCRETE: NOT REPORTED
ALUMINIUM: NOT REPORTED
CONTAINMENT
EARTHEN DIKE: NOT REPORTED CONCRETE: NOT REPORTED
CONTAINMENT LINER: NOT REPORTED NONE: NOT REPORTED
STAGE I VAPOR RECOVERY: NOT REPORTED
STAGE I INSTALLATION DATE: NOT REPORTED

```

Back to Report Summax

\section*{Industrial and Hazardous Waste Corrective Action Sites (IHWCA)}

MAP ID\# 20 Distance from Property: \(0.90 \mathrm{mi} . \mathrm{N}\)

PROGRAM ID: 31159
RN NUMBER: RN100675230
NAME: WEATHERFORD US HOUSTON
ADORESS: 10802 KATY FWY
HOUSTON, TX 77043
STATUS: ACTIVE
STATUS DATE: \(\quad \mathbf{7 / 1 4 / 0 9}\)
LOCATION DESCRIPTION:
NOT REPORTED

\section*{Industrial and Hazardous Waste Corrective Action Sites (IHWCA)}

MAP ID\#21 Distance from Property: \(0.95 \mathrm{mi} . \mathrm{N}\)

PROGRAM ID: 31402
RN NUMBER: RN100663798
NAME: FLUOROCARBON PLASTIC \& RUBBER PRODUCTION
ADDRESS: 10420 KATY FWY
HOUSTON, TX 77043
STATUS: INACTIVE
STATUS DATE: \(12 / 8 / 98\)
LOCATION DESCRIPTION:
10420 OLD KATY RD, HOUSTON, TX
```

MAPID\#22 Distance from Property: 0.97 mi. N

```
```

PROGRAMID: 34348

```
RN NUMBER: RN100666924
NAME: SPRING BRANCH SERVICE CENTER
ADDRESS: 10310 KATY FWY
 HOUSTON, TX 77043
STATUS: INACTIVE
STATUS DATE: 7/18/11
LOCATION DESCRIPTION:
10310 OLD KATY RD HOUSTON TX

\section*{Unlocatable Summary}

This list contains sites that could not be mapped due to limited or incomplete address information.

No Records Found

\title{
Environmental Records Definitions - FEDERAL
}
```

AIRSAFS Aerometric Information Retrieval System / Air Facility Subsystem
VERSION DATE: 10/20/14

```

The United States Environmental Protection Agency (EPA) modified the Aerometric Information Retrieval System (AIRS) to a database that exclusively tracks the compliance of stationary sources of air pollution with EPA regulations: the Air Facility Subsystem (AFS). Since this change in 2001, the management of the AIRS/AFS database was assigned to EPA's Office of Enforcement and Compliance Assurance.
```

BRS
Biennial Reporting System
VERSION DATE: $12 / 31 / 11$

```

The United States Environmental Protection Agency (EPA), in cooperation with the States, biennially collects information regarding the generation, management, and final disposition of hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 (RCRA), as amended. The Biennial Report captures detailed data on the generation of hazardous waste from large quantity generators and data on waste management practices from treatment, storage and disposal faciilies. Currently, the EPA states that data collected between 1991 and 1997 was originally a part of the defunct Biennial Reporting System and is now incorporated into the RCRAInfo data system.

CDL
Clandestine Drug Laboratory Locations
VERSION DATE: 04/14/14
The U.S. Department of Justice ("the Department") provides this information as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments. The Department does not establish, implement, enforce, or certify compliance with clean-up or remediation standards for contaminated sites; the public should contact a state or local health department or environmental protection agency for that information.

\section*{DOCKETS EPA Docket Data}

VERSION DATE: 12/22/05
The United States Environmental Protection Agency Docket data lists Civil Case Defendants, filing dates as far back as 1971, laws broken including section, violations that occurred, pollutants involved, penalties assessed and superfund awards by facility and location. Please refer to ICIS database as source of current data.

EC Federal Engineering Institutional Control Sites
VERSION DATE: 05/21/14
This database includes site locations where Engineering and/or Institutional Controls have been identified as part

\section*{Environmental Records Definitions - FEDERAL}
of a selected remedy for the site as defined by United States Environmental Protection Agency official remedy decision documents. A site listing does not indicate that the institutional and engineering controls are currently in place nor will be in place once the remedy is complete; it only indicates that the decision to include either of them in the remedy is documented as of the completed date of the document. Institutional controls are actions, such as legal controls, that help minimize the potential for human exposure to contamination by ensuring appropriate land or resource use. Engineering controls include caps, barriers, or other device engineering to prevent access, exposure, or continued migration of contamination.
```

ERNSTX Emergency Response Notification System
VERSION DATE: 11/09/14

```

This National Response Center database contains data on reported releases of oil, chemical, radiological, biological, and/or etiological discharges into the environment anywhere in the United States and its territories. The data comes from spill reports made to the U.S. Environmental Protection Agency, U.S. Coast Guard, the National Response Center and/or the U.S. Department of Transportation.
```

FRSTX Facility Registry System

```
VERSION DATE: 09/30/14

The United States Environmental Protection Agency's Office of Environmental Information (OEI) developed the Facility Registry System (FRS) as the centrally managed database that identifies facilities, sites or places subject to environmental regulations or of environmental interest. The Facility Registry System replaced the Facility Index System or FINDS database.
\begin{tabular}{|ll}
\hline HMIRSR06 & Hazardous Materials Incident Reporting System \\
VERSION DATE: 10/28/14 & \\
\hline
\end{tabular}

The HMIRS database contains unintentional hazardous materials release information reported to the U.S. Department of Transportation located in EPA Region 6. This region includes the following states: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
ICIS Integrated Compliance Information System (formerly DOCKETS)

VERSION DATE: 10/20/14
ICIS is a case activity tracking and management system for civil, judicial, and administrative federal Environmental Protection Agency enforcement cases. ICIS contains information on federal administrative and federal judicial cases under the following environmental statutes: the Clean Air Act, the Clean Water Act, the Resource Conservation and Recovery Act, the Emergency Planning and Community Right-to-Know Act - Section 313, the Toxic Substances Control Act, the Federal Insecticide, Fungicide, and Rodenticide Act, the Comprehensive Environmental Response, Compensation, and Liability Act, the Safe Drinking Water Act, and the Marine Protection, Research, and Sanctuaries Act.

\section*{Environmental Records Definitions - FEDERAL}

\section*{ICISNPDES \\ Infegrated Compliance Information System National Pollutant Discharge Elimination System \\ VERSION DATE: 08/01/12}

In 2006, the Integrated Compliance Information System (ICIS) - National Pollutant Discharge Elimination System (NPDES) became the NPDES national system of record for select states, tribes and territories. ICIS-NPDES is an information management system maintained by the United States Environmental Protection Agency's Office of Compliance to track permit compliance and enforcement status of facilities regulated by the NPDES under the Clean Water Act. ICIS-NPDES is designed to support the NPDES program at the state, regional, and national levels.
```

LUCIS
Land Use Control Information System
VERSION DATE:09/01/06

```

The LUCIS database is maintained by the U.S. Navy and contains information for former Base Realignment and Closure (BRAC) properties across the United States.

\section*{MLTS \\ Material Licensing Tracking System}

VERSION DATE: 04/14/14
MLTS is a list of approximately 8,100 sites which have or use radioactive materials subject to the United States Nuclear Regulatory Commission (NRC) licensing requirements.
\begin{tabular}{|ll}
\hline NPDESR06 & National Polutant Discharge Elimination System \\
VERSION DATE: 04/01/07 & \\
\hline
\end{tabular}

Information in this database is extracted from the Water Permit Compliance System (PCS) database which is used by United States Environmental Protection Agency to track surface water permits issued under the Clean Water Act. This database includes permitted facilities located in EPA Region 6. This region includes the following states: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. The NPDES database was collected from December 2002 until April 2007. Refer to the PCS and/or ICIS-NPDES database as source of current data.

\section*{PADS PCB Activity Database System}

VERSION DATE: 07/01/14
The PCB Activity Database System (PADS) is used by the United States Environmental Protection Agency to monitor the activities of polychlorinated biphenyls (PCB) handlers.
```

PCSR06 Permil Complance System
VERSION DATE: 08101/12

```

\section*{Environmental Records Definitions - FEDERAL}

The Permit Compliance System is used in tracking enforcement status and permit compliance of facilities controlled by the National Pollutant Discharge Elimination System (NPDES) under the Clean Water Act and is maintained by the United States Environmental Protection Agency's Office of Compliance. PCS is designed to support the NPDES program at the state, regional, and national levels. This database includes permitted facilities located in EPA Region 6. This region includes the following states: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. PCS has been modemized, and no longer exists. National Pollutant Discharge Elimination System (ICIS-NPDES) data can now be found in Integrated Compliance Information System (ICIS).

\section*{RCRASC RCRA Sites with Controls}

VERSION DATE: 05/23/14
This list of Resource Conservation and Recovery Act sites with institutional controls in place is provided by the U.S. Environmental Protection Agency.

\section*{SFLIENS}

CERCLIS Liens
VERSION DATE: 06/08/12
A Federal CERCLA ("Superfund") lien can exist by operation of law at any site or property at which United States Environmental Protection Agency has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties. This database contains those CERCLIS sites where the Lien on Property action is complete.
```

SSTS
Section Seven Tracking System
VERSION DATE: 12/31/09

```

The United States Environmental Protection Agency tracks information on pesticide establishments through the Section Seven Tracking System (SSTS). SSTS records the registration of new establishments and records pesticide production at each establishment. The Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) requires that production of pesticides or devices be conducted in a registered pesticide-producing or deviceproducing establishment. ("Production" includes formulation, packaging, repackaging, and relabeling.)

TRI Toxics Release Irventory
VERSION DATE: \(12 / 31 / 13\)
The Toxics Release Inventory, provided by the United States Environmental Protection Agency, includes data on toxic chemical releases and waste management activities from certain industries as well as federal and tribal facilities. This inventory contains information about the types and amounts of toxic chemicals that are released each year to the air, water, and land as well as information on the quantities of toxic chemicals sent to other facilities for further waste management.

\section*{Environmental Records Definitions - FEDERAL}

Toxic Substance Control Act Imventory
VERSION DATE: 12/31/06
The Toxic Substances Control Act (TSCA) was enacted in 1976 to ensure that chemicals manufactured, imported, processed, or distributed in commerce, or used or disposed of in the United States do not pose any unreasonable risks to human health or the environment. TSCA section 8(b) provides the United States Environmental Protection Agency authority to "compile, keep current, and publish a list of each chemical substance that is manufactured or processed in the United States." This TSCA Chemical Substance Inventory contains non-confidential information on the production amount of toxic chemicals from each manufacturer and importer site.
```

NLRRCRAG
No Longer Regulated RCRA Generaior Facilites
VERSION DATE: 10/09/14

```

This database includes RCRA Generator facilities that are no longer regulated by the United States Environmental Protection Agency or do not meet other RCRA reporting requirements. This listing includes facilities that formerly generated hazardous waste.
Large Quantity Generators: Generate \(1,000 \mathrm{~kg}\) or more of hazardous waste during any calendar month; or Generate more than 1 kg of acutely hazardous waste during any calendar month; or Generate more than 100 kg of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spili, into or on any land or water, or acutely hazardous waste during any calendar month; or Generate 1 kg or less of acutely hazardous waste during any calendar month, and accumulate more than 1 kg of acutely hazardous waste at any time; or Generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulated more than 100 kg of that material at any time.
Small Quantity Generators: Generate more than 100 and less than 1000 kilograms of hazardous waste during any calendar month and accumulate less than 6000 kg of hazardous waste at any time; or Generate 100 kg or less of hazardous waste during any calendar month, and accumulate more than 1000 kg of hazardous waste at any time.
Conditionally Exempt Small Quantity Generators: Generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or Generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, or acutely hazardous waste; or Generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, or acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.

\section*{RCRAGR06 \\ Resource Conservation \& Recovery Act - Generator Facilties}

VERSION DATE: 10/09/14
This database includes sites listed as generators of hazardous waste (large, small, and exempt) in the RCRAInfo

\section*{Environmental Records Definitions - FEDERAL}
system. The United States Environmental Protection Agency defines RCRAInfo as the comprehensive information system which provides access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS) and the Biennial Reporting System (BRS). This database includes sites located in EPA Region 6. This region includes the following states: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
Large Quantity Generators: Generate \(1,000 \mathrm{~kg}\) or more of hazardous waste during any calendar month; or Generate more than 1 kg of acutely hazardous waste during any calendar month; or Generate more than 100 kg of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, or acutely hazardous waste during any calendar month; or Generate 1 kg or less of acutely hazardous waste during any calendar month, and accumulate more than 1 kg of acutely hazardous waste at any time; or Generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulated more than 100 kg of that material at any time.
Small Quantity Generators: Generate more than 100 and less than 1000 kilograms of hazardous waste during any calendar month and accumulate less than 6000 kg of hazardous waste at any time; or Generate 100 kg or less of hazardous waste during any calendar month, and accumulate more than 1000 kg of hazardous waste at any time.
Conditionally Exempt Small Quantity Generators: Generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or Generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, or acutely hazardous waste; or Generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, or acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.
```

HISTPST Historical Gas Stations
VERSION DATE: NR

```

This historic directory of service stations is provided by the Cities Service Company. The directory includes Cities Service filling stations that were located throughout the United States in 1930.

BF Brownfields Management System
VERSION DATE: 10/01/14
Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. The United States Environmental Protection Agency maintains this database to track activities in the various brown field grant programs including grantee assessment, site cleanup and site redevelopment.

\section*{Environmental Records Definitions - FEDERAL}

\author{
CERCLIS Comprehensive Emvironmental Response, Compensation \& Liability Information System \\ VERSION DATE: 10/25/13
}

CERCLIS is the repository for site and non-site specific Superfund information in support of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This United States Environmental Protection Agency database contains an extract of sites that have been investigated or are in the process of being investigated for potential environmental risk.
```

DNPL Delisted National Priorities List
VERSION DATE: 10/25/13

```

This database includes sites from the United States Environmental Protection Agency's Final National Priorties List (NPL) where remedies have proven to be satisfactory or sites where the original analyses were inaccurate, and the site is no longer appropriate for inclusion on the NPL, and final publication in the Federal Register has occurred.

NFRAP
No Further Remedial Action Planned Sites
VERSION DATE: 10/25/13
This database includes sites which have been determined by the United States Environmental Protection Agency, following preliminary assessment, to no longer pose a significant risk or require further activity under CERCLA. After initial investigation, no contamination was found, contamination was quickly removed or contamination was not serious enough to require Federal Superfund action or NPL consideration.

\section*{NLRRCRAT No Longer Regulated RCRA Non-CORRACTS TSD Facilities}

VERSION DATE: 10/09/14
This database includes RCRA Non-Corrective Action TSD facirities that are no longer regulated by the United States Environmental Protection Agency or do not meet other RCRA reporting requirements. This listing includes facilities that formerly treated, stored or disposed of hazardous waste.
```

ODI Open Dump Imventory
VERSION DATE: 06/01/85

```

The open dump inventory was published by the United States Environmental Protection Agency. An "open dump" is defined as a facility or site where solid waste is disposed of which is not a sanitary landfill which meets the criteria promulgated under section 4004 of the Solid Waste Disposal Act (42 U.S.C. 6944) and which is not a facility for disposal of hazardous waste. This inventory has not been updated since June 1985.

\section*{RCRAT}

Resource Conservation \& Recovery Act - Treatment, Storage \& Disposal Facilities
VERSION DATE: 10009/14

\section*{Environmental Records Definitions - FEDERAL}

This database includes Non-Corrective Action sites listed as treatment, storage and/or disposal facilities of hazardous waste in the RCRAInfo system. The United States Environmental Protection Agency defines RCRAInfo as the comprehensive information system which provides access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS) and the Biennial Reporting System (BRS).
```

DOD
Department of Defense Sites
VERSION DATE: 12/01/05

```

This information originates from the National Atlas of the United States Federal Lands data, which includes lands owned or administered by the Federal government. Army DOD, Army Corps of Engineers DOD, Air Force DOD, Navy DOD and Marine DOD areas of 640 acres or more are included.
```

FUDS Formerly Used Detense Sites
VERSION DATE: 06/01/14

```

The 2012 Formerly Used Defense Sites (FUDS) inventory includes properties previously owned by or leased to the United States and under Secretary of Defense Jurisdiction, as well as Munitions Response Areas (MRAs). The remediation of these properties is the responsibility of the Department of Defense. This data is provided by the U.S. Army Corps of Engineers (USACE), the boundaries/polygon data are based on preliminary findings and not all properties currently have polygon data available. DISCLAIMER: This data represents the results of data collection/processing for a specific USACE activity and is in no way to be considered comprehensive or to be used in any legal or official capacity as presented on this site. While the USACE has made a reasonable effort to insure the accuracy of the maps and associated data, it should be explicitly noted that USACE makes no warranty, representation or guaranty, either expressed or implied, as to the content, sequence, accuracy, timeliness or completeness of any of the data provided herein. For additional information on Formerly Used Defense Sites please contact the USACE Public Affairs Office at (202) 528-4285.
\begin{tabular}{ll}
NLRRCRAC & No Longer Regulated RCRA Corrective Action Facilities \\
VERSION DATE: 10/09/14 &
\end{tabular}

This database includes RCRA Corrective Action facilities that are no longer regulated by the United States Environmental Protection Agency or do not meet other RCRA reporting requirements.
```

NPL National Priocities List
VERSION DATE: 10/25/13

```

This database includes United States Environmental Protection Agency (EPA) National Priorities List sites that fall under the EPA's Superfund program, established to fund the cleanup of the most serious uncontrolled or abandoned hazardous waste sites identified for possible long-term remedial action.

\section*{Environmental Records Definitions - FEDERAL}

Proposed National Priorities List
VERSION DATE: 10/25/13
This database contains sites proposed to be included on the National Priorities List (NPL) in the Federal Register. The United States Environmental Protection Agency investigates these sites to determine if they may present long-term threats to public health or the environment.
\begin{tabular}{|l|l|}
\hline RCRAC Resource Conservation \& Recovery Act - Corrective Action Facilities \\
VERSION DATE: 1000914 \\
\hline
\end{tabular}

This database includes all hazardous waste sites with ongoing corrective action activity and where corrective action is statutorily required to be address but have not had corrective action imposed in the RCRAlnfo system. The Corrective Action Program requires owners or operators of RCRA facilities (or treatment, storage, and disposal facilities) to investigate and cleanup contamination in order to protect human health and the environment. The United States Environmental Protection Agency defines RCRAInfo as the comprehensive information system which provides access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS) and the Biennial Reporting System (BRS).
```

RODS
Record of Decision System
VERSION DATE: 07/01/13

```

These decision documents maintained by the United States Environmental Protection Agency describe the chosen remedy for NPL (Superfund) site remediation. They also include site history, site description, site characteristics, community participation, enforcement activities, past and present activities, contaminated media, the contaminants present, and scope and role of response action.

\section*{Environmental Records Definitions - STATE (TX)}

\section*{GWCC}

Groundwater Contamination Cases
VERSION DATE: 12/31/13
This report contains a listing of groundwater contamination cases which were documented for the 2013 calendar year. Texas Water Code, Section 26.406 requires the annual report to describe the current status of groundwater monitoring activities conducted or required by each agency at regulated facilities or associated with regulated activities. The agencies reporting these contamination cases include the Texas Commission on Environmental Quality, Railroad Commission of Texas, Texas Alliance of Groundwater Districts, and Department of State Health Services.
```

HISTGWCC
Historic Grouncwater Contamination Cases
VERSION DATE: 12/31/12

```

This historic report contains all agency groundwater contamination cases documented from 1994 to 2012. The agencies that reported these contamination cases included the Texas Commission on Environmental Quality. Railroad Commission of Texas, Texas Alliance of Groundwater Districts, and Department of State Health Services.

\section*{LIENS \\ TCEQ Liens \\ VERSION DATE: 02/09/15}

Liens filed upon State and/or Federal Superfund Sites by the Texas Commission on Environmental Quality.
\begin{tabular}{l}
\hline MSD \(\quad\) Municipal Setting Designations \\
VERSION DATE: \(10 / 31 / 14\) \\
\hline
\end{tabular}

The Texas Commission on Environmental Quality defines an MSD as an official state designation given to property within a municipality or its extraternitorial jurisdiction that certifies that designated groundwater at the property is not used as potable water, and is prohibited from future use as potable water because that groundwater is contaminated in excess of the applicable potable-water protective concentration level. The prohibition must be in the form of a city ordinance, or a restrictive covenant that is enforceable by the city and filed in the property records. The MSD property can be a single property, multi-property, or a portion of property.

This database containing Notice of Violations (NOV) is maintained by the Texas Commission on Environmental Quality. An NOV is a written notification that documents and communicates violations observed during an inspection to the business or individual inspected.

\section*{Environmental Records Definitions - STATE (TX)}

\section*{SIEC01 State Institutional/Engineering Control Sites}

VERSION DATE: 02/09/15
The Texas Risk Reduction Program (TRRP) requires the placement of institutional controls (e.g., deed notices or restrictive covenants) on affected property in different circumstances as part of completing a response action. In its simplest form, an institutional control (IC) is a legal document that is recorded in the county deed records. In certain circumstances, local zoning or ordinances can serve as an IC. This listing may also include locations where Engineering Controls are in effect, such as a cap, barrier, or other engineering device to prevent access, exposure, or continued migration of contamination. The sites included on this list are regulated by various programs of the Texas Commission on Environmental Quality (TCEQ).

\section*{SPILLS Spills Listing}

VERSION DATE: 01/22/15

This Texas Commission on Environmental Quality database includes releases of hazardous or potentially hazardous materials into the environment.
```

TIERII
Tier II Chemical Reporting Program Facilfies
VERSION DATE: 12/31/12

```

The Texas Tier II Chemical Reporting Program in the Department of State Health Services (DSHS) is the state repository for EPCRA-required Emergency Planning Letters (EPLs), which are one-time notifications to the state from facilities that have certain extremely hazardous chemicals in specified amounts. The Program is also the state repository for EPCRA/state-required hazardous chemical inventory reports called Texas Tier Two Reports. This data contains those facility reports for the 2005 through the 2012 calendar years.
\begin{tabular}{|l|l|}
\hline DCR \(\quad\) Dry Cleaner Registration Database \\
VERSION DATE: \(01 / 01 / 15\) \\
\hline
\end{tabular}

The database includes dry cleaning drop stations and facilities registered with the Texas Commission on Environmental Quality.
```

IHW Industrial and Hazardous Waste Sites
VERSION DATE: 01/01/15

```

Owner and faciilty information is included in this database of permitted and non-permitted industrial and hazardous waste sites. Industrial waste is waste that results from or is incidental to operations of industry, manufacturing, mining, or agriculture. Hazardous waste is defined as any solid waste listed as hazardous or possesses one or more hazardous characteristics as defined in federal waste regulations. The IHW database is maintained by the Texas Commission on Environmental Quality.

\section*{Environmental Records Definitions - STATE (TX)}

\section*{PIHW Permitted Industrial Hazardous Waste Sites \\ VERSION DATE: 01/01/15}

Owner and facility information is included in this database of all permitted industrial and hazardous waste sites. Industrial waste is waste that results from or is incidental to operations of industry, manufacturing, mining, or agriculture. Hazardous waste is defined as any solid waste listed as hazardous or possesses one or more hazardous characteristics as defined in federal waste regulations. Permitted IHW facilities are regulated under 30 Texas Administrative Code Chapter 335 in addition to federal regulations. The IHW database is maintained by the Texas Commission on Environmental Quality.
```

PST Petroleum Storage Tanks
VERSION DATE: 01/29/15

```

The Petroleum Storage Tank database is administered by the Texas Commission on Environmental Quality (TCEQ). Both Underground storage tanks (USTs) and Aboveground storage tanks (ASTs) are included in this report. Petroleum Storage Tank registration has been a requirement with the TCEQ since 1986.

\section*{APAR Affected Property Assessment Reports \\ VERSION DATE: \(12 / 22 / 14\)}

As regulated by the Texas Commission on Environmental Quality, an Affected Property Assessment Report is required when a person is addressing a release of chemical of concern (COC) under 30 TAC Chapter 350, the Texas Risk Reduction Program (TRRP). The purpose of the APAR is to document all relevant affected property information to identify all release sources and COCs, determine the extent of all COCs, identify all transport/exposure pathways, and to determine if any response actions are necessary. The Texas Administrative Code Title \(30 \$ 350.4\) (a)(1) defines affected property as the entire area (i.e. on-site and off-site; including all environmental media) which contains releases of chemicals of concern at concentrations equal to or greater than the assessment level applicable for residential land use and groundwater classification.
```

BSA Brownfields Site Assessments

```
VERSION DATE: 02/09/15

The Brownfields Site Assessments database is maintained by the Texas Commission on Environmental Quality (TCEQ). The TCEQ, in close partnership with the U.S. Environmental Protection Agency (EPA) and other federal, state, and local redevelopment agencies, and stakeholders, is facilitating cleanup, transferability, and revitalization of brownfields through the development of regulatory, tax, and technical assistance tools.
```

CALF
Closed \& Abandoned Landfill Inventory
VERSION DATE: 11/01/05

```

The Texas Commission on Environmental Quality, under a contract with Texas State University, and in cooperation with the 24 regional Council of Governments (COGs) in the State, has located over 4,000 closed

\section*{Environmental Records Definitions - STATE (TX)}
and abandoned municipal solid waste landfills throughout Texas. This listing contains "unauthorized sites". Unauthorized sites have no permit and are considered abandoned. The information available for each site varies in detail and this historical information is not updated. Please refer to the specific regional COG for the most current information.
```

DCRPS Dry Cleaner Remediation Program Sites
VERSION DATE: 09/01/14

```

This list of DCRP sites is provided by the Texas Commission on Environmental Quality (TCEQ). According to the TCEQ, the Dry Cleaner Remediation Program (DCRP) establishes a prioritization list of dry cleaner sites and administers the Dry Cleaning Remediation fund to assist with remediation of contamination caused by dry cleaning solvents.

IOP Innocent Owner/ Operator Database
VERSION DATE: 02/09/15
Texas Innocent Owner / Operator (IOP), created by House Bill 2776 of the 75th Legislature, provides a certificate to an innocent owner or operator if their property is contaminated as a result of a release or migration of contaminants from a source or sources not located on the property, and they did not cause or contribute to the source or sources of contamination. The IOP database is maintained by the Texas Commission on Environmental Quality.

LPST Leaking Petroleum Storage Tanks
VERSION DATE: 02/01/15
The Leaking Petroleum Storage Tank listing is derived from the Petroleum Storage Tank (PST) database and is maintained by the Texas Commission on Environmental Quality. This listing includes aboveground and underground storage tank facilities with reported leaks.

\section*{MSWLF Municipal Solid Waste Landfill Sites}

VERSION DATE: 02/06/15
The municipal solid waste landfill database is provided by the Texas Commission on Environmental Quality. This database includes active landfills and inactive landfills, where solid waste is treated or stored.

\section*{RRCVCP Railroad Commission VCP and Brownfield Sites}

VERSION DATE: 01/27/15
According to the Railroad Commission of Texas, their Voluntary Cleanup Program (RRC-VCP) provides an incentive to remediate Oil \& Gas related pollution by participants as long as they did not cause or contribute to the contamination. Applicants to the program receive a release of liability to the state in exchange for a successful cleanup.

\section*{Environmental Records Definitions - STATE (TX)}
```

RWS Radioactive Waste Sites

```
VERSION DATE: 07/11/06

This Texas Commission on Environmental Quality database contains all sites in the State of Texas that have been designated as Radioactive Waste sites.
```

VCP Voluntary Cleanup Program Siles
VERSION DATE: 02/09/15

```

The Texas Voluntary Cleanup Program (VCP) provides administrative, technical, and legal incentives to encourage the cleanup of contaminated sites in Texas. Since all non-responsible parties, including future lenders and landowners, receive protection from liability to the state of Texas for cleanup of sites under the VCP, most of the constraints for completing real estate transactions at those sites are eliminated. As a result, many unused or underused properties may be restored to economically productive or community beneficial uses. The VCP database is maintained by the Texas Commission on Environmental Quality.

\section*{WMRF Recycling Facilities}

VERSION DATE: 11/01/12
This listing of recycling facilities is provided by the Texas Commission on Environmental Quality's Recycle Texas Online service. The company information provided in this database is self-reported. Since recyclers post their own information, a facility or company appearing on the list does not imply that it is in compliance with TCEQ regulations or other applicable laws. This database is no longer maintained and includes the last compilation of the program participants before the Recycle Texas Online program was closed.

\section*{IHWCA \\ Industrial and Hazardous Waste Corrective Action Sites}

VERSION DATE: 11/18/14
This database is provided by the Texas Commission on Environmental Quality (TCEQ). According to the TCEQ, the mission of the industrial and hazardous waste corrective action program is to oversee the cleanup of sites contaminated from industrial and municipal hazardous and industrial nonhazardous wastes. The goals of this program are to: Ensure that sites are assessed and remediated to levels that protect human health and the environment; Verify that waste management units or facilities are taken out of service and closed properly; and to Facilitate revitalization of contaminated properties.

\section*{SF State Superfund Sites}

VERSION DATE: 12/11/14
The state Superfund program mission is to remediate abandoned or inactive sites within the state that pose an unacceptable risk to public health and safety or the environment, but which do not qualify for action under the federal Superfund program (NPL - National Priority Listing). As required by the Texas Solid Waste Disposal Act, Texas Health and Safety Code, Chapter 361, the Texas Commission on Environmental Quality identifies and
evaluates these facilities for inclusion on the state Superfund registry. This registry includes any recent developments and the anticipated action for these sites.

\title{
Environmental Records Definitions - TRIBAL
}
USTR06 Underground Storage Tanks On Tribal Lands

VERSION DATE: 10/30/13

This database, provided by the United States Environmental Protection Agency (EPA), contains underground storage tanks on Tribal lands located in EPA Region 6. This region includes the following states: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
LUSTR06 Leaking Underground Storage Tanks On Tribal Lands

VERSION DATE: 10/30/13
This database, provided by the United States Environmental Protection Agency (EPA), contains leaking underground storage tanks on Tribal lands located in EPA Region 6. This region includes the following states: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.
\begin{tabular}{ll}
ODINDIAN & Open Dump Inventory on Tribal Lands \\
VERSION DATE: 11/08.06 &
\end{tabular}

This Indian Health Service database contains information about facilities and sites on tribal lands where solid waste is disposed of, which are not sanitary landfills or hazardous waste disposal facilities, and which meet the criteria promulgated under section 4004 of the Solid Waste Disposal Act (42 U.S.C. 6944).
\begin{tabular}{|ll}
\hline INDIANRES & Indian Reservations \\
VERSION DATE: 01/01/00 & \\
\hline
\end{tabular}

The Department of Interior and Bureau of Indian Affairs maintains this database that includes American Indian Reservations, off-reservation trust lands, public domain allotments, Alaska Native Regional Corporations and Recognized State Reservations.

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

\section*{APPENDIX C}

\section*{REGULATORY AGENCY RECORD SEARCH DOCUMENTATION}

FAXNO: 713-895-7943

\section*{Fax Cover Page}
\begin{tabular}{|cc|cc||}
\hline TO: & Todd Thompson & FROM: & Bob Metzger \\
\hline FAX: & \(713-767-3646\) & OATE: & March 10, 2015 \\
\hline PHONE: & \(713-422-8941\) & PAGES (lncluding this Cover Sheet): \\
\hline RE: file review requests & \\
\hline
\end{tabular}

Urgent \(\quad \square\) For Review \(\square\) Please Comment \(\square\) Please Reply

I need to review the following files:
LPSTs: Facility Numbers 0014936, and 0029268, and 0061076.

IOPs: 0219, 0249, and 0817
VCPs: 0152, 1621, 1711, and 2700

Please let me know as soon as possible when I can come in to review the files.

\section*{CONFIDENTIALITY NOTICE}

The information contained in this fax is legally privileged, private, confidentiat and is intended only for the use of the recipient named above. You are hereby notified that these documents should not be disciosed, duphicated or distributed to any other party or used for any purpose other than that which it was expressly intended. If you have received this fax in error, please contact us at (713) \(895-7645\) to arrange for return and redistribution to the comect recipient.

Robert Metzger
\begin{tabular}{|c|c|}
\hline From: & Robert Metzger < rmetzger@avilesengineering.com> \\
\hline Sent: & Monday, March 9, 2015 6:08 PM \\
\hline To: & 'Leah Piette' \\
\hline Subject: & TCEQ file review \\
\hline importance: & High \(\cdots\) \\
\hline
\end{tabular}

Leah,

I need to review the following LPST, IOP, and VCP files:

LPSTs:
- Faciinty 0061076
- Facility 0014936
- Facility 0029268

1OPS:
- 0817
- 0219
- 0249

VCPs:
- 0152
- 1621
- 1711
- 2700

Please let me know as soon as possible when I can come in to review the files.

Thanks,
Robert J. Metzger, P.G., CAPM
Aviles Engineering Corporation
5790 Windfern
Houston, TX 77041
Office: 713-895-7645
Fax: 713~895-7943

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is prohibited. If you received this in error. please contact the sender and delete the material from any computer.

\section*{Page 1 of 1}
Central Registry
\[
\begin{aligned}
& \text { Detail of: Industrial and Hazardous Waste Solid Waste Registration } 84841 \\
& \text { For: WALGRENS } 3328 \text { (RN101459972) } \\
& \text { 12850 MEMORIAL DR, HOUSTON } \\
& \text { Solid Waste INACTIVE } \\
& \text { Registration } \\
& \text { Status: } \\
& \text { Held by: WALGREEN CO (CN601476641) } \\
& \text { OWNER OPERATOR Since 01/23/2002 } \\
& \text { Mailing Address: PO BOX } 4685 \text { HOUSTON, TX 77210-4685 }
\end{aligned}
\]

Facility Information
\begin{tabular}{|c|}
\hline \hline Facility Information \\
\hline Registration Number: 84841 \\
Status: Inactive \\
Site Name: WALGREEN 3328 \\
Company Name: WALGREEN CO \\
Site Street Address: 12850 MEMORIAL DR, HOUSTON, TX, 77024 \\
Site Location: 12850 Memorial, Houston, TX \\
County: HARRIS \\
EPA Number: TXRO00018523 \\
Registration Type: Generator \\
Generator Type: Non-Industrial \\
SIC Code: \\
NAICS Code: 446110 Pharmacies and Drug Stores \\
\hline
\end{tabular}

Page 1 of 1
\[
\begin{aligned}
& \text { << sq-0whucp } 20 \text { suogrant } \\
& \text { Query Home Customer Search RE Search IO Search Oocument Search Search Results TCEQ Home }
\end{aligned}
\]

Central Registry
Detail of: Industrial and Hazardous Waste Solid Waste Registration 84841
For: WALGREENS 3328 (RN101459972)
of: Industrial and Hazardous Waste Solid Waste Registration 84841
For: WALGREENS 3328 (RN101459972)
12850 MEMORIAL DR, HOUSTON
Solid Waste INACTIVE
Solid Waste INACTIVE
Registration
Held by: WALGREEN CO (CN601476641)
OWNER OPERATOR Since 01/23/2002
Mailing Address: PO BOX 4685 HOUSTON, TX 77210-4685
Mailing Address: PO BOX 4685 HOUSTON, TX 77210-4685
IHW Waste Detail
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Waste Code: 0629119 H & \multicolumn{3}{|l|}{ Company Code: } & \multicolumn{3}{|l|}{\begin{tabular}{l}
Description: Used pphoto chemistry used in photo \\
processing. (used fixer)
\end{tabular}} \\
\hline Origin & Recycle & Managed & New Chemical & \begin{tabular}{l}
Waste \\
Stream Status
\end{tabular} & Source & Management & SIC & NAICS \\
\hline \begin{tabular}{l}
Generated on-site from \\
a product proces or \\
service activity
\end{tabular} & & \begin{tabular}{l}
Off-Site \\
Only
\end{tabular} & No & Inactive & \begin{tabular}{l}
Other one- \\
time or \\
intermittent \\
processes
\end{tabular} & & & 446110 \\
\hline
\end{tabular}

IHW Waste Management Units
\begin{tabular}{|l|l|l|l|}
\hline Sequence Number: & Unit Type: & Status: & Description: \\
\hline No Waste Management Units Information exists for this Waste Stream \\
\hline
\end{tabular}

- 2502-2013 Teas Commission on Emvronmenesl Quality
TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 84841

Page 1 of 2
Detail of: Innocent Owner/Operator Program ID Number 817
Central Registry

\section*{ID Number Status: INACTIVE}
Responsible Parties: WB HOLDING CORP (CN601346844) Since 01/31/2005 View Compliance History
Mailing Address: 12850 MEMORIAL DR HOUSTON, TX 77024-4972
TCEQ CR Query - Innocent Owner/Operator Program ID Number 817

\footnotetext{
Site Help | Disclaimer \| Web Policies \| Accessibility \(\mid\) Our Compact with Texans \| TCEQ Homeland Security \| Contact Us \| Central Registry \| Search Hints
Report Data Errors
Statewide Links: Texas.gov \| Texas Homeland Security \| TRAII. Statewide Archive I Texas Veterans Portal
(c) 2002-2013 Texas Commission on Environmental Quality
}

\section*{http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.cordetail\&addn_id=340533232012081}

\section*{Central Registry}
Detail of: Innocent Owner/Operator Program ID Number 817
For: TOWN \& COUNTRY VILLAGE (RN102643988) 12850 MEMORIAL DR, HOUSTON
ID Number Status: INACTIVE
Query Home
\begin{tabular}{|c|l|l|l|l|l|l|}
\hline Legal & Description & Start Date & End Date & Type & Status & Status Date \\
\hline 817 & INNOCENT OWNER PROGRAM & \(02 / 24 / 2012\) & \(09 / 12 / 2012\) & CLEANUP & INACTIVE & \(09 / 12 / 2012\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Tracking No. & Type & Value & Start Date & End Date \\
\hline 9312467 & ADMINISTRATIVE STATUS & INACTIVE & \(09 / 12 / 2012\) & \\
\hline 15530787 & PROJECT MANAGER & CWHITNEY & \(03 / 22 / 2012\) & \(09 / 12 / 2012\) \\
\hline 15530152 & PROJECT MANAGER & RMUSICK & \(02 / 24 / 2012\) & \(03 / 22 / 2012\) \\
\hline 15530148 & CASHIER RECEIVED DATE & \(2 / 24 / 2012\) & \(02 / 24 / 2012\) & \\
\hline 15530151 & PCA NUMBER & 32817 & \(02 / 24 / 2012\) & \(11 / 18 / 2014\) \\
\hline 15530153 & PROJECT NUMBER & 328170 & \(02 / 24 / 2012\) & \\
\hline 15530149 & FILE LOCATION & \(212 /\) D2 & \(02 / 24 / 2012\) & \\
\hline 15530150 & FILE MEDIA & PAPER & \(02 / 24 / 2012\) & \\
\hline 16122553 & IOP EMPLOYEE TIME & 2 HRS & \(08 / 31 / 2012\) & \\
\hline 16084844 & IOP EMPLOYEE TIME & 1 HRS & \(07 / 31 / 2012\) & \\
\hline 15942834 & IOP EMPLOYEE TIME & 7 HRS & \(05 / 31 / 2012\) & \\
\hline
\end{tabular}
Page 2 of 2

Detail of: Voluntary Cleanup Program ID Number 152 For: TOWN \& COUNTRY VILLAGE (RN102643988)

\footnotetext{
Responsible Parties: WB HOLDING CORP (CNGIN, TX 78746-5684
Mailing Address: 2705 BEE CAVES RD AUSTIN,
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tracking No. & Recelved/Sent & Direction & Type & Subject & Due Date & End Date & Document
Date & Methed \\
\hline 18955806 & 01/22/2015 & OUTGOING & ADPROVAL & & & 01/22/2015 & 01/22/2015 & USPS \\
\hline 18915541 & 01/05/2015 & incomeng & TECHNICAL CORRESPONDENCE & CERT OF CONPLETION s RESTRICTIVE COVENQNT & 03/69/2015 & 01/22/2015 & 02/65/2015 & USPS \\
\hline 18811454 & 12/04/2014 & OUTGOING & CDC & & & 12/04/2014 & 12/04/2014 & USPS \\
\hline 18772691 & 12/02/2014 & incomang & SIGNED AEFIOAVIT & & 02/30/2025 & 12/04/2014 & 12/25/2014 & USPS \\
\hline 18678852 & 11/07/2014 & OUTGOING & AFFIDAVIT & & & 11/07/2014 & 12/07/2014 & USPS \\
\hline 18673053 & 11/07/2014 & DENDENG & P SIGNED AFFIDAVIT & & 12107/2014 & & & \\
\hline 17693230 & 11/22/2013 & INCOMING & PRACR & AND FINGL CLOSURE арт & 02/21/2014 & 21/07/2014 & 12/22/2013 & HWND DELIV \\
\hline 17464772 & 09/06/2013 & OUTGOING & COVMENTS/NCO & & & 09/06/2013 & 02/06/2013 & ELECTRONIC SUBNITTAL \\
\hline 17290603 & 07/02/2013 & InCOMING & PRACR & MAY 2013 ANML EVENT & 08/31/2013 & 09/06/2013 & 07/02/2013 & HMND DELIV \\
\hline 17264510 & 06/25/2013 & OUTGOING & APPROVAL & & & 06/25/2013 & 06/25/2013 & ELECTRONIC SUBMITTAL \\
\hline 17180700 & 05/07/2013 & OUTGOING & APPROVAL & & & 05/07/2013 & 05107/2013 & electronic SUEMITTAL \\
\hline 17121586 & 04/26/2013 & INCOMING & PRACR & PRAC GW NON FEB 2013 RNVLL EVENT & 06/25/2013 & 06/25/2013 & 04/24/2013 & HAND DELTV \\
\hline 16939022 & 03/01/2013 & incomang & Plater & & 05109/2013 & 05/07/2013 & 03/02/2013 & HAND DELIV \\
\hline 16473783 & 10/17/2012 & OUTGOING & APPRCVAL & & & 10/17/2012 & 10117/2012 & emall \\
\hline 16104925 & 09/10/2012 & incoming & TECHNICAL RPT & PROPOSED PRAC GW MON PLAN & 12/09/2012 & 10/17/2012 & 0906/2012 & \\
\hline 15921887 & 06/05/2012 & OUTGOING & APPRCVAL & & & 06/05/2012 & 06/05/2012 & \\
\hline 15734566 & 04/10/2012 & incoming & GW/MEDIA MONITORING RPT & GWVR & 06/09/2012 & 06/05/2012 & 04/10/2012 & \\
\hline 14601259 & 94/26/2011 & OUTCOING & APPROVAL & & & 94/26/2011 & 04/26/2011 & \\
\hline 14620037 & 03/04/2011 & INCOMING & GW/MED1A NONITORING RPT & GWVR & 05/03/2012 & 04/26/2011 & 03/03/2011 & \\
\hline 13131474 & 07/13/2010 & incoming & STATUS UPOATE & MSR & 09/12/2010 & 08/11/2010 & 07/12/2010 & \\
\hline 13052374 & 04/23/2010 & InCOMING & STATUS UPOATE & QTRLY STATUS ROT 15T QTR 2010 & 06/22/2010 & 06/29/2010 & 04/22/2010 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 13055832 & 04/23/2010 & OUTGOING & Approval & & & 04/23/2010 & & Ematl. \\
\hline 13043258 & 04/15/2010 & INCOMING & GW/MEDIA MONITORING PLAN & 2009 ANN MON RPT & 06/14/2010 & 04/23/2010 & 02/13/20: 0 & \\
\hline 12682311 & 05/04/2009 & incoming & RACR A & UIC PERMITS TEAM & 07/03/2009 & 06/09/2009 & 04/30/2009 & \\
\hline 12632830 & 03/13/2009 & incoming & TECHNICAL RPT & FINAL 2008 ANN MDN RET FOR REMED SYS & 05/12/2009 & 04/14/2009 & 03/12/2009 & \\
\hline 12S15024 & 10/24/2008 & INCOMING & STATUS UPDATE & MSR & 12/23/2008 & 11/13/2008 & 10/21/2008 & \\
\hline 12512984 & 10/23/2008 & InCOMING & Status upoate & & 12/22/2008 & 10/23/2008 & 10/23/2008 & \\
\hline 12250060 & 05/09/2008 & INCOMING & starijupoate & & 07/08/2008 & 05/12/2006 & 05/06/2008 & \\
\hline 32235486 & 04/23/2008 & INCOMENG & GW/MEDIA MONSTORING RPT & & 06/22/2008 & 05/23/2008 & 04/22/2008 & \\
\hline 12235504 & 04/23/2008 & INCOMING & Status update & & 06/22/2008 & 05/12/2008 & 04/18/2008 & \\
\hline 12137704 & 09/27/2007 & INCOMING & status update & & 11/26/2007 & 10/15/2007 & 09/21/200\% & \\
\hline 12036604 & 03/16/2007 & INCOMING & GW/MEDIA MONITORING RPT & 2006 ANNUAL REPORT & 05/15/2007 & 04/26/2007 & 03/14/2007 & \\
\hline 12038031 & 03/14/2007 & Incoming & status uppate & Ftaruary & 05/13/2007 & 03/14/2007 & 03/:4/2007 & \\
\hline 12033576 & 12/20/2006 & Incoming & STATUS UPDATE & & 02/18/2007 & 12/21/2006 & 12/14/2006 & \\
\hline 12017046 & 10/09/2006 & INCOMING & STATUS UPDATE & & 11/23/2006 & 10/31/2006 & 10/09/2006 & \\
\hline 12013299 & 08/17/2006 & incoming & STATJS UPDATE & & 10/01/2006 & 09/06/2006 & 08/15/2006 & \\
\hline 12004491 & 06123/2006 & INCOMING & STATUS UPDATE & & 08/07/2006 & 07/31/2006 & 06/08/2006 & \\
\hline 11342312 & 05/05/2006 & INCOMING & GW/MEDIA MONITORING RPT & AnNuAL & 06/19/2006 & 06/12/2006 & 05/05/2005 & \\
\hline 11372543 & 04/20/2006 & incoming & Status update & & 06/04/2006 & 05/09/2006 & 04/20/2006 & \\
\hline 12217086 & 12105/2005 & InCOMING & Status upate & & 01/29/2006 & 01/05/2006 & 12/05/2005 & \\
\hline 10923071 & 03/18/2005 & INCOM:NG & GW/MEDIA MONITORING RPT & & 05/02/2005 & 04/31/2005 & 03/18/2005 & \\
\hline 10883331 & 01/31/2005 & Incoming & UIC AUTHORIZATION & & 03/17/2005 & 02/25/2005 & 01/27/2005 & \\
\hline 10805346 & 11/17/2004 & INCOM:NG & GW/MEDIA MONITORING RPT & & 01/01/2005 & 12/16/2004 & 11/16/2004 & \\
\hline 10610899 & 05/18/2004 & INCOM3NG & GW/MEDIA MON:TORING RPT & ANNUAL 2003 & 07/02/2004 & 06/24/2004 & 05/17/2004 & \\
\hline \(105551 \leq 0\) & 03/31/2004 & Incoming & AGENCY MEMOfFILE & & 05/15/2004 & 03/31/2004 & 03/30/2004 & 1NTRA-AGENCY \\
\hline 10552984 & 03/29/2004 & OUtGOING & APProval & & & 03/29/2004 & 03/29/2004 & PHONE \\
\hline 10496117 & 01/30/2004 & INCOMING & Vic authorization & & 03/15/2004 & 03/29/2004 & 01/30/2009 & \\
\hline :0462163 & 01/09/2004 & incoming & GW/MED:A MONITORING RPT & 2003 SEMI ANNUAL & 02/23/2004 & 02/06/2004 & 01/09/2004 & hand detiv \\
\hline :0409173 & 11/25/2003 & 0 Oit601ng & COMMENTS/NOD & & & 11/25/2003 & & LETTER \\
\hline 10366477 & 10/27/2003 & INCOMING & GW/MEDIA MONITORING RPT & 2002 AnNuAL & 12/11/2003 & 11/25/2003 & 10/23/2003 & \\
\hline :0271055 & 06/11/2003 & OUTGOING & PM ASSIGNED & & & 06/12/2003 & 06/11/2003 & LETTER \\
\hline 10247729 & 03/28/2003 & Intoming & RESPONSE ACTION status & 32R QTR 2002 & 05/12/2003 & 06/11/2003 & 03/27/2003 & HAND DEI.tV \\
\hline 10189935 & 10/21/2002 & :NCOMING & \[
\begin{aligned}
& \text { RESPONSE ACTION } \\
& \text { STATUS }
\end{aligned}
\] & 2ND QTP. 2002 & 12/05/2002 & 12/18/2002 & 10/18/2002 & OVERNIGHT \\
\hline 10145636 & 08/07/2002 & INCOMING & \[
\begin{aligned}
& \text { RESPONSE ACTION } \\
& \text { STATUS }
\end{aligned}
\] & 1ST QRTR 2002 & 09/21/2002 & 09/24/2002 & 08/06/2002 & hand deliv \\
\hline 10092737 & 04/11/2002 & INCOMING & RESPONSE ACTION status & 2001 AnNuAL & 05/26/2002 & 06/11/2002 & 03/29/2002 & hand deliv \\
\hline 10044507 & 11/19/72001 & incoming & RESPONSE ACTION Status & discharge summary & & 02/06/2002 & 11/15/2001 & USPS \\
\hline 10033983 & 08/28/2001 & Incoming & \[
\begin{aligned}
& \text { RESPONSE ACTION } \\
& \text { STATUS }
\end{aligned}
\] & DISTHARGE SUMMARY REPORT & 11/26/2001 & 02/06/2002 & 08/27/2001 & \\
\hline
\end{tabular}

\section*{}

\section*{}
Page 1 of 3

\section*{Central Registry}

> Detail of: Underground Injection Control Permit 5X2600312 For: TOWN \& COUNTRY VILLAGE (RN102643988) 12850 MEMORIAL DR, HOUSTON

> Permit Status: ACTIVE
> Held by: WB HOLDING CORP (CN601346844)
> OWNER OPERATOR Since 01/31/2005 View Compliance History Mailing Address: 3003 W ALABAMA ST HOUSTON, TX 77098-2001 WB Holding Corp (CN601346844) VOLUNTEER CLEANUP APPLICANT

> Mailing Address: 3003 W ALABAMA ST HOUSTON, TX 77098-2001
Correspondence Tracking
Page 2 of 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & CHEMICAL INJECTION STATUS REPORT - 2006 TO PRESENT & & & & HAND DELIV \\
\hline 12690429 & 05/01/2009 & Incoming & CLASS V REVISION & CLASS V INJECTION WELL PERMIT AMENDMENT \#3 APPL & 0S/01/2009 & 05/01/2009 & 05/01/2009 & HAND DELIV \\
\hline 12024957 & 12/20/2006 & INCOMING & CLASS V WELL REPORT & OCT - DEC 2006/4TH QUARTER 2006 & 12/20/2006 & 12/20/2006 & 12/15/2006 & USPS \\
\hline 12004263 & 06/16/2006 & INCOMING & CLASS V REVISION & WELL PERMIT AMENDMENT 2 & & 06/16/2006 & 06/16/2006 & USPS \\
\hline 10882696 & 01/28/2005 & INCOMING & CLASS V REVISION & PERMIT AMENDMENT APPLICATION & & 02/04/2005 & 01/27/2005 & HAND DELIV \\
\hline
\end{tabular}
TCEQ CR Query - Underground Injection Control Permit 5X2600312

\footnotetext{
 Statewide Links: Texas.gov | Texas Homeland Security | TRAlL Statewide Archive \| Texas Veterans Portal
8. 2002-2013 Texas Commission on Environmental Quality
}
Questions or Comments >>
Central Registry
Detail of: Underground Injection Control Permit 5X2600312 For: TOWN \& COUNTRY VILLAGE (RN102643988)
12850 MEMORIAL DR, HOUSTON
Permit Status: ACTIVE
Held by: WB HOLDING CORP (CN601346844)
Query Home Customer Search RE Search 10 Search Search kesults Permit Detail TCEQ Home
TCEQ CR Query - Underground Injection Control Permit 5X2600312

\title{
Texas Commission on Environmental quality
}

\section*{Protecting Texas by Reducing and Preventing Pollution}

November 7, 2014

Mr. Jeffery Hence
Weston Solutions, Inc.
2705: Bee Caves Road, Suite 100
Austin,"Texas 78746
Re: Town \& Country Village Shopping Center, 12850 Memorial Drive, Houston, Harris County, TX; Voluntary Cleanup Program (VCP) No. 152; Customer No. CN601346844; Regulated Entity No. RN100659127.

Dear Mr. Hence:
The Texas Commission on Environmental Quality (TCEQ) has reviewed Exhibit "C-1", restrictive covenant for the off-site property, and executed the exhibit on October, 31, 2014. Based on this review, the TCEQ has determined that the site has attained Texas Risk Reduction Program (TRRP) Remedy Standard B commercial/industrial standards, in accordance with 30 Texas Administrative Code (TAC) 8350.33 . Therefore, the TCEQ is prepared to issue a Certificate of Completion (COC) for the site pursuant to 30 THC \(\$ 333.10\).

Enclosed for your signature is an exhibit entitled Affidavit of Completion of Response Actions (Exhibit "B"), which will become an attachment to the COC. Exhibit "B" is a statement of your diligence in performing the necessary corrective action at the site. Additionally, an exhibit entitled Restrictive Covenant (Exhibit "C") for the on-site property is included for your signature. Exhibit " \(C\) " lists restrictions that must be observed and to which the current landowner must consent.

In addition to the supplied exhibits, a legal description of the site should be submitted. The legal description may include either a lot and block description and corresponding map of the site, or a metes and bounds and corresponding survey of the site. This information will become Exhibit " \(A\) ", an attachment to the COC.

If you are relying upon a restrictive covenant, it will be necessary to submit other maps labeled "C-1","C-2", "C-3", etc. that identify the physical locations) of the site to which the restrictions in Exhibit "C" pertain. If restricting an area less than the site described in Exhibit "A", the area must be described by a metes and bounds description, survey map and prepared and sealed by a State of Texas Registered Land Surveyor. If restricting the whole site, Exhibit "A" and its legal description and map may be used.

If the certificate will be filed on property that you do not own or control, you must provide the VCP with documentation that the current landowner consents to the placement of the VCP certificate on the property deed along with the attached exhibits unless this was previously performed. Similarly, if not already performed, you must provide the TCEQ with a copy of the written request for permission to file the VCP certificate. The copy of the written request must

Mr. Jeff Henke
Page 2
November 7, 2014
VCP No. 152
contain a draft certificate (complete with exhibits), the address and phone number of the TCEQ's Public Interest Counsel and a clear explanation as to the content and purpose of the institutional control.

We appreciate the opportunity for the Texas VCP to help you receive the COC. The TCEQ requests that you complete the Texas Brownfields Survey and return it in the enclosed envelope. We would appreciate feedback regarding the VCP which would help us serve you and others better in the futare. Additionally, we would like to track both the short and long term success of sites remediated through the VCP. We may contact you in the future to request additional information regarding measurable economic and community successes (e.g. increased number of jobs, increased property value) realized since the issuance of the VCP COC.
Please return the original executed exhibits, legal description and survey map of the site (as well as any other necessary survey maps) with the enclosed envelope. The Texas Brownfields Survey should also be included. The requested information should be sent to my attention at the TCEQ, Voluntary Cleanup Program, mail code MC-221, at the letterhead address no later than 30 days from the date of this letter. If an adequate response cannot be prepared within this time frame, please contact me to discuss an alternative schedule.
When we have received the requested information, we will prepare the COC with attached exhibits and mail it to you. At that time, you will file the COC in the Harris County deed records and return proof of the filing to me. You may contact me with any questions or comments at (512) 239-2215.

Sincerely,

Richard Scharlach, Team Leader
VCP-CA Section
Remediation Division
Texas Commission on Environmental Quality
RS/EM/jdm
cc: .M. Mr. Dan Moody, WB Holding Corporation, Dan.Moody3@moodyrambin.com
Mr. Kris Heckmann, Granite Public Affairs, kris@granitepublicaffairs.com
Mr. Larry Nettles, Vinson \& Elkins, lnettles@velaw, com
Ms. Nicolle Bealle, Waste Section Manager, TCEQ Region 12 Office, Houston
Enclosures: Exhibits "B" and "C" for execution, Brownfields Survey

\title{
EXHIBTT "B" \\ Affidavit of Completion of Response Actions \\ VCP No. 152
}

BEFORE ME, the undersigned authority, on this day personally appeared \(\qquad\) ,
as an authorized representative of WB Holding Corporation, known to me to be the person whose name is subscribed below who being by me first duly sworn, upon their oath, stated as follows:
\(I\) am over the age of 18 and legally competent to make this affidavit. I have personal knowledge of the facts stated herein.

WB Holding Corporation (Applicant) has completed response actions pursuant to Chapter 361, Subch apter S, Texas Health and Safety Code, at the tract of land described in Exhibit "A" to this certificate that pertains to Town \& Country Village Shopping Center (Site), Voluntary Cleanup Program (VCP) No. 152 located at 12850 Memorial Drive, Houston, Harris County, Texas. The Site was owned by at the time the application to participate in the VCP was filed. The Applicant has submitted and received approval from the Texas Commission on Environmental Quality (TCEQ) Remediation Division on all plans and reports required by the Voluntary Cleanup Agreement. The plans and reports were prepared using a prudent degree of inquiry of the Site consistent with accepted industry standards to identify all hazardous substances, waste and contaminated media of regulatory concern. The response actions for the Site have achieved standards acceptable for commercial/industrial land use as determined by the TCEQ.

The response actions substantially eliminated present or future risk to public health and safety and to the enviromment from releases and threatened releases of hazardous substances and/or contaminants at or from the Site. The Applicant has not acquired this certificate of completion by fraud, misrepresentation or knowing failure to disclose material information. Further information concerning the response action at this site may be found in the final report at the central office of the TCEQ under VCP No. 152.

The preceding is true and correct to the best of my knowledge and belief.
Applicant
\(\overline{\text { (Signature) }}\)
\(\overline{\text { (Printed Name) }}\)

STATE OF
COUNTY OF
SUBSCRIBED AND SWORN before me on this the \(\qquad\) day of \(\qquad\) 20 \(\qquad\) , to which witness my hand and seal of office.

Notary Public in and for the State of \(\qquad\)

\section*{EXHIBTT "C" Restrictive Covenant VCP No. \(15^{2}\)}
(Owner) is the owner of the tract of land described in Exhibit "A", attached hereto and incorporated herein, that pertains to Town \& Country Village Shopping Center (Site), VCP No. 152 located at 12850 Memorial Drive in Houston, Harris County, Texas. In consideration of the Response Actions by WB Holding Corporation (VCP Applicant) and issuance of this Final Certificate of Completion, the Owner has agreed to place the restrictions listed below on the Site at the areas described in the Exhibit "C-1" and in favor of the Texas Commission on Environmental Quality (TCEQ) and the State of Texas. This Restrictive Covenant is filed to provide information concerning certain environmental conditions and use limitations.

This Restrictive Covenant is required for the following reasons:
The area described in Exhibit " \(\mathrm{C}-1\) ", attached hereto and incorporated herein, overlies groundwater which contains concentrations of chemicals exceeding TCEQ-approved protective concentrations, plus any additional area allowed by the TCEQ. The area in Exhibit " \(\mathrm{C}-1\) ", attached hereto and incorporated herein, is being managed such that human exposure is prevented and other groundwater resources are protected.

Now, therefore, in consideration of these premises and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the following Restrictive Covenant in favor of the TCEQ and the State of Texas is placed on the Site, at the areas described in the attached exhibits, to-wit:
1. The following restrictions shall be a covenant running with the land.
2. Use of and exposure to the groundwater at the Site for any purpose is prohibited until such time when all of the chemicals of concern in groundwater within the area specified in Exhibit "C-1" no longer exceed levels which are protective of the public health.
3. Removal or modification of this restrictive covenant is prohibited without prior written approval of the TCEQ.

For additional information, contact:

In person:
TCEQ Central Records
12100 Park 35 Circle, Building E
Austin, Texas 78753

Mail:
TCEQ - MC 199
P.O. Box 13087

Austin, Texas 78711-3087

This Restrictive Covenant may be rendered of no further force or effect only by a release executed by the TCEQ or its successor agencies and filed in the same Real Property Records as those in which this Restrictive Covenant is filed.

\section*{Property Owner}
(Signature)
(Printed Name)
(Mailing Address)

STATE OF
COUNTY OF \(\qquad\)

SUBSCRIBED AND SWORN before me on this \(\qquad\) the day of \(\qquad\) 20 \(\qquad\) _, to which witness my hand and seal of office.

Notary Public in and for the State of \(\qquad\)

\section*{VCP Applicant}
(Signature)
(Printed Name)
(Title)

STATE OF
COUNTY OF \(\qquad\)

SUBSCRIBED AND SWORN before me on this \(\qquad\) the day of \(\qquad\) 20 \(\qquad\) _, to which witness my hand and seal of office. . .

Notary Public in and for the State of \(\qquad\)

Accepted as Third Party Beneficiary this day of 20

\section*{Texas Commission on Environmental Quality}
(Signature)
(Printed Name)

\section*{(Title)}

STATE OF TEXAS
TRAVIS COUNTY

SUBSCRIBED AND SWORN before me on this \(\qquad\) the day of \(\qquad\) 20 _, to which witness my hand and seal of office.

Notary Public in and for the State of

\section*{Texas Brownfields Survey}

Town \& Country Village Shopping Center, 12850 Memorial Drive, Houston, Harris County, Texas; Voluntary Cleanup program (VCP) No. 152
Contact Person: \(\qquad\)
Telephone Number and email:

If you do not or will no longer own the property, please provide an alternate contact name, phone number, and email for future questions:
1. Is development or redevelopment planned for the property?

Yes
No
2. Is additional development or redevelopment planned for the Yes No area surrounding the property?
3. Would the sale of this property or redevelopment have occurred without the VCP?

Yes No
4. If redevelopment is planned, what is the approximate schedule for redevelopment?
\[
\text { N/A } \quad 0-1 \text { year } \quad 1-3 \text { years } \quad 3-5 \text { years } \quad 5-10 \text { years } 10+\text { years }
\]
5. What is the anticipated increase in jobs due to receiving the certificate and/or redevelopment?
\(0-5\) jobs \(\quad 5-10\) jobs \(\quad 10-50\) jobs \(50-100\) jobs \(100-500\) jobs \(\quad 500+\) jobs
6. What is the anticipated increase in appraised property value due to receiving the certificate and/or redevelopment? Approximate increase \(\$\) \(0-20 \% \quad 20-50 \% \quad 50-100 \% \quad 100-200 \% \quad 200-500 \% \quad 500+\%\)
7. Please describe any areas within the VCP administrative or technical review process where you believe improvements should be made (attach additional pages as necessary): \(\qquad\)
\(\qquad\)
\(\qquad\)

MC-221, P.O. Box 13087, Austin, TX 78711-3087

\begin{abstract}

\end{abstract}

\title{
Texas Commission on Environmental Quality
}

Protecting Texas by Reducing and Preventing Pollution

September 12, 2012
RECEIVED
SEP 2 \& 2012
REGION 12
Mr. Jeffrey Hence
Weston Solutions, Inc.
2705 Bee Cave Road, Suite 100
Austin, Texas 78746
Re: Town \& Country Village Shopping Center, 12850 Memorial Drive, Houston, Maris County, Texas, 1OPNo.817, Customer No. CN601346844; Regulated "Entity No. RN100659127

Dear Mr. Henke:
The Texas Commission on Environmental Quality (TCEQ) received an IOP Application on February 24, 2012, for the above referenced property (Site) and has determined that WB Holding Corp has successfully completed IOP requirements and is an Innocent Owner/Operator as defined by \(\$ 361.751(2)\) of the Solid Waste Disposal Act (SWDA), Texas Health and Safety Code (THSC). Therefore, the enclosed Certificate for the Site is issued pursuant to \(\$ 361.753\) of the SWDA, THSC.

Please contact Ms. Christine Whitney of my staff with any questions or comments at (512) 239-0843.

Sincerely,
Beth factor
Beth Seato, Director
Remediation Division
\(\mathrm{BS} / \mathrm{CMW} / \mathrm{mdh}\)

\section*{Enclosure}
cc; Mr. Dan Moody, WB Holding Corporation, Dan.Moody3@moodyrambin.com Mr. Larry Nettles, Vinson \& Ellins, 1001 Tannin Street, Suite 2500, Houston, Texas 77002
Ms. Nicole Bealle, Waste Section Manager, TCEQ Region 12 Office, Houston

\section*{INNOCENT OWNER/OPERATOR PROGRAM CERTIFICATE}

As provided for in \(\$ 361.753\), Subchapter V, Solid Waste Disposal Act (SWDA), Texas Health and Safety Code:

I, Beth Seaton, Director of the Remediation Division, Office of Waste, Texas Commission on Environmental Quality (TCEQ or Commission), certify under \$361.753, SWDA, Texas Health and Safety Code, that necessary investigations have been completed as described in the approved Site Investigation Report(s) dated February 2012 (Site Report) for the tract(s) of land described in Exhibit "A" (Site), and that WB Holding Corp is an Innocent Owner as defined by \(\$ 361.751(2)\) for the Site, based on the affidavit for IOP No. 817 in Exhibit "B". A copy of the Site Report(s) may be found in the TCEQ Central Records Office under IOP No. 817.

WB Holding Corp is not hable under the Texas Health and Safety Code or the Texas Water Code for investigation, monitoring, remediation or corrective or other response actions regarding the conditions attributable to the release or migration of the contaminant(s) in groundwater from a source or sources not located on or at the site, including benzene, toluene, ethyl benzene, xylenes (BTEX) and methyl tert-buryl ether (MPBE) or related degradation products described in the Site Report(s), or otherwise liable regarding those conditions. WB Holding Corp shall grant reasonable access to the property for purposes of investigation and remediation to persons designated by the Executive Director of the TCEQ.

\section*{STATE OF TEXAS}

TRAVIS COUNTY
BEFORE ME, on this the \(12 T\). day of SEPTEMDER Seaton, Division Director of the Remediation Division of the Texas Commission on Environmental Quality, known to me to be the person and agent of said Commission whose name is subscribed to the foregoing instrument, and she acknowledged to me that she executed the same for the purposes and in the capacity therein expressed.
GIVEN UNDER MY HAND AND SEAL OF OFFICE, this the 12 Th day of SEPTEMOER, 2012

Notary without Bond

\title{
ExHmbT \(\hat{A}\) \\ PAGE 1 OF 27 \\ EXHIBIT "A" \\ TEXAS COMMISSION ON ENVIRONMENTAL QUALITY INNOCENT OWNER/OPERATOR PROGRAM LEGAL DESCRIPTION OF PROPERTY
}

The property belonging to WB Holding Corp. is a 27.789 acre tract (Tract III and Tract IV), more or less, located at 12850 Memorial Drive, Houston. Tract III is recorded in the George Bellows Survey, A-3, larris County Texas, recorded in Volume 5647, Pag3e 593, of the Deed of Records Harris County, Texas. Tract IV is part of the George Bellows Survey, A-3, Harris County Texas, recorded in under Harris County Clerks File Number R578753, Film Code 505-36-2449, Harris County Texas. The IOP site is the portion of the map located south of Kimberly Lane and both tracts are more particularly described as follows:

\section*{EXHIBIT "A" \\ TEXAS COMMISSION ON ENVIRONMENTAL QUALITY INNOCENT OWNER/OPERATOR PROGRAM LEGAL DESCRIPTION OF PROPERTY}

The property belonging to WB Holding Corp. is a 27.789 acre tract (Tract III and Tract IV), more or less, located at 12850 Memorial Drive, Houston. Tract III is recorded in the George Bellows Survey, A-3, Harris County Texas, recorded in Volume 5647, Pag3e 593, of the Deed of Records Harris County, Texas. Tract IV is part of the George Bellows Survey, A-3, Harris County Texas, recorded in under Harris County Clerks File Number R578753, Film Code 505-36-2449, Harris County Texas. The IOP site is the portion of the map located south of Kimberly Lane and both tracts are more particularly described as follows:
\(E N H 1 Q 11 \times \perp\)

\section*{EXHIBFT "B" TEXAS COMMISSION ON ENVIRONMENTAL QUALITY INNOCENT OWNER/OPERATOR PROGRAM AFFIDAVIT BYINNOCENT OWNER/OPERATOR}

Before me, the undersigned authority, personally appeared Mr. Dan Moody III, who, being by me duly sworn, deposed as follows:

My name is Dan Moody III, and I am a representative of WB Holding Corp. I am of sound mind, capable of making this affidavit, and personally acquainted with the facts herein stated:

WB Holding Corp is the owner of the Site located at 12850 Memorial Drive, Houston, Harris County, Texas. The physical boundaries of the site are set out in the attached Exhibit "A", legal description of property (Site).

WB Holding Corp has owned the Site from September 14,1995 to the present.
WB Holding Corp or its representatives have completed investigations pursuant to Section 361.753(a) of the Texas Solid Waste Disposal Act, at the Site described in Exhibit "A" to this certificate. The plans and reports submitted by WB Holding Corp in its Innocent Owner/Operator Application contain information collected and analyzed using a prudent degree of inquiry consistent with accepted industry standards. The plans and reports are true, correct and complete to the best of my knowledge.

The Site has become contaminated as a result of a release or migration of contaminants in groundwater from a source or sources not located on or at the Site. These contaminants are described in the Site Investigation Report for the Site dated February 2012 located in the TCEQ Central Records under IOP No. 817.

Neither I, WB Holding Corp, its agents, nor other persons, properties or operations for which it has legal responsibility, have caused or contributed to the source or source(s) of contamination at the Site.

SWORN TO AND SUBSCRIBED before me on the 9 day of June, 2012

Bryan W. Shaw, Ph.D., Chairman
Buddy Garcia, Commissioner
Carlos Rubinstein, Commissioner
Mark R, Vickery, RG, Executive Director

\title{
Texas Commission on Environmental Quality
}

Protecting Texas by Reducing and Preventing Pollution
April 23, 2009

Mr. Jeffrey Henze
Weston Solutions, inc.
2705 Bee Cave Road, Suite 100
Austin, Texas 78746
Re: Final 2008 Annual Monitoring Report For the Remediation System for Town \& Country Village Shopping Center, 12850 Memorial Drive, Houston, Harris County, Texas; Voluntary Cleanup Program (VCP) No 152; Customer No. CN601346844; Regulated Entity No. RN100659127

Dear Mr. Henke:
The VCP of the Texas Commission on Environmental Quality (TCEQ) has reviewed the above referenced report for groundwater monitoring and the remediation system. The report documents the operation and performance of the groundwater remediation system at the site for the 88 monitoring and recovery wells onsite as well as the installation of 18 additional injection wells along Memorial Drive. The TCEQ notes that the water treatment system appears to be effectively removing contaminants from the discharged water and the air effluent appears to be within allowable discharge limits.

It is stated that Weston and WB Holding believe the second sand unit is technically impracticable to remediate to the appropriate PCLs. The TCEQ does not concur that a demonstration has been made that it is technically impracticable to remediate the second sand unit. The TCEQ notes that the relevant cleanup target goals have not been met, and that the second sand unit should continue to be monitored.

After careful review, the TCEQ has determined that the report contains the necessary information for an annual groundwater monitoring report. Currently, the TCEQ has no objections to your plans to continue the operation of the remediation system and monitoring program as proposed for 2010.

The 2010 Annual Groundwater Monitoring Report should be received no later than April 30, 2011. Please continue to reference VCP No. 152 on the front of any future letters or reports. Future submittals should be mailed to my attention at the TCEQ, Remediation Division, mail code MC .221, at the letterhead address. You may contact me at (512) 239-0843.

Sincerely,

Chiton Mucor
Christine M. Whitney, Project Manager
VCP-CAS Section
Remediation Division

\section*{RECEIVED}

APR 292010
REGION 12

\section*{\(\mathrm{CMW} / \mathrm{j} \mathrm{dm}\)}
ce: Mr. Dan Moody, WB Holding Corporation, 3003 West Alabama, Houston, Texas 77098
Ms. Nicole Bealle, Waste Program Manager, TCEQ Region 12 , Houston

Page 1 of 1

\section*{Page 1 of 1}
-2002-2013 Texas Conmisvion on Environmental Qualty
Central Registry

TCEQ CR Query - Petroleum Storage Tank Registration 61076

\footnotetext{
Site Help I Disclaimer I Web Pelicies I Accessbblify I Oar Compact whth Texars I TCDQ Homelond Secunty I Contact Us I Certirel Repistry I Search Hents I
Statewde Links: Texas.gor I Texas Homeland Security I ThalL Stetemide Rechive I Texas Veterams pertal
- 2002-2013 Texas Commission on Environmertal Qualiy
}
Page 2 of 2

\section*{§10Z/6/६ \\ http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.pgmdetail\&addn_id=849638122002152\&lgcy_sys_cd=PST\&prog...}

\section*{Central Registry}

\section*{Detail of: Voluntary Cleanup Program ID Number 1621 For: A-1 CLEANERS (RN100659127) \\ Mailing Address: 2300 FIRST CITY TOWER, 1001 FA HOUSTON, TX 77002-6760}
Correspondence Tracking
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tracking No. & Received/Sent & Direction & Type & Subject & Due Date & End Date & Document Date & Method \\
\hline 19041112 & 03/04/2015 & INCOMING & GW/MEDIA MONITORING RPT & GW MON RPT & 05/03/2015 & & 02/26/2015 & USPS \\
\hline 18584455 & 10/09/2014 & Incoming & RESPONSE TO COMMENTS & JULY 25, 2014 LTR & 12/08/2014 & 11/03/2014 & 10/07/2014 & USPS \\
\hline 18486370 & 08/22/2014 & OUTGOING & RESEND RETURNED MAIL & & & 08/22/2014 & 08/22/2014 & USPS \\
\hline 18478879 & 08/11/2014 & Incoming & RETURNED MAIL & INSUFFICIENT ADDRESS & 10/10/2014 & 08/22/2014 & 07/2S/2014 & USPS \\
\hline 18427070 & 07/25/2014 & OUTGOING & COMMENTS/NOD & & & 07/25/2014 & 07/25/2014 & USPS \\
\hline 18427071 & 07/25/2014 & PENDING & P GW/MEDIA MONITORING RPT & & 08/01/2014 & 10/09/2014 & & \\
\hline 17980832 & 03/03/2014 & INCOMING & GW/MEDIA MONITORING RPT & \[
\begin{aligned}
& 2013 \text { ANNL GW MON } \\
& \text { RPT }
\end{aligned}
\] & 08/04/2014 & 07/25/2014 & 02/27/2014 & \\
\hline 17290977 & 07/01/2013 & INCOMING & RETURNED MAIL & & 08/30/2013 & 08/26/2013 & 06/17/2013 & \\
\hline 17258506 & 06/17/2013 & OUTGOING & APPROVAL & & & 06/17/2013 & 06/17/2013 & \\
\hline 17112572 & 04/23/2013 & INCOMING & GW/MEDIA MONITORING RPT & 2012 ANNL GW MON RPT & 06/22/2013 & 06/17/2013 & 04/12/2013 & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
乙£Z£00ZちIt6S06£=p! \({ }^{-}\)иррежя!

\section*{Page 1 of 2}
mex

\section*{\begin{tabular}{|l|l|l|l|l|l|}
\hline DRY CLEANERS & \(08 / 08 / 2003\) & AFFECTED PROPERTY & REMEDIATION & \(10 / 24 / 2008\) \\
\hline
\end{tabular}}
\begin{tabular}{|l|l|l|l|l|}
\hline Tracking No. & TYpe & Value & Start Date & End Date \\
\hline 9290510 & PROJECT PHASE & REMEDIATION & \(10 / 24 / 2008\) & \\
\hline 10308588 & APPLICABLE PROGRAM RULES & RRR & \(08 / 15 / 2003\) & \\
\hline 10308597 & CURRENT FACILITY TYPE & DRY CLEANER & \(08 / 15 / 2003\) & \\
\hline 10308593 & SITE SIZE & 0.45 ACRES & \(08 / 15 / 2003\) & \\
\hline 9296259 & \begin{tabular}{l}
SOLLS CHEMICAL OF CONCERN \\
CLASSIFICATION
\end{tabular} & VOCS & \(08 / 15 / 2003\) & \\
\hline 9308461 & \begin{tabular}{l}
SOIL INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & TETRACHLOROETHYLENE & \(08 / 15 / 2003\) & \\
\hline 9308462 & \begin{tabular}{l}
SOIL INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & BENZENE & \(08 / 15 / 2003\) & \\
\hline 9308463 & \begin{tabular}{l}
SOIL INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & TOLUENE & \(08 / 15 / 2003\) & \\
\hline 9308464 & \begin{tabular}{l}
SOIL INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & ETHYL BENZENE & \(08 / 15 / 2003\) & \\
\hline 9308465 & \begin{tabular}{l}
SOIL INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & XYLENES & \(08 / 15 / 2003\) & \\
\hline 9296260 & \begin{tabular}{ll}
GW BEARING UNIT
\end{tabular} & DEFAULT GW BEARING UNIT 1 & \(08 / 15 / 2003\) & \\
\hline 9308466 & \begin{tabular}{l}
GW INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & TETRACHLOROETHYLENE & \(08 / 15 / 2003\) & \\
\hline 9308467 & \begin{tabular}{l}
GW INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & BENZENE & \(08 / 15 / 2003\) & \\
\hline 9308468 & \begin{tabular}{l}
GW INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & TOLUENE & \(08 / 15 / 2003\) & \\
\hline 9308469 & \begin{tabular}{l}
GW INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & ETHYL BENZENE & \(08 / 15 / 2003\) & \\
\hline 9308470 & \begin{tabular}{l}
GW INDIVIDUAL CHEMICALS \\
REQUIRING REMEDY
\end{tabular} & XYLENES & & \\
\hline
\end{tabular}

\section*{Page 1 of 1}
Questions or Comments >>

\section*{Central Registry}

\begin{tabular}{|l|l|l|l|l|}
\hline Tracking No. & Type & Value & Start Date & End Date \\
\hline 9279476 & NUMBER OF PERMITTED WELLS & 7 & \(02 / 11 / 2005\) & \\
\hline 9278936 & WELL TYPE & AQUIFER REMEDIATION & \(02 / 11 / 2005\) & \\
\hline 9280014 & WELL LATITUDE & 29.77139 & \(02 / 11 / 2005\) & \\
\hline 9280543 & WELL LONGITUDE & -95.55806 & \(02 / 11 / 2005\) & \\
\hline 9283734 & COMMENTS & ADDITION OF 5 INJECTION WELLS & \(02 / 11 / 2005\) &
\end{tabular}
http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.pgmdetail\&addn_id=727539262006027\&lgcy_sys_cd=ARTS
Page 1 of 1

\section*{Page 1 of 1}
Page 1 of 1

\section*{Page 2 of 2}
DRY CLEANERS REGISTRATION
INDUSTRIAL AND HAZARDCUS W
\begin{tabular}{|l|l|l|l|}
\hline DRY CLEANERS REGISTRATION & REGISTRATION & DCR10391 & ACTIVE \\
\hline INDUSTRIAL ANO HAZARDCUS WASTE & EPA ID & TXO982561581 & INACTIVE \\
\hline INCUSTRIAL AND HAZARDOUS WASTE & SOLID WASTE REGISTRATION \% (SWR) & 51071 & INACTIVE \\
\hline INOUSTRIAL AND HAZARDOUS WASTE & SOLID WASTE REGISTRATION \% (SWR) & 70234 & INACTIVE \\
\hline LEAKING PETROLEUM STORAGE TANKS REMEDIATION & ID NUNBER & 113777 & IMACTIVE \\
\hline PETROLEUM STORAGE TANK REGISTRATION & REGISTRATION & 61076 & INACTIVE \\
\hline PETROLEUM STORAGE TANK STAGE II & & & \\
\hline UNDERGROUNO INJECTION CONTROL & PERMIT & \(5 \times 2600297\) & ACTIVE \\
\hline VOUNTARY CLEANUP PROGRAM & IO NUMBER & 1621 & ACTIVE \\
\hline
\end{tabular}

\footnotetext{

} - 2002-2013 Teass Comemission on Eevroemental Quaity
The list below is not sorted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Customer & \multicolumn{5}{|l|}{Site Associated with This Customer City or} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Compliance History for Customer at this Site \\
(If no Site appears in thesame row, this is the Customer's overall compliance history.)
\end{tabular}} \\
\hline PILGRIM TOWN \& COUNTRY CLEANER & \begin{tabular}{l}
\[
\mathrm{A}-1
\] \\
CLEANERS
\end{tabular} & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& \text { 12 - } \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- TXD982561581 \\
- 61076 \\
- 113777 \\
- TXD982561581
\end{tabular} & 0 & & 09/01/2008 & \\
\hline ESTATE OF ALTA J EPSTEIN & A-1 CLEANERS & & HARRIS & REGION
\(12-\)
HOUSTON & \begin{tabular}{l}
- 61076 \\
- 1621 \\
- 100659127 \\
- 61076
\end{tabular} & 0 & UNCLASSIFIED & 09/01/2008 & 11/15/2014 \\
\hline LEE, DEAN & A-1 CLEANERS & & HARRIS & \[
\begin{array}{|l|}
\text { REGION } \\
12- \\
\text { HOUSTON }
\end{array}
\] & \begin{tabular}{l}
- 1621 \\
- 51071 \\
- 61076 \\
- 1621 \\
- 100659127 \\
- 5X2600297 \\
- TXD982561581 \\
- TXD982561581
\end{tabular} & 0 & UNCLASSIFIED & 09/01/2011 & 11/15/2014 \\
\hline
\end{tabular}

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline WB HOLOING CORP & \[
\left\lvert\, \begin{array}{ll}
A-1 \\
C L E A N E R S
\end{array}\right.
\] & HARRIS & \[
\left\lvert\, \begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}\right.
\] & - DCR10391 & 10 & & 09/01/2011 & \\
\hline ESTATE of Alta J EPSTEIN & A-1 CLEANERS & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 . \\
& \text { HOUSTON }
\end{aligned}
\] & - 113777 & 10 & & 09/01/2011 & \\
\hline ESTATE OF ALTAJ EPSTEIN & A-1 Cl EANERS & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- \(5 \times 2600297\) \\
- 70234 \\
- OCR10391 \\
- 113777
\end{tabular} & 0 & & 09/01/2008 & \\
\hline PILGRIM CLEANERS INC & \begin{tabular}{l}
\[
\mathrm{A}-1
\] \\
CLEANERS
\end{tabular} & HARRIS & \[
\begin{array}{|l|}
\text { REGION } \\
\text { 12- } \\
\text { HOUSTON }
\end{array}
\] & \begin{tabular}{l}
- TXO982561581 \\
- 51071 \\
- 51071 \\
- TX0982561581
\end{tabular} & 0 & UNCLASSIFIEO & 09/01/2011 & 11/15/2014 \\
\hline WB HOLOING CORP & A-1 CLEANERS & HARRIS & \[
\begin{array}{|l|}
\hline \text { REGION } \\
12- \\
\text { HOUSTON }
\end{array}
\] & \begin{tabular}{l}
- 100659127 \\
- 113777 \\
- \(5 \times 2600297\) \\
- 70234 \\
- 1621 \\
- TXD982561581
\end{tabular} & 0 & UNCLASSIFIEO & 09/01/2011 & 11/15/2014 \\
\hline \[
\begin{aligned}
& \text { EPSTEIN } \\
& \text { ALTA } \\
& \text { ESTATE } \\
& \hline
\end{aligned}
\] & A-1 CLEANERS & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & * 5X2600297 & 0 & UNCLASSIFIEO & 09/01/2014 & 11/15/2014 \\
\hline PILGRIM TOWN \& COUNTRY CLEANER & \[
\mathrm{A}-1
\]
CLEANERS & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 \text { - } \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- 100659127 \\
- 5X2600297
\end{tabular} & 0 & & 09/01/2008 & \\
\hline ESTATE of Alta] EPSTEIN & A-1 CLEANERS & HARRIS & REGION
12 HOUSTON
HO & \begin{tabular}{l}
- TXO982561581 \\
- 70234 \\
- 5X2600297 \\
- 113777
\end{tabular} & 0 & UNCLASSIFIEO & 09/01/2008 & 11/15/2014 \\
\hline LEE, DEAN & & HARRIS & & & 0 & UNCLASSIFIED & 09/01/2008 & 11/15/2014 \\
\hline
\end{tabular}
!
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
\[
A-1
\] \\
CleAners
\end{tabular} & & \[
\left|\begin{array}{l}
\text { REGION } \\
12- \\
\text { HOUSTON }
\end{array}\right|
\] & \begin{tabular}{l}
- 61076 \\
- 100659127 \\
- 51071 \\
* 1621
\end{tabular} & & & & \\
\hline WB HOLDING CORP & \begin{tabular}{l}
\[
1 A-1
\] \\
Cl.EANERS
\end{tabular} & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- 51071 \\
- 100659127
\end{tabular} & 0 & & 09/01/2011 & \\
\hline \begin{tabular}{l}
ESTATE \\
OF ALTA 3 \\
EPSTEIN
\end{tabular} & A-1 CLEANERS & HARRIS & REGION
12-
HOUSTON & \begin{tabular}{l}
- 1621 \\
- DCR10391
\end{tabular} & 0 & & 09/01/2011 & \\
\hline \begin{tabular}{l}
ESTATE \\
OF ALTA J \\
EPSTEIN
\end{tabular} & A-1 CLEANERS & HARRIS & REGION
\(12-\)
HOUSTON & \begin{tabular}{l}
- TXD982561581 \\
- 100659127 \\
- TXD982561581 \\
- 100659127
\end{tabular} & 0 & & 09/01/2009 & \\
\hline PILGRIM CLEANERS INC & A-1 CLEANERS & HARRIS & REGION
\(12-\)
HOUSTON & \begin{tabular}{l}
= 5X2600297 \\
- 61076
\end{tabular} & 0 & UNCLASSIFIED & 09/01/2013 & 11/15/2014 \\
\hline WB HOLDING CORP & \[
\sqrt{A-1}
\]
CLEANERS & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
" 100659127 \\
- 100659127 \\
- 70234
\end{tabular} & 0 & UNCLASSIFIED & 09/01/2010 & 11/15/2014 \\
\hline \[
\begin{aligned}
& \text { EPSTEIN } \\
& \text { ALTA } \\
& \text { ESTATE }
\end{aligned}
\] & \[
\sqrt{A-1}
\]
CLEANERS & HARRIS & REGION
12 -
HOUSTON & \begin{tabular}{l}
- TXD982561581 \\
: 51071 \\
- 61076 \\
- 1621 \\
- 100659127
\end{tabular} & 0 & UNCLASSIFIED & 09/01/2014 & 11/15/2014 \\
\hline PILGRIM TOWN \& COUNTRY CLEANER & A-1 CLEANERS & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
: 61076 \\
: 100659127 \\
- 70234 \\
- 1621
\end{tabular} & 0 & & 09/01/2008 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\stackrel{\rightharpoonup}{i}
\] & & & & & 咅 & \\
\hline & \[
\stackrel{8}{8}
\] & & \begin{tabular}{l}
\(\vec{Z}\) \\
\(\stackrel{B}{2}\) \\
\(\vdots\) \\
\hline \\
\hline 8
\end{tabular} & & & & \[
\frac{8}{2}
\] \\
\hline & UNCLASSIFIED & & & & & 莒
4
0
5
5
3
3 & \\
\hline & 0 & 0 & \(\bigcirc\) & 0 & 0 & \(\bigcirc\) & \\
\hline \[
\stackrel{0}{\stackrel{0}{\circ}}
\] & & & & & & \(\stackrel{\rightharpoonup}{3}\)
\(\stackrel{1}{n}\)
\(i\) & \\
\hline & & & & & & & \\
\hline & & \[
\begin{aligned}
& \stackrel{n}{\alpha} \\
& \stackrel{\sim}{\alpha} \\
& \frac{\alpha}{x} \\
& \stackrel{y}{1}
\end{aligned}
\] & \[
\begin{aligned}
& \frac{y}{x} \\
& \underline{x} \\
& \underline{x} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \frac{n}{\alpha} \\
& \frac{\alpha}{\alpha} \\
& \frac{\alpha}{1}
\end{aligned}
\] & \[
\begin{aligned}
& \frac{9}{\alpha} \\
& \frac{\alpha}{x} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \underline{n} \\
& \underline{x} \\
& \times \\
& x \\
& \hline
\end{aligned}
\] \\
\hline & & & & & & & \[
\begin{gathered}
\text { 号 } \\
\frac{3}{2} \\
2 \\
4 \\
4 \\
\hline
\end{gathered}
\] \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Page 2 of 2}

\section*{}

\section*{Central Registry}
Detail of: Dry Cleaners Registration Registration DCR10391
For: A-1 CLEANERS (RN100659127)
12754 MEMORIAL DR, HOUSTON
Registration ACTIVE
Status:
Held by: LEE, DEAN (CN602455339)
OWNER View Compliance History
Mailing Address: 12754 MEMORIAL DR HOUSTON, TX \(77024-4861\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Legal & Description & Start Date & End Date & Type & Status & Status Date \\
\hline DCR10391 & FY2015 & \(08 / 08 / 2014\) & & DROP STATION REGISTRATION & ACTIVE & \(08 / 08 / 2014\) \\
\hline DCR10391 & FY2014 & \(11 / 15 / 2013\) & & DROP STATION REGISTRATION & ACTIVE & \(11 / 22 / 2013\) \\
\hline DCR10391 & FY2013 & \(12 / 20 / 2012\) & & DROP STATION REGISTRATION & ACTIVE & \(01 / 03 / 2013\) \\
\hline DCR10391 & FY2012 & \(12 / 01 / 2011\) & & DROP STATION REGISTRATION & ACTIVE & \(12 / 06 / 2011\) \\
\hline DCR10391 & FY2011 & \(01 / 06 / 2011\) & & DROP STATION REGISTRATION & ACTIVE & \(01 / 10 / 2011\) \\
\hline DCR10391 & FY2010 & \(09 / 10 / 2009\) & & DROP STATION REGISTRATION & ACTIVE & \(09 / 17 / 2009\) \\
\hline DCR10391 & FY2009 & \(09 / 01 / 2008\) & & DROP STATION REGISTRATION & ACTIVE & \(10 / 28 / 2008\) \\
\hline DCR10391 & FY2008 & \(09 / 01 / 2007\) & & DROP STATION REGISTRATION & ACTIVE & \(08 / 29 / 2007\) \\
\hline DCR10391 & FY2007 & \(09 / 01 / 2006\) & & DROP STATION REGISTRATION & ACTIVE & \(09 / 26 / 2006\) \\
\hline DCR10391 & FY2006 & \(09 / 01 / 2005\) & & DROP STATION REGISTRATION & ACTIVE & \(09 / 16 / 2005\) \\
\hline DCR10391 & FY2005 & \(09 / 01 / 2004\) & & DROP STATION REGISTRATION & ACTIVE & \(09 / 21 / 2004\) \\
\hline DCR10391 & FY2004 & \(09 / 01 / 2003\) & & DROP STATION REGISTRATION & ACTIVE & \(10 / 17 / 2003\) \\
\hline
\end{tabular}
Page 1 of 1
TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 51071

© 2002-2013 Texas Commission on Efrvormental Qualty
Central Registry
\[
\begin{aligned}
& \text { Detail of: Industrial and Hazardous Waste Solid Waste Registration } 51071 \\
& \text { For: A-1 CLEANERS (RN100659127) } \\
& 12754 \text { MEMORIAL DR, HOUSTON } \\
& \text { Solid Waste INACTIVE } \\
& \text { Registration } \\
& \text { Status: } \\
& \text { Held by: PILGRIM CLEANERS INC (CN602502486) } \\
& \text { OWNER OPERATOR Since 01/27/2001 View Compliance History } \\
& \text { Mailing Address: } 12442 \text { MEMORIAL DR HOUSTON, TX } 77024-6167
\end{aligned}
\]
\begin{tabular}{|c|}
\hline Facility Information \\
\hline Registration Number: 51071 \\
Status: Inactive \\
Site Name: PIGRIM CLEANERS \\
Company Name: PILGRIM CLEANERS INC \\
Site Street Address: 12754 MEMORIAL DR, HOUSTON, TX, 77024 \\
Site Location: 12754 Memorial Dr, Houston, TX \\
County: HARRIS \\
EPA Number: TXD982561581 \\
Registration Type: Generator \\
Generator Type: Non-Industrial \\
SIC Code: \\
NAICs Code: 812320 Drycleaning and Laundry Services (except Coin-Ope \\
\hline View Annual Waste Summary not available \\
\hline
\end{tabular}
Page 2 of 2
Detail of: Industrial and Hazardous Waste Solid Waste Registration 51071
For: A-1 CLEANERS (RN100659127)
12754 MEMORIAL DR, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: PILGRIM CLEANERS INC (CN602502486)
OWNER OPERATOR Since 01/27/2001 View Compliance History
Mailing Address: 12442 MEMORIAL DR HOUSTON, TX 77024-6167
Central Registry
\begin{tabular}{|l|l|}
\hline Texas Waste Code & Waste Description \\
\hline 0506609 H & PERC SLUDGE \\
\hline 0906310 H & PERC FILTERS \\
\hline
\end{tabular} Report Data Errors
Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal
4) 2002-2013 Texas Commission on Environmental Quality

\section*{Central Registry}
Detail of: Industrial and Hazardous Waste Solid Waste Registration 51071
For: A-1 CLEANERS (RN100659127)
12754 MEMORIAL DR, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: PILGRIM CLEANERS INC (CN602502486)
OWNER OPERATOR Since 01/27/2001 View Compliance History
Mailing Address: 12442 MEMORIAL DR HOUSTON, TX \(77024-6167\)

IHW Waste Detail
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Waste Code: 0506609 H & \multicolumn{3}{|l|}{ Company Code: 6073524065} & \multicolumn{3}{|l|}{ Description: PERC SLUDGE } \\
\hline Origin & Recycle & Managed & New Chemical & \begin{tabular}{l}
Waste \\
Stream Status
\end{tabular} & Source & Management & SIC & NAICS \\
\hline \begin{tabular}{l}
Generated on-site from \\
a product process or \\
service activity
\end{tabular} & & \begin{tabular}{l}
Off-Site \\
Only
\end{tabular} & No & Inactive & \begin{tabular}{l}
Solvent or \\
product \\
distillation \\
recovery \\
(sludge, \\
waste)
\end{tabular} & & 812320 \\
\hline
\end{tabular}
IHW Waste Management Units
\begin{tabular}{|l|l|l|l|}
\hline Sequence Number: & Unit Type: & Status: & Description: \\
\hline \multicolumn{1}{|l|}{ No Waste Management Units Information exists for this Waste Stream } \\
\hline
\end{tabular}
http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.ihwwastedetail\&WST_ID=138542\&\&TX_WST_CD=0506609H\&... 3/9/2015
Page 1 of 2
<< syouuos 20 suogsano
Search Results TCEQ Home
Detail of: Industrial and Hazardous Waste Solid Waste Registration 51071
Central Registry
Held by: PILGRIM CLEANERS INC (CN602502486)
OWNER OPERATOR Since 01/27/2001 View Compliance History
Mailing Address: 12442 MEMORIAL DR HOUSTON, TX 77024-6167

\section*{나무N Facility Information \\ IHW Waste Detail}

\author{
UNDERGROUND STORAGE TANK SYSTEM PERMANENT REMOVAL FROM SERVICE \\ Estate of Alta Epstein \\ 12754 Memorial Drive \\ Houston, Texas \\ Facility ID No. 0061076 \\ LPST ID No. 113777
}

MBC Report No. 21-3440-97
December 30, 1998

Prepared for:
Estate of Alta Epstein
coo Mr. Alan Shelby
1800 Bering, Suite 495
Houston, TX 77057

Prepared by

\section*{HBC Engineering, Inc.}

2313 W. Sam Houston Parkway North, Suite 107
Houston, Texas 77043

Project Manager

Thomas R Martens, EAPM 01105
Senior Technical Review

\section*{TABLE OF CONTENTS}
1.0ـINTRODUCTION 1
2.0 UST SYSTEM REMOVAL 1
3.0 SAMPLING PROGRAM 2
4.0 LABORATORY ANALYTICAL PROGRAM AND RESULTS 3
5.0 DATA EVALUATION 5
6.0 DISPOSITION OF EXCAVATED SOILS 5
7.0 CONCLUSIONS AND RECOMMENDATIONS 6

\section*{FIGURES}
1. Topographic Map

2 Site Drawing
3 Soil Sample Location Map

\section*{APPENDICES}

A Figures
B Regulatory Agency Notification
C Site Photographs
D Waste Manifests/UST Certificate of Destruction
E TNRCC UST Registration Form
F... Laboratory Analytical Results

\title{
UNDERGROUND STORAGE TANK SYSTEM BERMANENT REMOVAL FROM SERVICE
}

\author{
Estate of Alta Epstein \\ 12754 Memorial, Houston, Texas \\ Facility ID No. 0061076 \\ LPST 10 No. 113777
}

\section*{- \\ 1.0 INTRODUCTION\%}

HBC Engineering, Inc. (HBC) has conducted a Permanent Removal From Service of the underground storage tank (UST) system at the A-1 Cleaners facility located at 12754 Memorial Drive in Houston, Texas. The facility had two (2) 6,000-gallon USTs assumed to have formerly stored gasoline and diesel fuel.

Figure 1, Appendix A, presents the location of the site on the Hedwig Village, Texas USGS topographic quadrangle map. The location of the tankhold and tank system in relation to the structures at the site is presented on the Site Plan (Figure 2, Appendix A).

The Texas Natural Resource Conservation Commission (TNRCC) Central Office in Austin, Texas and the Region 12 office in Houston, Texas were notified of the removal activities through the filing of a 30 -day UST Construction Notification Form (Appendix B). The Region 12 TNRCC office was verbally notified by USA Environmental Systems, Inc. 24 hours prior to the scheduled time of the proposed activities.

\subsection*{2.0 UST SYSTEM REMOVAL}

Under the supervision of Mr. Charles Smith of HBC, on December 1, 1998, the soil excavation and tank removal activities were conducted by USA Environmental Systems, hnc. of Houston, Texas, a licensed contractor in the State of Texas. One 6,000 gallon UST assumed to contain gasoline (UST-1) and one 6,000 gallon UST assumed to contain diesel fuel (UST-2) were observed to be present at the site located near the northwest comer of the property. One former dispenser island was located to the south directly adjacent to the tanks along with two fill tubes (Photo 1). No representatives of the TNRCC were present at the site during the removal activities. Photographs of the tank removal activities are included in Appendix C.

Prior to the removal of the two 6,000 gallon USTs, the residual contents of the tanks were removed and the tanks were rinsed with using a high pressure washer and a Biosolve \({ }^{(B)}\) solution by Freemyer Company, Inc. Approximately 55 gallons of product and rinsate were removed from the tanks and recycled at Re-Claim Environmental's facility in Houston, Texas. A copy of the waste manifest for the product/rinsate disposal is included in Appendix D.

The dispenser island footing adjacent to the tank hold was left in place because it is a support structure for the A-1 Cleaners canopy. Two USTs were uncovered near the northwest corner of the property (Photo 2). The USTs were covered by approximately 4 inches of asphalt. The soils encountered during excavation activities in the tankhold consisted of yellowisla red silty sand (coarse-grained soils) from approximately 0.5 feet below grade surface (bgs) to approximately 12 feet bgs. The native soils encountered during excavation activities beyond the lankhold boundaries generally consisted of dark brown to gray and yellowish red silty clay (fine-grained soils).

业-
An explosimeter was utilized to confirm that the combustible vapor concentrations in the USTs were below \(10 \%\) of the lower explosive limit (LEL)(Photo 3). Prior to removal of the USTs, a City of Houston Fire Marslal arrived on site, confimed the LEL readings and gave approval to remove and transport the USTs (Photo 4).

Upon removal, the USTs were visually inspected. The USTs were observed to have an external dielectric coating. No holes were observed in the UST-1; however, one hole approximately 1 -inch in diameter was observed in the bottom end of UST-2 (Photo 6). The product and vent piping were disconnected, removed and disposed at Huff Industries in Houston, Texas. The product and vent piping were constructed of galvanized steel.

The USTs were removed from the tankhold, properly labeled, foaded on a truck, and transported to Huff Industries in Houston, Texas for scrap metal recycing. A copy of the Certificate of Destruction is included in Appendix D. The revised UST registration form is presented in Appendix E.

The dimensions of the tankhold excavation for the two 6,000 gallon USTs were approximately \(24^{\prime}\) \(\times 24^{\prime} \times 12 .^{\prime}\) deep. The excavated material from the tankhold was stockpiled on site. After removal of the USTs, based on the fied evidence the previously excavated material was placed back into the
tankhold.

\subsection*{3.0 SAMPLING PROGRAM}

Prior to retuming the backfill material to the tankhold, discrete soil samples were collected from the floor and walls of the tankhold. Two soil samples (T-1B and T-2B) were collected from the floor of the tankhold beneath each tank. Soil samples were collected from the north (NSW-1), south (SSW-1), east (ESW-1) and west (WSW-1) sidewalls of the tankhold and three composite soil samples (SPC-1, SPC-2 and SPC-3) were collected from the excavated/stockpiled backfill material. Based on the field evidence, additional soil samples (verification samples) were collected from the bottom of the tankhoid (T-1B-15' and T-2B-15') at the site on December 1, 1998. The samples were collected from a depth of 15 feet bgs near the location of original soll samples \(T-1 B\) and \(\Gamma-2 B\) 10 evaluate whether native solls beyond the limits of excavation were impacted by hydrocarbons. The Soil Sample Location Map (Figure 3-Appendix A) presents the locations of each soil sample collected from the native soils at the site.

Soil samples were collected in laboratory supplied precleaned glassware, sealed with custody tape and placed in a cooler filled with ice and secured with custody seals: The sample cooler and completed chain-of-custody forms were relinquished and delivered to Xenco Laboratories in Houston, Texas. The samples were submited on a 48 hour rush turn-around-time.

\subsection*{4.0 LABORATORY ANALYTICAL PROGRAM AND RESULTS}

5
The soil samples collected from the tankhold excavation native soils and the stockpiles were analyzed for the following parameters:
- ... Total Petroleum Hydrocarbons (TPH) using Texas Method 1005;
-.... Benzene, Toluene, Ethylbenzene and Total Xylenes (BTEX) using EPA Method SW-846 \#8020; and
- Total Lead using EPA Method 6010 (selected samples).

The executed chain-of-custody and laboratory resuits are provided in Appendix \(F\).
Laboratory results, sampling dates, sample location designations and sample depths are summarized in the following table:

EMangirive wo
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sanye ID & Date & Sample Depuh (feet) & \[
\begin{aligned}
& \text { Rengere } \\
& \text { (mg } / \mathrm{kg} \text {) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { soluene: } \\
& 8020 \text { (mg/rg) }
\end{aligned}
\] & Chylberzene 8020 (ug/kg) & \[
\begin{gathered}
\text { Toka } \\
\text { Xylenes } \\
\text { 8020, } \\
\text { (mplog) }
\end{gathered}
\] & \[
\begin{gathered}
17 \mathrm{C} \\
\text { (G) } \\
1005 \\
(\mathrm{mg} / \mathrm{kg})
\end{gathered}
\] & \begin{tabular}{l}
SH \\
(D) \\
1005 \\
(ng/kg)
\end{tabular} & \begin{tabular}{l}
Totas \\
Lead \\
6010 \\
(10g/kg)
\end{tabular} \\
\hline T-18 & 12/1/98 & 13 & 1.05 & 1.09 & 2.77 & 4.46 & \(<50.0\) & \(<50.0\) & 5.3 \\
\hline T-2B & 12/1/98 & 13 & 0.78 & 1.02 & 1.13 & 2.90 & \(<50.0\) & \(<50.0\) & NA \\
\hline T-1B & 12/1/98 & 15 & c0.050 & \(<0.050\) & 0.230 & 0.557 & NA & NA & NA \\
\hline T-2B & 12/1/98 & 15 & \(<0.050\) & 40.050 & \(<0.050\) & \(<0.150\) & NA & NA & NA \\
\hline NSW-1 & 12/1/98 & 8 & \(<0.050\) & \(<0.050\) & \(<0.050\) & \(<0.150\) & \(<50.0\) & \(<50.0\) & NA \\
\hline ESW-2 & 12/1/98 & 8 & \(<0.050\) & \(<0.050\) & \(<0.050\) & <0.150 & \(<50.0\) & \(<50.0\) & NA \\
\hline SSW-1 & 12/1/98 & 8 & \(<0.050\) & \(<0.050\) & \(<0.050\) & 0.150 & \(\cdots 50.0\) & \(<50.0\) & NA \\
\hline WSW-1 & 121/98 & 8 & <0.050 & <0.050 & \(<0.050\) & \(<0.150\) & <50.0 & 550.0 & NA \\
\hline
\end{tabular}
\(T P H(G)=\) Total Petroteun Hydrocarbons (gasoline range C \(6-\mathrm{Cl} 0\))
\(T P H(D)=\) Total Petroleum Hydrocarbons (diesel range \(>C 10-C 28\))
\(\mathrm{mg} / \mathrm{kg}=\) milhgrams per kilogran
\(<=\) Not detected above listed laboratory equipment detection limits
\(N A=\) Not analyzed for this constituent

\section*{STOCKPLED SOIL SAMILELABORATORY ANALYTICAL RESULTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sample & Date. & Benzene 8020. (ng/kg) & \[
\begin{aligned}
& \text { oluene: } \\
& 8020 \\
& (\mathrm{mg} / \mathrm{kg})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sthybenzene } \\
& 88020 \\
& (m g / \mathrm{kg})
\end{aligned}
\] & Total Xylenes 8020 (\(\mathrm{mg} / \mathrm{kg}\)) & \[
\begin{gathered}
\text { TPH } \\
\text { (GO } \\
(\mathrm{mg} / \mathrm{g})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{TPL} \\
\text { (D) } \\
1005 \\
(\mathrm{mg} / \mathrm{kg})
\end{gathered}
\] & \[
\begin{aligned}
& \text { Total } \\
& \text { lead } \\
& 6010 \\
& (\mathrm{mog} / \mathrm{kg})
\end{aligned}
\] \\
\hline SPC-1 & 12/1/98 & NA & NA & NA & NA & \(<50.0\) & \(<50.0\) & NA \\
\hline SPC-2 & 12/1/98 & NA & NA & NA & NA & \(<50.0\) & <50.0 & NA \\
\hline SPC-3 & 12/1/98 & NA & NA & NA & NA & < 50.0 & <50.0 & NA \\
\hline
\end{tabular}

TPH(C) \(=\) Total Petrolcum Hydrocarbons (gasoline range (6-(1))
\(T P H(D)=T o t a l\) Petrolenm Hydrocarbons (diesel ange \(\because(10-(28)\)
\(\mathrm{mg} / \mathrm{kg}=\) millisrams per-kilogram
\(\cdots:=\) Not detected above listed laboratory eqnipmen detection limits
NA = Not analyzed for this constituent

\subsection*{5.0 DATA EVALUATION}

Per the TNRCC's Release Determination guidance dated August 1, 1996 (TNRCC-0621), the Leaking Petroleum Storage Tank (LPST) Action Levels for gasoline releases in fine-grained soils (classified as clays and silts) like the native soils encountered at the site are 0.5 milligram per kilogram (\(\mathrm{mg} / \mathrm{kg}\)) benzefie, \(70 \mathrm{mg} / \mathrm{kg}\) ethylbenzene, \(100 \mathrm{mg} / \mathrm{kg}\) toluene, and \(560 \mathrm{mg} / \mathrm{kg}\) total xylenes, \(100 \mathrm{mg} / \mathrm{kg} \mathrm{TPH}(\mathrm{G})\) and \(500 \mathrm{mg} / \mathrm{kg}\) TPH(D) The results of the laboratory analyses indicated that the BTEX and TPH concentrations exhibited by the discrete soil samples collected from the north, east, south and west wails of the tankhold (NSW-1, ESW-1, SSW-1, and WSW-1) were below the appropriate LPST Action Levels defined by the TNRCC and/or below the laboratory detection limits. The toluene, ethylbenzene, xylene and TPH concentrations exhibited by the discrete soil samples collected from the bottom of the tankhold (T-1B and T-2B) were below the appropriate LPST Action Levels defined by the TNRCC.

The results of the analyses indicated that benzene concentrations exhibited by the discrete soil samples T-1B (\(1.05 \mathrm{mg} / \mathrm{kg}\)) and \(\mathrm{T}-2 \mathrm{~B}(0.78 \mathrm{mg} / \mathrm{kg})\) collected from the bottom of the tankhold exceeded the TNRCC LPST Action Levels for this compound in fine-grained soil.

The results of the analyses indicated that total lead was detected in soil samples \(T-1 B(5.3 \mathrm{mg} / \mathrm{kg})\).
The results of the additional sampling and analysis indicated that BTEX concentrations exhibited by the discrete (confirmation) soil samples (T-1B-15' and T-2B-15') collected from the bottom of the tankhold at a depth of 15 feet were below the appropriate LPST Action Levels defined by the TNRCC and/or below the laboratory detection limits.

\subsection*{6.0 DISPOSITION OF EXCAVATED SOILS}

The laboratory analysis results indicated that the TPH concentrations exhibited by the composite soil samples collected from the stockpile (SPC-1, SPC-2 and SPC-3) were below the laboratory detection limits.

Per the TNRCC's Guidance for the Proper Handling of Backfill Materials Generated from Petroleum Storage System Removals or Repairs interoffice memorandum dated March 2, 1993, Standard 4 (sites where no corrective action is required) applies to the site. Under Standard 4, backfill materials are to be returned to the tankhold without treatment (if no free product is detected in the soils, and if the site is not in the Edwards Aquifer recharge area, and the tankhold will be covered with an impervious surface and groundwater is not present in the tankhold or is not reasonably threatened by the backfill contaminants). The laboratory analysis results indicated that the stockpile sample SPC-1, SPC. 2 and SPC-3 did not exhilit concentrations of TPH (G) and/or TPH(D) above the detection limits the TNRCC Standard 4 levels for TPH (\(1,000 \mathrm{mg} / \mathrm{kg}\)). Based on the field evidence the tankhold was backfilled with the previously excavated materials and imported fill on December 1, 1998 by USA Environmental Services.

\subsection*{7.0 CONCLUSIONS AND RECOMMENDATIONS}

The conclusions and recommendations of this investigation are presented as follows:
- The site was assumed to have two 6,000 gallons USTs. Two USTs were located, and removed from the site on December 1,1998 in general accordance with API Recommended
-... Practice 1604. The tanks had a capacity of approximately 6,000 gallons each and were composed of steel. The USTs were assumed to have been used to store leaded gasoline and diesel fuel?
- Native soil samples were collected from the floor and walls of the tankhold. The results of the soil sample analysis indicated that the TPH and BTEX concentrations in the discrete soil samples collected from the north, east, south and west walls of the tankhold (NSW-I, ESW-1, SSW-1, and WSW-1) were below TNRCC LPST Action Levels and/or the laboratory method detection limits.
- The results of the analyses indicated that the benzene (\(1.05 \mathrm{mg} / \mathrm{kg}\)) and (\(0.78 \mathrm{mg} / \mathrm{kg}\)) concentrations exhibited by the discrete soil samples collected at a depth of 13 feet bgs from the bottom of the tankhold (\(\mathrm{T}-1 \mathrm{~B}-13^{\prime}\) and \(\mathrm{T}-2 \mathrm{~B}-13^{\prime}\)) respectively exceeded the TNRCC LPST Action Levels for these compounds in fine-grained soils but the results of the additional (verification) soil samples collected at a depth of 15 feet on December 1 , 1998 from the bottom of the tankhold (T-1B-15' and T-2B-15') were below TNRCC LPST Action Levels. Mr. Ken Ausbie of the TNRCC reviewed the analytical data, assigned LPST ID number 113777 to the site and gave verbal authorization for closure of the UST system at the site.
-. Based on the field evidence the tankhold was backfiiled with the previously excavated materials and imported fill on December l, 1998 by USA Environmental Services.
* Based on the results of the faboratory analysis and field evidence, site will be considered an LPST site. At the client's request, HBC has communicated the results of laboratory analyses to the TNRCC and will submit with this report a Release Determination Report and a Request for Closure for this site. An LPST M number has been assigned by the TNRCC. Based on communications with the TNRCC, further investigation will not likely be required by the TNRCC to evaluate the extent of impacted soil and/or groundwater at the site.
- The TNRCC has a reimbursement program in place at this time but the deadline for qualifying for the program is December 22, 1998. Any releases reported after December 22, 1998 will not be eligible for reimbursement. Associated with the reimbursement is a one time deductible of \(\$ 2,000.00\) to \(\$ 4,000.00\) which is not refundable. Reimbursement for each phase of work subnitted to the TNRCC takes approximately two to four months. The rembursable amounts are determined by the

TNRCC PST reimbursable cost guidelines. Please note that the deductible amount will increase over time if certain TNRCC deadines for subinittal of corrective action documents are not met.
- HBC recommends no further action be conducted at the site at this time.
```

+ 

5

```


FIGURE 2
SITE DRAWING
HEC PROUECT NO. 21-3440-97

\section*{ANALYTICAL REPORT 1-84633}
for

HBC Engineering Inc.

\author{
Project Manager: Charles F. Smith
}

Project Name: UST Pull/Memorial Dr.
Project Id: 21-3440-97

December 3, 1998

HOUSTON - DALLAS - SAN ANTONIO

11381 Meadowglen Lane Suite L * Houston, Texas 77082-2647 Phone (281) 589-0692

Fax (281) 589-0695

11381 Meadowglen Suite L
Houston, Texas 77082-2647
(281) 589-0692 Fax: (281) 589-0695

Houston - Delos - Son Antonio - Latin Amenco

December 3, 1998
Project Manager: Charles F. Smith
HBC Engineering Inc.
2313 W. Sam Houston Pkwy. N. \#107
Houston, TX 77043

\section*{Reference: XENCO Report No.: 1-84633 \\ Project Name: UST Pull/hemorial Dr. \\ Project ID: 21-3440-97}

\section*{Dear Charles F. Smith:}

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-84633. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory 10 number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.
The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 1-84633 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISQIEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely,

Recipient of the Prestigious Small Business Administration Award of Excellence in 199.4. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY?

\section*{HBC}

ENGINEERING, INC. Office Location Hoses tion Propect Manager (harloss) Phone: \(-28 i-5 \operatorname{sig}-0<42\)
PO/SO \#: Sampler's.Signature / 17114 Nortype of Containers Houstro 72082 Address: 113 s. Moskenglew. SkL Contact: Di.hbue Simminis Phone: \((28)\). \(549-0<92\) Sampler's Name Sampler's.Signature

Aharlos \(E\) smity \(\cdots\) \(17<\boldsymbol{m o N i A} / 2\) Identifying Marks of Sample(s)

\title{
ANALYTICAL REPORT 1-84634
}
for

HBC Engineering Inc.

Project Manager: Charles F. Smith
Project Name: UST Pull/Memorial Dr.
Project Id: 21-3440-97

December 7, 1998

HOUSTON - DRLEAS - SAN ANTONDO

11381 Meadowglen Suite 1
Houston, Texas 77082-2647
(281) 589-0692 Fax: (281) 589-0695

Houston - Delos - Son Antonio - Latin Fmenco

December 7, 1998
Project Manager: Charles F. Smith
HBC Engineering Inc.
2313 W. Sam Houston Pkwy. N. \#107
Houston, TX 77043

\section*{Reference: XENCO Report No.: 1-84634}

\section*{Project Name: UST Pull/Hemorial Dr. \\ Project ID: 21-3440-97}

\section*{Dear Charles \(F\). Smith:}

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with XENCO Chain of Custody Number 1-84634. All results being reported to you apply only to the samples analyzed, properly identified with a Laboratory ID number. This letter documents the official transmission of the contents of the report and validates the information contained within.

All the results for the quality control samples passed thorough examination. Also, all parameters for data reduction and validation checked satisfactorily. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be fled for at least 3 years in our archives and after that time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC NO. 1-84634 will be filed for 60 days, and after that time they will be properly disposed of without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

XENCO operates under the A2LA guidelines. Our Quality System meets ISOIEC Guide 25 requirements which is strictly implemented and enforced through our standard QA/QC procedures.

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Sincerely.

Eddie L. Clemons, II
QAVCC Manager
Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.
Certified and approved by numerous States and Agencies.
A Small Business and Minority Stans Company that delivers SERVICE and QUALITY!

\section*{Laboratory: fenco}

ENMRONMIENAL

\section*{HC}

Office Location Houston PO/SO \#: Project Manager (harles. Fis Sints \(\frac{\text { Samplers gignature }}{}\)
Nortype of Containers

㠫 6 Clatary

> Phone: (281)589-0692
> Address: 11381 Meadcunglentste L Houstow 77082 Contact: Debbie Simmane
\[
2
\]

itl
Project N
USTP

\section*{}
\(21.3440-97\)
Matrix \({ }^{2}\) Date Time
\(512 / 01981350\)
\(512 / 0198: 1340\)
-
Samplers.gignature

\section*{Hold.}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
ProjectiD: 21.3440.97 \\
Project Manager: Charles F. Smith Project Location:
\end{tabular}} & \multicolumn{5}{|l|}{\begin{tabular}{l}
HBC Engineering Inc. \\
Project Name: UST Pull/Memorial Dr.
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
XENCO COC\#: 1-84634 \\
Date Received in Lab: Dec 1, 1998 17:00 by SW xemco contact : Debbie Simmons/Brent Barron
\end{tabular}} \\
\hline & & & & & & \multicolumn{4}{|l|}{Date and Time} \\
\hline Field ID & Lab. ID & \begin{tabular}{l}
Method \\
Name
\end{tabular} & Method ID & Units & Turn Around & Sample Collected & Addition Requested & Extraction & Analysis \\
\hline T-18- 415 & 184634-001 & BTEX & SW.846 & ppm & 48 hours & Dec 1, 1998 13:50 & Dec 4,1998 10:05 & Dec 5, 1998 by RL & Dec 5,1998 16:12 by R1 \\
\hline T-28-1(\(+5^{\prime}\)) & 184634.002 & Bfex & SW-846 & ppm & 48 hours & Dot 6.9998 13:40 & Dec 4, 19988 10:05 & Dec 5, 1998 by RL & Dec 5, 199816.31 by RL \\
\hline
\end{tabular}

\section*{HBC Engineering Inc. \\ Project Name: UST Pull/Memorial Dr.}

Project ID: 21-3440-97
Project Manager:Charles F. Smith
Date Received in Lab: Dec 1.1998 17:00
Date Report Faxed: Dec 7. 1998
xeNco contact : Debbie Simmons/Brent Barron

This report summary, and the entire report it represents, has been made for the exciusive and contidentiat use of HBC Engineering foc.
The interpretations and restalts expressed through this analytical report represent the best judgment of XENCO Laboratories. Xenco Łaboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Certificate Of Quality Control for Batch
م人,
18A29G06

\section*{}

Date Validated: Dec 6, 1998 23:50
Date Analyzed: Dec 5, 1998 10:47

Analyst: RL
Matrix: Solid

Blank Spike Recovery \([E]=100^{*}(B-A) /(C)\)
N.C. = Not caiculated. data below detection timit
V.D. = Below detection limit
all results afe based on MOL and validated for QC purposes onfy

M.S.D. \(=\) Matrix Spike Duplicale
M.S.D. Recovery \(\{A\}=100\) (C-A)/D

All results are based on MDL and validated for QC purposes
HBC Engineering Inc.

\section*{Project Name: UST PulliMemorial Dr.}
xGMCO COC\#: 1-84633
Date Received In Lab: Dec 1.1998 17:00 by SW
zenco contact ; Debbie Simmons/Brent Barron

\section*{Date and Time}
 Dec \(1,199822: 53\) by OR Dec 2, 1998 23:31 by AM Dec 1, 1998 23:11 by OR Dec 3. 1998 00:05 by AM Dec 4, 1998 23:30 by OR
 Dec 3, \(199801: 11\) by AM

\[
\begin{gathered}
\text { HBC Engineering Inc. } \\
\text { Project Name: USTPul/Memorial Dr. }
\end{gathered}
\]
\[
\text { Date Received in Lab: Dec 1. } 1998 \text { 17:00 }
\]
\[
\text { Date Report Faxed: Dec } 3.1998
\]

HBC Engineering Inc.
Project Name: UST Pull/Memorial Dr.

\footnotetext{
Houston - Dolies • Son Antonio
}
This report summary, and the entire repont it represents, has been made for the exclusive and confldential use of HBC Engineering inc..
The imterpretations and results expressed through this analytical report represent the best judgment of XENCO Laboratories.
XENCO Laboratories, however, assumes no responsibility and makes no warranty to the end use of the data hereby presented.
(xamak

\section*{}

Date Validated: Dec 3, 1998 16:00
Analyst: MAB
Matrix: Solid

Blank Spike Recovery \([E]=100^{*}(8-A) /(C)\)
N.C. \(=\) Not catculated, data below detection timit

\section*{1.D. = Below detection limit}

II results are based on MOL and vatidated for QC purposes only

FAFCCManager
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{MATRIX DUPLICATE ANALYSIS} & \multicolumn{5}{|l|}{\(\square\)} \\
\hline \multirow[t]{3}{*}{C.C. Sample 184658m 001} & [A] & & & [D] & & \multirow[t]{4}{*}{\begin{tabular}{l}
[\\
Matrix Splke \\
Result \\
\(\mathrm{mg} / \mathrm{kg}\)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
[G] \\
Matrix \\
Spike \\
Amount \\
\(\mathrm{mg} / \mathrm{kg}\)
\end{tabular}} & \multicolumn{3}{|l|}{[H]} \\
\hline & Sample & Duplicate & & QC & LIMITS & & & \(Q C\) & LIMITS & \\
\hline & Result & Result & Detection & Relative & Relative & & & Matrix Splke & Recovery & Qualifier \\
\hline Parameter & \(\mathrm{mg} / \mathrm{kg}\) & \(\mathrm{mg} / \mathrm{kg}\) & Lim!t \(\mathrm{mg} / \mathrm{kg}\) & \begin{tabular}{l}
Difference \\
\(\%\)
\end{tabular} & Difference \% & & & \begin{tabular}{l}
Recovery \\
\(\%\)
\end{tabular} & Range \% & \\
\hline Arsenic & < 5.00 & \(<5.00\) & 5.00 & N.C & 25.0 & 82.00 & 100 & 82.0 & 70-125 & \\
\hline Barium & 80.8 & 64.0 & 2.5 & 23.2 & 20.0 & 99.4 & 50 & 37.2 & 70-125 & A, B \\
\hline Cadmium & 0.70 & < 0.50 & 0.50 & N.C & 25.0 & 17.50 & 20.0 & 84.0 & 70-125 & \\
\hline Chromium & 13.75 & 6.95 & 2.50 & 65.7 & 25.0 & 46.50 & 50.0 & 65.5 & 70-125 & A,B \\
\hline Lead & 15.00 & 13.70 & 1.00 & 9.1 & 25.0 & 94.95 & 100 & 80.0 & 70-125 & \\
\hline Selenium & \(<5.00\) & < 5.00 & 5.00 & N.C & 25.0 & 84.20 & 100 & 84.2 & 70-125 & \\
\hline Silver & \(<2.50\) & \(<2.50\) & 2.50 & N.C & 25.0 & 9.95 & 50.0 & 19.9 & 70-125 & B \\
\hline
\end{tabular}

\footnotetext{
(A) Presence of a non-homogeneous sample affects duplicate/spike recovery. (B) LCS within acceptance limits.

Relative Difference \([D]=200^{\circ}(B-A) /(B+A)\)
Matrix Spike Recovery \([\mathrm{H}]=100^{\circ}(\mathrm{F}-\mathrm{A}) /[\mathrm{G}]\)
N.C. \(=\) Not calculated, data pelow detection ilmit
N.D. = Below detection limit

All results are based on MDL and validated for QC purposes only
}

\section*{}

Date Validated: Dec 2, 1998 12:40
Analyst: \(O R\)
Matrix: Solid

\section*{H'TEX \\ SWV \(8465030 / 860214 \dot{1}\)}
Analyst: \(O R\)
Matr|x: Solid
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|l|}{MATRIX SPIKE / MATRIX SPIKE DUPLICATE AND RECOVERY} \\
\hline & [A] & [B] & [C] & [0] & [\(]^{\text {] }}\) & Martix & 严 & [ब] & \({ }^{[1]}\) & [1] & [1] \\
\hline & Sample & Matrix Splke & Matrix Splke & erix & & Limis & QC & Qc & QC & Matrix Spike & \\
\hline 184567. 044 & Result & Res & Dupllicate & ike & on & ative & Spike Relative & Matrix Spike & M.S.D. & very & Qualfier \\
\hline Parameter & & & Result & ount & Limit & Difference & Difference & Recover & Recovery & Range & \\
\hline & ppm & ppm & ppm & ppm & ppm & \% & \% & \% & \% & \% & \\
\hline Benzene & <0.050 & 2.545 & 2.545 & 2.000 & 0.050 & 25.0 & 0.0 & 127.3 & 127.3 & \({ }^{65-135}\) & \\
\hline Tolvene & < 0.050 & 2.500 & 2.490 & 2.000 & 0.050 & 25.0 & 0.4 & 125.0 & 124.5 & 65.135 & \\
\hline Ethybenzene & < 0.050 & 2.365 & 2.360 & 2.000 & 0.050 & 25.0 & 0.2 & 118.3 & 118.0 & 65-135 & \\
\hline m, p-Xylyene & <0.100 & 2.645 & 2.630 & 2.000 & 0.100 & 25.0 & 0.6 & 132.3 & 131.5 & 65-135 & \\
\hline o-Xylene & 80.050 & 2.545 & 2.545 & 2.000 & 0.050 & 25.0 & 0.0 & 127.3 & 127.3 & 65-135 & \\
\hline
\end{tabular}
Spike Relative Difference \([F]=200^{*}(B-C) /(B+C)\)
N.D. = Below detection limit or not detected
All results are based on MDL and validated for QC purposes

\section*{}

Date Validated: Dec 3, 1998 09:10
Analyst: AM
Datè Analyzed: Dec 2, 1998 19:09
Matrix: Solid
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multirow{4}{*}{Parameter} & [A] & [B] & [C] & [D] & [E] & [\({ }^{\text {] }}\) & \multirow[t]{4}{*}{[G]} \\
\hline & Blank & Blank Spike & Btank & & Qc & LIMITS & \\
\hline & Result & Result & \begin{tabular}{l}
Spike \\
Amount
\end{tabular} & \begin{tabular}{l}
Detection \\
Uimit
\end{tabular} & \begin{tabular}{l}
Blank Spike \\
Recovery
\end{tabular} & \begin{tabular}{l}
Recovery \\
Range
\end{tabular} & \\
\hline & ppm & ppm & ppm & ppm & \% & \% & \\
\hline C6-C10 & < 50.00 & 859 & 1000 & 50.00 & 85.1 & 70-130 & \\
\hline >C10-C28 & < 50.00 & 899 & 3000 & 50.00 & 89.9 & 70-430 & \\
\hline
\end{tabular}

Blank Spike Recovery \([\mathrm{E}]=100^{\circ}(\mathrm{B}-\mathrm{A}) /(\mathrm{C})\)
N.C. = Not calcuiated, data below detection limit
N.D. \(=\) Below detection fimit

All results are based on MDL and validated for OC purposes only

TX 1005 TPPII (Texas 1005)

\section*{Matrix: Solid}

\title{
TEXAS COMMISSION ON ENVIRONMENTAL QUALITY
}

Protecting Texas by Reducing and Preventing Polhtion
July 25, 2014

Mr. Dan Moody, III
WB Holding Corporation
3003 West Alabama
Houston, Texas 77027-9008
Re: ... A-1 Cleaners, 12754 Memorial Drive, Houston, Harris County, Texas; Voluntary Cleanup Program (VCP) No. 1621; RN100459127; CN601253842

Dear Mr. Moody:
The VCP of the Texas Commission on Environmental Quality (TCEQ) has reviewed the has received and reviewed the Annual Groundwater Monitoring Report dated February 27, 2014, prepared by Westcon Solutions. This report documents the monitoring of the contaminant plume of chlorinated volatile organic compounds (VOCs) related to uses of the property as a dry cleaning facility. After careful review of the report, the TCEQ has determined that the report contains the necessary information for an annual groundwater monitoring report (AGWMR). Please note the following Comments.
1. Change of Project Manager. Previously, Christine Whitney managed your project. I, Alayna Goetsch, am the new project manager for VCP 1621. You will not be charged for any time spent reviewing previously submitted documentation necessary for me to become familiar with the project.
2. Documented events at the facility during 2013.
a. Semi-annual monitoring of 9 groundwater monitoring wells;
b. The quarterly monitoring of groundwater from 3 monitoring wells;
c. The groundwater recovery system activities and repairs from one extraction well at MW-119;
3. Clarification of which Standard the Cleanup is Under. The current submittal indicated that the program entered the Texas Risk Reduction Program (TRRP) and is operating under Risk Reduction Standard 2. However, historical information suggests that the site is under Risk Reduction Standard 3, to ensure closing under the same standards as VCP 152 Town and Country Village. Please clarify which rules are applicable to the site.
4. Continuing Constituents of Concern (COC). Tetrachloroethlyene and its degradation products of 1,2 -cis-dichloroethene, trichloroethylene, and vinyl chloride were found in multiple wells across the site. Many of these constituents were above their respective media specific concentrations (MSC).

Mr. Dan Moody III
Page 2
July 25, 2014
VCP No. 1621

a. Tetrachloroethlyene was above its MSC of \(0.005 \mathrm{mg} / \mathrm{L}\) in groundwater at monitoring wells MW-116, MW-117, MW-118, MW-120, MW-121, and MW-127. MW- 120 is a well located off-site in a residential neighborhood and exceeded its MSC for the first time since 2003 during the November 2013 event.
b. Trichloroethylene was reported above its MSC of \(0.005 \mathrm{mg} / \mathrm{L}\) in MW-1, MW-117, MW-118, MW-122, and MW-127. Please note, the chemical approached near its MSC in MW-120.
c. The degradation product of 1,2-cis-dichloroethene was found above its MSC of \(0.070 \mathrm{mg} / \mathrm{L}\) at groundwater monitoring wells MW-1, MW-117, and MW127.
d. Vinyl chloride was reported at concentrations above its MSC of \(0.002 \mathrm{mg} / \mathrm{L}\) in MW-1, MW-115, MW-116, MW-117, MW-118, MW-119, and MW-127.
5. Schedule Change of monitoring for MW-120. The 2013 groundwater report recommended sampling MW- 120 on a quarterly basis. The report indicated that additional delineation may be warranted. The TCEQ supports this requested changed.

Currently, the TCEQ has no objections to your plans to continue the operation of the remediation system and monitoring program as proposed for 2014. The TCEQ concurs with your recommendations for the groundwater treatment system and the groundwater-monitoring program. Please note that if groundwater concentrations are indicative of plume growth, additional downgradient delineation may be necessary.

Please submit the next Annual Report no later than August 1, 2015. Please continue to reference VCP No. 1621 on the front of any future letters or reports. Future submittals should be mailed to my attention at the TCEQ, mail code MC 221, at the letterhead address. You may contact me at (512) 239-2236.

Sincerely,

Voluntary Cleanup Program/ Corrective Action Section
Remediation Division
Texas Commission on Environmental Quality
AMG/jdm
cc: Mr. Blake A. Dinwiddie, Weston Solutions, Inc., Houston
Mr. Larry W. Nettles, Vinson \& Elkins, LLP, 2300 First City Tower 1001 Fannin Street, Houston, TX 77002
Mr. Jason Ybarra, TCEQ Waste Section Manager, Region 12 Office, Houston

\section*{Texas natural Resource Conservation Commission \\ Protecting Texas by Reducing and Preventing Pollution}

Mr. Alan Shelby
1800 Bering, Suite 495
Housion, Texas 77057

Re: File Review For Closure of Subsuface Release of Hydrocarbons at the A-1 Cleaners Facility at 12754 Memorial Drive. Houston (Harris County). Texas
(LPST ID No. 113777-Facility ID No, 61076 - Priority 4.2)
Dear Mr. Shelby:
This letter confms the completion of corrective action requirments for the release incident at the abovereferenced facility. Although some contaminant concentrations exceed Plan A Target screening levels, the following criteria were used as fustification for site closure:
\(\because\) The site is \(100 \%\) paved.
- . There was no PSH encountered during the tank pull operation.
- \(\because\) Groundwater was not encountered during the tank pull operationt.
- The only soil contamination of concem was benzene at 13 feet in the tank pit at 1.05 ppm . At 15 feet the benzene concentration was less than .05 ppm .

Based upon the submitted information and with the provision that the documentation provided to this agency was accurate and representative of site conditions, we accept your conclusion and recommendation that the site has met closure requirements. No further corrective action will be necessary. For any subsequent release from an underground or aboveground storage tank at this site, the deductible will be increased in accordance with Section 26.132 of the Texas Water Code. Please note that financial assurance must be maintained for all operational storage tanks at his site. Please be aware that case closure is based on identified exposure pathways and that any remaining contaminant levels and potential exposure pathways should be evaluated when conducting any future soil excavation or construction activities at this sitc. Please ensure that any wastes generated from these activities are handled in compliance with all applicable regulations.

If any monitor well plugging or other necessary site esstoration activities will be performed to complete site closure, complete a Final Site Closure Repont and submit the report to both the local TNRCC Regional Field Offce and the Central Office in Austin to document actual site closure. For sites cligible for reimbursement through the Petroleum Storage Tank Remediation Fund, writen preapproval should be obtained prior to

Mr. Selby
Page 2
initiation of site closure activities. Reimbursement elams for activities that are not preapproved will not be pad until all clams for preapproved work are processed and paid.

Please note that the Final Site Closure Report, if necessary, will be the last submital associated with this case. This letter signifies the completion of corrective action associated with the release. No subsequent INRCC correspondenee will be issued in response to the Final Site Clostre Report.

Please note that all correspondence must include the LPST and Facility ID Numbers and must be submitted to both the local TNRCC Regional Field Onfee and to the Central Office in Austin. Should you have any questions, please contact Mr. Dennis Rogers at \(512 / 239-2200\). Please reference the LPSTID Number when making inquiries. Your cooperation in this matter has been appreciated.

DRR/mel
\(113777 . \mathrm{fnn}\)
cc: Marsha Hill, TNRCC Region 12 Field Office, 713/767-3500
(5425 Polk St., Ste. H, Houston, TX 77023-1486)

\section*{1．GENERAL INFORMATION}

LPST D No．：＿113777
Facility ID No．： 0061076
Responsible Party：Estate of Alta Enstein
Responsible Party Address： 1800 Bering，Suite 495 City：Houston State：＿TX Zip：77057
Facility Name：A－I Cleaners
Facility Street Address： 12754 Memorial Drive
Facility City：Houston．

\section*{County：Haris}

What is the current use of site？（indicate all that apply）：

What is the anticipated future use of the site？（indicate all that apply）：
\(\square\) Residence \(^{1}\) Q School or Day Care center 園 Commercial／Industrial \({ }^{1}\) ㅁ Recreational Agricultural
Adjacent property use（indicate all that apply）：

Distance to nearest off－site residence from property line： 20 ＿＿＿feet in east direction．
Distance to nearest school or day care center from property line： 1,500 feet in morth direction．

\section*{II．CLOSURE SCREENING INFORMATION}

Based on the Limited Site Assessment Report form or the Risk－Based Assessment Report Form（TNRCC－0562），the site is currently a Priority＿4．2 site．If the site priority has changed，list the other priorities that previously pertained to this site：
－Yes 瞇 No Have non－aqueous phase liquids（NAPL）ever been present at this site（including tankpit observation wells）？If yes，is NAPL present now（thickness \(\geq 0.1\) feet）？\(\square\) Yes \(\square\) No Current thickness： \(\qquad\)效． If NAPL is currently present，stop here and do not submit this form for case closure．Initiate or continue activities necessary for the removal of all recoverable NAPL at the site．

Yes Do Were all soils，recovered contaminated groundwater，and any plase－separated hydrocarbons properly disposed of，treated，recycled or reused in accordance with TNRCC requirements？If No，stop here and do not submit this form．Provide a proposal（if the site is eligble for reimbursement）to properly dispose or otherwise manage the wastes／materials or，if the site is not eligible for reimbursement，provide documentation of proper disposition of the wastes．

硻 Yes D No ：．．．Do contaminant concentrations show a consistent decreasing or low staic trend？If No，is the contaminant plume increasing in size？Y Yes \(\square\) No．If Yes，stop here，do not submit this form，and initiate activities to control plume migration，

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{II. RELEASE ABATEMENT/REMEDIATION (Contimued)} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Type(s) of groundwater remediation and time periods the remediation method was operational (indicate atl hat apply): \\
0 Groundwater Pump and Treat \(\qquad\) to. \(\qquad\) (dates) \\
O Air Sparging/SVE \(\qquad\) to. \(\qquad\) (dates) \\
- m -Situ Bioremediation \(\qquad\) to. \(\qquad\) (dates) \\
Other: \(\qquad\)
\(\qquad\) to \(\qquad\) (dates) \\
四 None
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\(\square\) Yes \(\square\) No Were copies of all receipts and manifests to document disposition of all wastes submitted to the TNRCC? If No, attach copies to this form.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Measured total volume of NAPL recovered: \(\qquad\) gallons. \\
Estimated total volume of soil treated/removed: \(\qquad\) 0 cubic yards (exclude soil cutings removed from borings).
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Estimated total volume of groundwater treated/removed: __ O__ gallons (if known).} \\
\hline \multicolumn{3}{|l|}{Estimated pounds of hydrocarbons removed or treated from soil (if known):} \\
\hline \multicolumn{3}{|l|}{Estimated pounds of hydrocarbons removed or treated from groundwater (if known):} \\
\hline \multicolumn{3}{|l|}{Estimated percent of total contaminants removed or treated (if known): 0} \\
\hline
\end{tabular}

\section*{IV．SOIL DATA VALIDATION}

Are there now affected surface soils（contamination exceeding heath－based target concentrations）present within 2 feet below the ground surface？ \(\qquad\) Yes 题 No \(\square\) Unknown
Type of surface cover over affected surface soil area：
\(\square\) Paved［ Asphalt or C Concrete］Percent of affected soils covered？．．．．． 100 Unpaved O Other：
\(\qquad\)
Is there public access to the uncovered affected surface soil area？प Yes 䍉 No
Total number of borings： \(\qquad\) （including those completed as monitor wells）
\(\square\) Yes \(\square\) No Was the vertical and horizontal extent of soil impacts defined（to the more stringent of health－based target or groundwater protective soil concentrations horizontally and to groundwater or nondetect vertically）by the borings？
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
DYes DNo \\
茛Yes O No
\end{tabular} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Are shallow（ \(0-15\) feet below ground surface）soils affected（contaminant levels exceed heath－based target concentrations）on adjacent properties（including right－of－way properties）． \\
Were all soil sample collection，handling，transport，and analytical procedures conducted in accordance with TNRCC and EPA requirements？If No，provide justification：
\end{tabular}} \\
\hline \multicolumn{7}{|c|}{MAXIMUM SOIL CONCENTRATION LEVELS} \\
\hline \begin{tabular}{l}
Soil \\
Contaminants
\end{tabular} & \begin{tabular}{l}
Sample \\
Date
\end{tabular} & \begin{tabular}{l}
Sample \\
Location
\end{tabular} & \begin{tabular}{l}
Depth \\
（in feet \\
below \\
ground \\
surface）
\end{tabular} & Analytical Method & Maximum Concentration＊ （ \(\mathrm{mg} / \mathrm{kg}\) ） & Target Cleanup Goals＊＊ （indicate source of target cleanup goals： 1990 or 1994 ［Plan A or B ］guidance） \\
\hline Benzene & 12／01／98 & T－1B & 13 & 8020 & 1.05 & Plan A Cat II（ \(0.74 \mathrm{mg} / \mathrm{kg}\) ） \\
\hline Toluene & 12／01／98 & T－1B & 1.3 & 8020 & 1.09 & Plan A Cat II（ \(503 \mathrm{mg} / \mathrm{kg}\) ） \\
\hline Ethylbenzene & 12／01／98 & T－1B & 1.3 & 8020 & 2.77 & Plan A Cat II（ \(83.5 \mathrm{mg} / \mathrm{kg}\) ） \\
\hline Total Xylenes & 12／01／98 & T－1B & 13 & 8020 & 4.46 & Plan A Cat II（ \(968{ }^{\text {b }}\) mg／kg \\
\hline Total BTEX & 12／01／98 & T－1B & 1.3 & 8020 & 9.37 & \\
\hline TPH & 12／01／98 & T－IB & 13 & 1005 & \(<50.0\) & \\
\hline Other Total lead & 07／02／98 & T－IB & 13 & 6010 & 5.3 & \\
\hline Other & & & & & & \\
\hline
\end{tabular}
＊．．．．．Enter maximum soil analytical results for soils remaining beneath the site（take into account all available data，including information obtained during the release determination（tank removal from service，minimal site assessment，etc））．
＊＊．．．If Plan A cleanup goals were used，provide the potential gromdwater beneficial use category and a justification of how it was determined in Section VI．
1990 cleanup goals may be used only if all activites necessary to meet those goats were completel by Novenber \(8,1995\).

\section*{V. GROUNDWATER DATA VALIDATION}

Is groundwater at the site impacted? Y Yes \(\square\) No
Did the assessment document that groundwater was not impacted? 号 Yes 臨 No if No or unsure, provide justification for not determining whether there is a groundwater impact: The maximum hydrocarbon concentrations in the soil samples collected at a depth of 15 feet from the base of excavation were below action levels and/or below the laboratory equipment detection limits, and no groundwater was encountered in the excayation.

Total number of monitoring wells installed: \(\qquad\) 0 Number of monitor wells remaining at the site: \(\qquad\) 0 Will any of the remaining wells be used in the future? DYes I No If Yes, specify exactly which well(s) will be used:

If No, they must be plugged in accordance with 30 TAC Chapter 338 after obtaining approval for site closure. Do not plug the wells until you receive concurrence on site closure. Costs of well plugging may be allowable for reimbursement if all eligibility requirements are met and if the wells were installed under the direction of the TNRCC specifically to address the confirmed release at the site. Provide a proposal with this form (if the site is eligible for reimbursement) for costs of the well plugging.

Measured total dissolved solids (TDS) concentration in groundwater: \(\qquad\) NA mg/l. From which monitor well(s) was/were the sample(s) collected?

Measured groundwater yield at the site: ___ NA ___ gallons/day (as determined from well adequately screened in the impacted aquifer). a Not determined.

Measured groundwater depth at the site ranges betwecn __NA and \(\qquad\) fect below the top of well casing.

Time period of groundwater monitoring at the site (dates): \(\qquad\) to \(\qquad\) . Total number of groundwater monitoring events: \(\qquad\) 0

What type of aquifer is impacted? (unconfined, confined, semi-contined):
Distance from maximum plume concentration point to nearest existing downgradient well location (not monitor well):
\(\qquad\) ft. in \(\qquad\) direction (Input " \(>0.5\) mile" if there is no well within 0.5 mile downgradient)

Are any water supply wells impacted or immediately threatened? Yes No If Yes, specify type of well: Drinking water \(\square\) Non-drinking water

Are there any existing water wells located within the area of impacted groundwater? \(\square\) Yes No
If Yes, specify type of well: D Drinking water \(\square\) Non-drinking water
Has surface water been alfected? Yes O No
Will the groundwater contaminants likely discharge to a surface water body? \(\square\) Yes \(\square\) No
What is the potential impact of affected groundwater discharge on surface water?
0 Current impact \(\square\) Discharges wíhin 500 ft . \(\square\) Discharges within 500 to 0.25 miles
- No potential impact

Y Yes \(\square\) No Were groundwater sample collection, handing, transport, and analytical procedures conduceed and documented in accordance with TNRCC reguirements? If no, provide justification:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{V. GROUNDWATER DATA VALIDATION (Continued)} \\
\hline \[
\int \begin{array}{ll}
\square \text { Yes } \square \text { No } & \text { Is th } \\
& \text { for }
\end{array}
\] & \multicolumn{5}{|l|}{Is the extent of groundwater contamination defined (to MCL concentrations)? If No, provide justification for not defining the plume: NA \(\qquad\)} \\
\hline \[
\begin{array}{|lll}
\square \text { Yes DNo } & \text { Hav } \\
& \cdots \text { mig } \\
& \ddots & \text { resu }
\end{array}
\] & \multicolumn{5}{|l|}{Have groundwater impacts from this release been detected on adjacent properties? If No, is off-site migration probable? ㅁ Yes \(\square\) No is there documentation that off-site migration has not occurred (sample results from off-site sampling point)? प Yes No} \\
\hline ロYes D No \(\begin{array}{rr} & \ddots \text { Was } \\ & \ddots \text { last }\end{array}\) & \multicolumn{5}{|l|}{Was the static groundwater level above the top of the well screen in any monitor wells during any of the last 4 monitoring events? If Yes, provide a statement of validity regarding these samples:} \\
\hline - Yes No \(\begin{gathered}\text { Hav } \\ \text { samp }\end{gathered}\) & \multicolumn{5}{|l|}{Have groundwater samples from all monitor wells met the target cleanup goals for the last four consecutive sampling events?} \\
\hline \multicolumn{6}{|c|}{MAXIMUM GROUNDWATER CONCENTRATIONS} \\
\hline Groundwater Contaminants & Sample Date & \begin{tabular}{l}
Sample \\
Location
\end{tabular} & Laboratory Method & \[
\begin{gathered}
\text { Maximum } \\
\text { Concentration** } \\
\text { (mg/l) }
\end{gathered}
\] & Target Cleanup Goals** (indicate source of target cleanup goals: 1990 or 1994 [Plan A or B] guidance) \\
\hline Benzene & & & & & \\
\hline \multicolumn{6}{|l|}{Toluene} \\
\hline \multicolumn{6}{|l|}{Ethylbenzene} \\
\hline \multicolumn{6}{|l|}{Total Xylenes} \\
\hline \multicolumn{6}{|l|}{Total BTEX} \\
\hline \multicolumn{6}{|l|}{TPH} \\
\hline \multicolumn{6}{|l|}{Other} \\
\hline Other & & & & & \\
\hline
\end{tabular}
* Enter maximum groundwater analytical results from the most recent 12 months of monitoring.
** 1990 cleanup goals may be used only if all activities necessary to meet those goals were completed by November \(8,1995\).

\section*{VI. JUSTIFICATION FOR CLOSURE}

Please provide a brief summary supporting this request for site closure, including footnoted discussions tor the above entries as necessary. Include discussions providing necessary justifications for any site conditions which deviate from the specific requirements of TNRCC rules and poliches, including the document Risk-Based Corrective Action for Leaking Storage Tank Sites. Provide documentation to justify case closure, including information which addresses the potential for future exposure, the existence of impervious cover or other actions which may prevent exposure or limit infiltation, the absence of receptors, etc.

Groundwater was not encountered during the UST removal activities. During the tank removal activities on Decemberl. 1998, discrete soil samples were collected from beneath the USTs and from the sidewalls of the excavation. The results of the laboratory analyses indicated that the BTEX and TPH concentrations exhibited by the discrete soil samples collected from the north, east, south and west walls of the tank hold (NSW-1. ESW-1. SSW-1, and WSW-1) and TPH concentrations exhibited by the discrete soil samples collected from the bottom of the tank hold were below the appropriate LPST Action Levels defined by the TNRCC and/or below the laboratory equipment detection limits. The results of the analyses indicated that the benzene (\(1.05 \mathrm{mg} / \mathrm{kg}\)) and (\(0.78 \mathrm{mg} / \mathrm{kg}\)) concentrations exlibited by the discrete soil samples (\(T\) - 1 B and \(\mathrm{T}-2 \mathrm{~B}\)) respectively, collected at a depth of 13 feet from the bottom of the tank hold exceeded the TNRCC LPST Action Levels for this compound in fine-grained soils, On Decenber 1. 1998, two additional samples (confirmation samples) were collected at a depth of 15 feet from the bottom of the tank hold (T-1B-15' and T-2B-15') approximately 2 feet beyond the bottom of the tank hold from the original T-IB and T-2B locations. The results of the additional sampling and analysis indicated that the BTEX concentrations exhibited by the discrete (confirmation) soil samples T-1B-15' and T-2B-15' were helow the appropriate LPST Action Levels defined by the TNRCC and/or below the laboratory equipment detection limits. Thees stockpile soil samples (SPC-1, SPC-2 and SPC-3) were collected. The results of the analyses indicated that the tolal \(\mathrm{TPH}(\mathrm{G})\) and \(\mathrm{TPH}(\mathrm{D})\) concentration exhibited by the stockpile soil samples \(\mathrm{SPC}-1, \mathrm{SPC}-2\) and \(\mathrm{SPC}-3\) were below the laboratory equipment detection limits and/or the INRCC. Standard 4 levels (\(1000 \mathrm{mg} / \mathrm{kg}\)) for this compound, Based on the field evidence the tank hold was hackfilled with previously excavated materias and imported fill and the entire area covering the tank hold was replaced with asphalt. Mr. Ken Ausbie with the TNRCC Region 12 Office was notified and concurred that the next appropriate step for the site would be submittal of a Request for Site Closure

\section*{VII. REPORT PREPARATION}

Based on the results of the site investigation and the additional information presented herein, I certify that the site investigation activities performed either by ne, or under my direct supervision, including subenmracted work, were conducted in accordance with accepted industry standards/practices and further, that all such tasks were conducted in compliance with applicable TNRCC published ruics, guidelines and the laws of the State of Texas. I have reviewed the information included within this report, and consider it to be complete, accurate and representative of he conditions discovered during the site investigation. I acknowledge that if I intentionally or knowingly make false statements, representations, or certifications in this report, I may be subject 10 administrative, civil, and/or criminal penalties. I certify that the site has met all requirements for closure and that closure is appropriate.

Project Manager: Thomas R, Martens
CAPM No.: 01150. Expiration date: \(12 / 13 / 99\)
Company: HBC Engineering, Inc.
Address:2313 W. Sam Houston Pkwy. N. Ste. 107 City: Houston State: TX Zip:77043
Telephone No.: (713)722-0700
Fax No.: (713) 722-0788
Signature:

By my signature affixed below, I certify that I am the duly authorized representative of the Correction Action Specialise maned and that have personally reviewed the site investigation results and other relevant information presented herein and considered them to be in accordance with accepted standards/practices and in compliance with the applicable TNRCC published rules, guidelines and the laws of the State of Texas. Further, that the information presented herein is considered complete, accurate and representative of the conditions discovered during the site investigation. I acknowledge that if I intentionally or knowingly make false statements, representations, or certifications in this report, I may be subject 10 administrative, civil, and/or criminal penalties. I certify that the site has met all requirements for closure and that closure is appropriate.

Corrective Action Specialist: Richard M. Pollard
CAS No.: 00387 Expiration date: \(\qquad\)
Company:_HBC Engineering, Inc,
Address: 2313 W. Sam Houston Pkwy, N, Ste. 107 City: Houston State: TX Zip: 77043
Telephone No.:_(713) 722-0700_ _Fax__ No._(713) 722.0788
Signature:
By my signature affixed below, I certify dan I have reviewed this report for accuracy and completeness of information regarding points of contact and the facility and storage tank system history and status. I acknowledge that if Intentionally or knowingly unmake false statements, representations, or certifications in tui report related to the contact information, and the facility and storage tank system history and status information, I may be subject to administrative, civil, and/or criminal penalties. I attest that I have reviewed this report for accuracy and completeness. I understand that \(l\) ana responsible for addressing this matter.
I certify that the site has met all requirements for closure and that closure is appropriate.
Name of Responsible Party contact: Sh Hutchison, Guardian for the Estate of Alta Epstein

Fax No.:_(713)
Date: \(10-16-98\)

\section*{The fol lo wing rems must be submitted with This form if not previously submitted:}
- A site map illustrating the locations of the entire UST and/or AST system (including piping, dispensers, observation wells, etc.), all soil borings and monitoring wells and all other sampling points, subsurface utilities, and surface water within 500 feet.
- A copy of the latest groundwater gradient map (if monitor wells were completed).
- Summary tables of all soil, groundwater and surface water analytical results, including samples collected from any tank removal from service activities, tank system repair activities, and those collected from brings and monitor wells. The tables must clearly identify the sample number, date of collection, sampling locations, depths (if applicable), and analytical results.
- Copies of any manifests or other waste receipts, and any oh er documents necessary for case closure.

\title{
PHASE I ENVIRONMENTAL SITE ASSESSMENT TIRZ 17 RECONSTRUCTION OF MEMORIAL DRIVE BETWEEN WEST SAM HOUSTON PARKWAY AND TALLOWOOD ROAD HOUSTON, TEXAS
}

Volume 2 of 2

Prepared for:
Lockwood, Andrews, and Newnam, Inc.
2925 Briarpark Drive, Suite 400
Houston, Texas 77042

\section*{Prepared by}

Aviles Engineering Corporation 5790 Windfern Road
Houston, Texas 77041
Phone: (713) 895-7645
Fax: (713) 895-7943
AEC Project No. E112-14
Date: April 22, 2015

\section*{Page 1 of 2}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5400727 & 12/05/1997 & INCOMING & PROP ACT12 & & & 12/23/1997 & 11/29/1997 & \\
\hline 5400728 & 12/05/1997 & INCOMING & PROP ACT13 & & & 12/23/1997 & 11/29/1997 & \\
\hline 5517982 & 10/02/1997 & OUTGOING & NLR & & & 10/02/1997 & 10/02/1997 & \\
\hline 5517983 & 10/02/1997 & OUTGOING & RR - CAR & & & 10/02/1997 & 10/02/1997 & \\
\hline 5517984 & 10/02/1997 & OUTGOING & RR - CAR & & & 10/02/1997 & 10/02/1997 & \\
\hline 5517985 & 10/02/1997 & OUTGOING & RR - CAR & & & 10/02/1997 & 10/02/1997 & \\
\hline 5517986 & 10/02/1997 & OUTGOING & NLR & & & 10/02/1997 & 10/02/1997 & \\
\hline 5400721 & 09/10/1997 & InCOMING & RBA & & & 10/02/1997 & 09/08/1997 & \\
\hline 5400722 & 09/10/1997 & INCOMING & PROP ACT 9 & & & 10/02/1997 & 09/05/1997 & \\
\hline 5400723 & 09/10/1997 & INCOMING & OTHER & & & 10/02/1997 & 09/04/1997 & \\
\hline 5400720 & 09/08/1997 & INCOMING & PROP ACT 6 & & & 10/02/1997 & 09/02/1997 & \\
\hline 5400719 & 09/04/1997 & INCOMING & MPR & & & 10/02/1997 & 08/14/1997 & \\
\hline 5517976 & 09/03/1997 & OUTGOING & NLR & & & 09/03/1997 & 09/03/1997 & \\
\hline 5517977 & 09/03/1997 & OUTGOING & NLR & & & 09/03/1997 & 09/03/1997 & \\
\hline 5517978 & 09/03/1997 & OUTGOING & RR - CAR & & & 09/03/1997 & 09/03/1997 & \\
\hline 5517979 & 09/03/1997 & OUTGOING & RR - CAR & & & 09/03/1997 & 09/03/1997 & \\
\hline 5517980 & 09/03/1997 & OUTGOING & RR - CAR & & & 09/03/1997 & 09/03/1997 & \\
\hline 5517981 & 09/03/1997 & OUTGOING & REJ TECH & & & 09/03/1997 & 09/03/1997 & \\
\hline 5400718 & 08/04/1997 & INCOMING & PROP ACT12 & & & 09/03/1997 & 07/29/1997 & \\
\hline 5400714 & 07/24/1997 & INCOMING & MONIT ANNL & & & 09/03/1997 & 07/11/1997 & \\
\hline 5400715 & 07/24/1997 & INCOMING & FAR & & & 09/03/1997 & 07/18/1997 & \\
\hline 5400716 & 07/24/1997 & INCOMING & PROP ACT 8 & & & 09/03/1997 & 07/18/1997 & \\
\hline 5400717 & 07/24/1997 & INCOMING & PROP ACT 15 & & & 09/03/1997 & 07/18/1997 & \\
\hline 5400713 & 06/30/1997 & INCOMING & TECH RESP & & & 09/03/1997 & 06/26/1997 & \\
\hline 5517969 & 06/27/1997 & OUTGOING & RR - CAR & & & 06/27/1997 & 06/27/1997 & \\
\hline 5517975 & 06/23/1997 & OUTGOING & RR - CAR & & & 06/23/1997 & 06/23/1997 & \\
\hline 5400712 & 06/13/1997 & INCOMING & PROP ACT 5 & & & 06/23/1997 & 06/10/1997 & \\
\hline 5517973 & 06/06/1997 & OUTGOING & REJ TECH & & & 06/06/1997 & 06/06/1997 & \\
\hline 5517974 & 06/06/1997 & OUTGOING & REJ TECH & & & 06/06/1997 & 06/06/1997 & \\
\hline 5400711 & 05/16/1997 & INCOMING & PROP ACT 5 & & & 06/06/1997 & 05/12/1997 & \\
\hline 5400710 & 05/14/1997 & INCOMING & PROP ACT 6 & & & 06/06/1997 & 05/12/1997 & \\
\hline 5517970 & 04/09/1997 & OUTGOING & REI TECH & & & 04/09/1997 & 04/09/1997 & \\
\hline 5517971 & 04/09/1997 & OUTGOING & NLR & & & 04/09/1997 & 04/09/1997 & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5400685 & 06/09/1995 & INCOMING & LSA & & 07/17/1995 & 07/20/1994 & \\
\hline 5400686 & 06/09/1995 & INCOMING & PROP ACT19 & & 07/17/1995 & 05/22/1995 & \\
\hline 5400687 & 06/09/1995 & INCOMING & PROP ACT 8 & & 06/12/1995 & 05/08/1995 & \\
\hline 5400673 & 07/26/1994 & INCOMING & MONIT ANNL & & 02/03/2005 & & \\
\hline 5400671 & 07/12/1994 & INCOMING & MPR & & 02/03/2005 & & \\
\hline 5400672 & 07/12/1994 & INCOMING & MPR & & 02/03/2005 & & \\
\hline 5400670 & 03/04/1994 & INCOMING & MPR & & 02/03/2005 & & \\
\hline 5400669 & 02/01/1994 & INCOMIAG & MPR & & 02/03/2005 & & \\
\hline 5517915 & 01/14/1994 & OUTGOING & RR & & 01/14/1994 & 01/14/1994 & \\
\hline 5517916 & 01/14/1994 & OUTGOING & RR & & 01/14/1994 & 01/14/1994 & \\
\hline 5517923 & 01/14/1994 & OUTGOING & RR & & 01/14/1994 & 01/14/1994 & \\
\hline 5517927 & 01/14/1994 & OUTGOING & RR & & 01/14/1994 & 01/14/1994 & \\
\hline 5517928 & 01/14/1994 & OUTGOING & RR & & 01/14/1994 & 01/14/1994 & \\
\hline 5517930 & 01/14/1994 & OUTGOING & RR & & 01/14/1994 & 01/14/1994 & \\
\hline 5517931 & 01/14/1994 & OUTGOING & RR & & 01/14/1994 & 01/14/1994 & \\
\hline 5517925 & 01/12/1994 & OUTGOING & NL.R & & 01/12/1994 & 01/12/1994 & \\
\hline 5517926 & 01/12/1994 & OUTGOING & NLR & & 01/12/1994 & 01/12/1994 & \\
\hline 5400668 & 01/03/1994 & INCOM1NG & MPR & & 01/24/1994 & & \\
\hline 5400667 & 12/16/1993 & INCOM1NG & MPR & & 01/14/1994 & & \\
\hline 5517929 & 09/27/1993 & OUTGOING & PREAPP DOC & & 09/27/1993 & 09/27/1993 & \\
\hline 5400666 & 07/23/1993 & INCOM1NG & MES & & 01/14/1994 & & \\
\hline 5400665 & 05/06/1993 & INCOM1NG & MES & & 01/14/1994 & & \\
\hline 5400663 & 04/06/1993 & INCOM1NG & CONTINUE-Y & & 01/12/1994 & & \\
\hline 5400664 & 04/06/1993 & INCOM1NG & QUEST & & 01/12/1994 & & \\
\hline 5517924 & 03/02/1993 & OUTGO1NG & ACTN RQST & & 03/02/1993 & 03/02/1993 & \\
\hline 5400662 & 02/05/1993 & INCOMING & QTR MONIT & & 01/14/1994 & & \\
\hline 5517922 & 12/28/1992 & OUTGOING & CLARIFY1-6 & & 12/28/1992 & 12/28/1992 & \\
\hline 5517921 & 11/09/1992 & OUTGOING & NLR & & 11/09/1992 & 11/09/1992 & \\
\hline 5400661 & 11/04/1992 & INCOM1NG & PHASE2RPT & & 11/09/1992 & & \\
\hline 5517920 & 10/23/1992 & OUTGOING & STOP 5 AND 6 & & 10/23/1992 & 10/23/1992 & \\
\hline 5400660 & 10/20/1992 & INCOMING & PHASE1RPT & & 10/20/1992 & & \\
\hline 5517918 & 10/20/1992 & OUTGO1NG & OTHER & & 10/20/1992 & 10/20/1992 & \\
\hline 5517919 & 10/20/1992 & OUTGOING & REFERRAL & & 10/20/1992 & 10/20/1992 & \\
\hline & & & & & & & \\
\hline
\end{tabular}
Page 8 of 8

\title{
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION PETROLEUM STORAGE TANK DIVISION CORRESPONDENCE IDENTIFICATION SHEET
}

Date：
Site Name： Site Address：

August 28.2007
Fomer Conocolhillips Store \＃43059 12699 Memorial Drive Houston，Texas

LPST ID No．：\(\quad 104023\)
Facility ID No．： 0014936

This checklist must acconpany all concspondence sabmited to the RPR Section and should be affixed to the front of your submittal as a cover page．Please check the appropriate box for the type of correspondence which you have subnitted to the RPR Section．Check all boxes that apply if you are submitting more than one type of cortespondence．If you cannot find an appropriate catcgory，please contiple he＂other＂section．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\(\hat{4}\)} & \multicolumn{3}{|c|}{PROPOSALS} & \\
\hline \(\square\) & Initial Abatement（ \({ }^{\text {a }}\) & \(\square\) & Tank Removal（2） & \(\square\) & Excavation（3） \\
\hline \(\square\) & Waste Treatment（4） & 口 & Site Assessment（5） & 口 & Aquifer Testing（6） \\
\hline \(\square\) & VES／Sparge Testing（7） & － & Qtrly．GW Monitoring（8） & \(\square\) & CAP Prep．（9） \\
\hline 口 & GW Extrac／Treatment（10） & － & Soil Vapor Extrac．（11） & \(\square\) & Operation \＆Main．（12） \\
\hline 口 & Site Closure（13） & \(\square\) & Plan A Risk Ass．（14） & \(\square\) & Plan B Risk Ass．（15） \\
\hline ロ & Semi－annual GW Mon．（16）＊ & ロ & Anmual GW Mon．（18） & \(\square\) & Product Recovery（19） \\
\hline \(\square\) & Other proposal & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{REPORTING FORMS} \\
\hline － & Assessment Report Form（TNRCC－0562） & \(\square\) LPST Case Questionaire \\
\hline \(\square\) & Product Recovery Report Form（TNRCC－0016） & \(\square\) Release Report Form（TNRCC－0621） \\
\hline － & Site Closure Request Form（TNRCC－0028） & \(\square\) Monitoring Event Summary and Status Report（TNRCC－0013） \\
\hline 䜿 & Final Site Closure Report Form（TNRCC－0030） & \(\square\) Priority 4 LPST Case Closure Request Form（TNRCC－0461） \\
\hline \(\square\) & Other form ． & \\
\hline
\end{tabular}
\begin{tabular}{|lllll|}
\hline & & \multicolumn{4}{c|}{} & REPORTS & \\
\hline\(\square\) & Tank Closure／Removal & \(\square\) & Plan A Risk Assessinent & \(\square\) Annual Groundwater Monitoring \\
\(\square\) & O\＆M／Performance Mon． & \(\square\) & Plan B Risk Assessment & \(\square\) CAP Installation／Modification \\
\(\square\) & Property Divestiture／Phase 1 ESA & \(\square\) & Corrective Action Plan（CAP） & \(\square\) Aquifer／Pilot Test Resuits \\
\hline
\end{tabular}

\section*{MISCELLANEOUS}
\begin{tabular}{lllll}
\(\square\) & Off－site access assistance & \(\square\) & Deadline Extension Request \\
\(\square\) & Tank tigliness test results & & \(\square\) & Request for State－Lead \\
\(\square\) & Request for LPST Waste Code & & \(\square\) & Class V Reimjection Request \\
\(\square\) & Notice to Ownen／Operator for CAS Services & \(\square\) & Detrolem－Substance Waste Manifest \\
\(\square\) & Notice of Continuation of Groundwater Monitoring & \(\square\) & Underground Storage Tank Registration Form \\
\(\square\) & Notice of Continuation of Operation and Maintenance & \(\square\) & Abovegroumd Storage Tank Registration Form \\
\(\square\) & Other（anything that does not fit into one of the categories above） &
\end{tabular}
＊The proposal for semi－anmal monitoring and anmual report（Proposal Activity 17）has been discontinued．For send－annual monitoring，use Proposal Activity 16.

I attest that all work has been conducted in accordance with accepted industry standards/practices and adhered to TNRCC guidance and rules. I certify that I am aware that misrepresentation of any of the above claims is a violation of 30 TAC \(33.4453(\mathrm{~b})(1)(\mathrm{E})\) and that this violation may result in the disciplinary actions set forth in 30 TAC 334.453 and or 334.463 and 334.465 .

If a proposal is atiached for preapproval, has the proposed work, in part or in whole, already been performed or in progress? Yes \(\square\) No

If yes, what work?

RECEIVED
AUG 302007
REGION 12

\section*{Texas Natural Resource Conservation Commission \\ PETROLEUM STORAGE TANK FINAL SITE CLOSURE REPORT}

Use this form to provide information on LPST site closure activities after site closure has been authorized. To request authorization for site closure, complete and submit the Site Closure Request form (TNRCC-0028).
Complete All Applicable Blanks.
Date: \(\quad 8-22-07\)

\section*{CLOSURE ACTIVITY}

Was a remediation system installed? YES D NO If yes, provide a deseription : Dual phase extraction (DPE) system. Groundwater is transferred from seven recovery wells (DPE-1 thru DPE-7) via top loading pneumatie submersible pumps in the recovery wells to an oil/water separator. The free phase hydrocarbons that accumulate in the oil/water separator flow by gravity into a free product holding tank. A transfer pump is used to pump the groundwater from the oil/water separator to the air stripper unit that removes dissolved hydroearbons. A blower is used to supply air to the air stripper. The air stream is then processed through two, \(2000-\mathrm{lb}\) activated carbon vessels installed in series. The DPE system uses a regenerative blower to extract vapors from the seven remedial wells. Vapors are directed from the remedial wells to a moisture separator by way of a 4-inch Schedule 40 PVC header pipe. The moisture separator removes liquid from the airflow, should it be present. The vapors are then processed through a particulate filter before passing through the vacuum blower. The vapor stream is processed through two \(1000-\mathrm{lb}\) activated carbon vessels, installed in series prior to diseharge to the atmosphere.

Was this system removed? 图 YES NO If no, explain why not:
What is the intended future use/disposition and location of the system: Salvageable equipment was packaged and is stored at ConocoPhillips' bulk terminal facility in Southlake, Texas. The stored equipment includes two Ingersoll Rand air compressors and two Ametek blowers and motors. All other equipment was disposed as scrap.

List the components of the remedial system removed: Two Ingersoll Rand air compressors, two Ametek blowers and motors, air stripper, oil/water separator, moisture knockout drum, storage tank, all control panels, fittings, valves, gauges, and other miscellaneous equipment. All underground SVE piping was tremie filled with a bentonite-grout and capped. All DPE boxes were removed. Recovery and monitoring wells were plugged and abandoned.

List any of the remedial system components remaining at the site: None

Provide a description of site restoration activities: Restoration activities occurred in June and December 2006. The thermal oxidizer and carbon vessels were previously removed from the system. Partial restoration was performed in June due to the landowner repaving the surface cover at the site at that time. In June 2006, the PVC well casing and screen from MW-1 and MW-2 and P-1 through P-3 were removed from the ground along with the well covers and the borings were grouted with cement-bentonite to within approximately 3 inches from the surface. Due to overhead power lines, the well casing for P-4 was not removed and the well was grouted in place: howelver, the well cover was removed. In June 2006, bentonite grout was pumped through the underground lateral remedial lines for zone 1 (DPE-1 through DPE-4) and within wells DPE-1 through DPE-4. The DPE vault boxes were removed from the ground and the voids were filled with stabilizing sand and compacted on approximately 3 inch lifts. Rebar and concrete was used to restore the surface of each DPE location. In December 2006, the PVC well casing and screen from monitoring wells MW-10, MW-11, and MW-12 were removed from the ground. Attempts were made to remove the PVC casing and screen from monitoring wells MW-4, MW-6, MW-7, MW-9, MW-13 and MW-15; however, the PVC piping broke during the removal activities. Approximately 25 feet to 35 feet of \(P V C\) screen and/or casing per well remained in place. The boreholes/wells were filled with cement-bentonite grout to approximately 3 inches from the surface and concrete or soil was used to restore the surface of each former well location. In Decemher 2006, bentonite grout was pumped through the underground lateral remedial lines for zone 2 (DPE-5 through DPE-7) and within wells DPE-5 through DPE-7. The DPE vault boxes were removed from the ground and the voids were filled with stabilizing sand and compacted on approximately 3 inch lifts. Rebar and concrete was used to restore tbe surface of each DPE location. All remediation equipment was deemed unsalvageable. All equipment and debris were transferred to a rolloff hox and disposed at the Waste Management Landfill in Houston. Texas. The skid-mounted compound building was transferred on a flat-bed truck to Best Ditling's storage yard. The concrete foundation beneath the compound building was removed and repaved with asphalt.

Total number of monitoring wells installed at the site (both on and off site): 30 wells (MW-1, 2, 4, 6, 7, 9 through 15, DPE-1 through DPE- 7 \{DPE- 3 was previously MW- 5 and DPE- 6 was previously MW-3\}, and P-1 through P-4). Monitoring wells MW-8, and W-1 through W-6 were destroyed in 2000 due to city construction. Out of that number, how many monitoring wells have been plugged: 22 (MW-14 was unable to be located) Are there any remaining monitoring wells that have not been plugged? YES NO If Yes, were the wells installed under the direction of the TNRCC specifically to address the confirmed release at this site? प YES 崰 NO MW-14 is an off site 1.75 -inch diameter Geoprobe point that was installed for delineation purposes, not to address on site release.
Attach copies of the signed State of Texas Well Plugging Reports for all wells that will no longer be utilized.
For any monitoring wells not plugged, indicate intended use: no intended use. 1.75 -inch diameter Geoprobe well was unable to be located.

Have all wastes or other materials been properly disposed of, treated or recycled? 【YES 므․ If yes, attach documentation, if no, describe current status. Please note that site closure cannot be issued until all wastes and other materials have been properly disposed:

\section*{REPORT PREPARATION}

Project Manager: Tana A. Riva, P.G. (*2496) CAPM No.: 1109 Expiration date: 12-12-07
Company: SECOR International Inc.
Address: 2225 E. Randol Mill Rd., Suite 530 City: Arlington
Fax No. \(\frac{\text { 817-640-9149 }}{\text { Date }}\)
Signature: feen 1 -freve Zip:76011
Telephone No:: 817-640-9621 Date: \(\qquad\)
Corrective Action Specialist: \(\qquad\) CAS No. 550 Expiration date:12-10-08 Company: SECOR International Inc
Address: 2225 E. Randol Mill Rd., Suite 530 City: Arlington _ State: TX Zip: 76011

Telephone No.: 817-640-9621,
a., Suite 530

City: Arlington State: TX
\(\mathrm{Zip}: 76011\) Fax No.:817-640-9149

Date: \(\qquad\)

Name of Rssponsible Party contact- Terry S. Lauck (ConocoPhillips)
Telephone No. \(7918-661-0935 /\)
Fax No: 918-661-5746
Date:

\section*{ATTACHMENTS:}

\section*{Documentation of actual closure activities}

Documentation of waste disposal, treatment or recycling (if not previously submitted) State of Texas Plugging Reports

Ms. Susan N. Longbine
Remediation / PST Responsible Part Remediation Section
Texas Commission on Environmental Quality
12100 Park 35 Circle
紋-137
Austin, TX 78753
RE: Final Site Closure Summary Letter for DPE Remediation System Former Conoco Store No. 43059
12699 Memorial Drive
Houston, Texas
LPSTID No.: 104023
Facility ID No.: 0014936

\section*{Dear Ms. Longbine:}

On behalf of ConocoPhillips, SECOR International Inc. (SECOR) is providing you this letter summarizing the site closure activities performed at the above referenced ConocoPhillips facility in Houston, Texas (see Figure 1).

\section*{Site Background}

A dual phase extraction (DPE) remediation system was installed on site to remove free product and volatile organic compounds (VOCs) from the subsurface saturated zone, vadose zone, and capillary fringe. The remediation system, which included seven DPE wells installed on two separate.zones, operated from January 2000 to June 2003 and was shut down, with verbal concurrence from the TCEQ, due to the low constituent concentrations in vapor influent to the thermox unit and the reduction in groundwater hydrocarbon concentrations at the site. Site closure was received from the TCEQ in October 2006.

As you know, SECOR submitted a Site Closure Request to the TCEQ in March 2006 and is currently awaiting concurrence from the TCEQ. After submittal of the Site Closure Request, ConocoPhillips discovered that the landowner was preparing to repave the surface cover at the site. Therefore, prior to construction activities, the wells and underground remedial lateral lines located within the areas to be repaved were properly plugged and abandoned.

\section*{June 2006 Plug and Abandonmení Activities}

Prior to receiving official site closure from the TCEQ, ConocoPhillips discovered that the landowner was preparing to repave the surface cover at the site. Therefore, prior to the landowner's construction activities, the wells and underground remedial lateral lines located within the areas to be repaved were properly plugged and abandoned. From June 28 through 30, 2006, four DPE wells (DPE-1 through DPE-4) and associated underground lateral remedial lines, four piezometer wells (P-1 through P-4) and two

Ms Susan Longbine
August 28, 2007

\section*{SECOR}

Page 2 of 3
monitoring wells (MW-1 and MW-2) were piugged and abandoned at the site. The plugging activities were performed by Best Drilling Services, Inc. (BDS) of Houston, Texas in accordance with all applicable regulations. The well casings and covers were completely removed from monitoring wells MW-1 and MW-2, and piezometer welis P-1 through P-3. The borings were grouted to within approximately three inches of the surface with a cement-bentonite grout. Due to overhead power lines, the well casing for P-4 was not removed and the well was grouted in-place; however, the well cover was temoved.

The pumps and hoses were removed from DPE- 1 through DPE 4 and the wells were plugged in-place with a cement-bentonite grout. Cement-bentonite grout was also pumped through the underground lateral remedial lines for DPE-1 through DPE-4 (zone 1 of the remediation system). The DPE vault boxes were removed from the ground and the voids were filled with stabilizing sand and compacted on approximately three inch lifts. Rebar and concrete were used to restore the surface of each former DPE and well location.

\section*{December 2006 Site Closure Activities}

Upon receiving site closure from the TCEQ in October 2006, the remaining closure activities were performed by BDS under the supervision of SECOR personnel in December 2006. From December 11 through 14, 2006, the three remaining DPE wells (DPE-5 through DPE-7) and associated underground lateral remedial lines, and nine monitoring wells (MW-4, MW-6, MW-7, MW-g through MW-13 and MW-15) were plugged and abandoned at the site. The well casings and covers were completely removed from monitoring wells MW-10, MW-11 and MW-12. Attempts were made to remove the PVC well casing and screen from monitoring wells MW-4, MW-6, MW-7, MW-g, MW-13 and MW-15; however, the PVC piping broke during the removal activities of these wells. Approximately 25 to 35 feet of PVC screen and/or casing remained in place for each well. The wells were grouted to within approximately three inches of the surface with a cement-bentonite and concrete or soil was used to restore the surface of each former well location. Attempts to locate MW-14, a 1.75 -inch diameter Geoprobe \({ }^{\text {TM }}\) point, were unsuccessful.

The pumps and hoses were removed from DPE-5 through DPE-7 and the wells were plugged in-place with a cement-bentonite grout. Cement-bentonite grout was also pumped through the underground lateral remedial lines for DPE-5 through DPE-7 (zone 2 of the remediation system). The DPE vault boxes were removed from the ground and the voids were filled with stabilizing sand and compacted on approximately three inch lifts. Rebar and concrete were used to restore the surface of each former DPE location.

All utilities (electric, natural gas and water) associated with the remediation system were disconnected prior to dismantiement of the equipment, including the removal of a utility pole by Reliant Energy. A plumbing permit was obtained from the City of Houston Department of Planning and Development Code Enforcement Division for the disconnection of the commercial discharge sewer line associated with the groundwater treatment portion of the DPE system. Co-Am Plumbing properly capped the discharge line at the corinection point to the city sewer. Cement-bentonite grout was then pumped through the discharge line and left in place. A City of Houston Code Enforcement
representative inspected and approved the capping of the discharge fine on December 14, 2006. A copy of the plumbing permit and inspection tag are included in Attachment A.

The remediation system equipment including: two Ingersoll Rand air compressors, two Ametek blowers and motors, air stripper, oil/water separator, moisture knockout drum, storage tank, control panels, fittings, valves, gauges, and other miscellaneous equipment had deteriorated and was deemed unsalvageable. The items were placed in a rolloff box for disposal. The skid-mounted compound building was transferred on a flat-bed truck to Bost Drilling's storage yard. The concrete foundation beneath the compound building was removed and repaved with asphalt. All concrete, metal and PVC waste generated from the site closure activities were transported placed in a roll-off box and transported by Excel Disposal to Waste Management Landfill for disposal. Photographic documentation is included in Attachment B. Documentation regarding disposal of the debris is included in Attachment C and Well Plugging Reports are included in Attachment \(D\).

If you have questions or comments regarding these activities please contact me at (817) 640-9621 exiension 22.

\section*{Sincerely,}

\section*{SECOR International Incorporated}

Tana A. Riva, P.G.
Principal Geologist

\section*{Enclosures}
cc: Mr. Terry S. Lauck, ConocoPhillips - electronic copy PST Division, TCEQ Region 12 Office, Houston - hard copy

\section*{}

\section*{Page 1 of 1}

TCEQ CR Query - Dry Cleaners Registration Registration DCR11765
Page 2 of 2

\section*{Available Files}

Ste Help I Oisclaimer I Web Polces I Accessitibty I Cur Compact with Texans I TCEQ Homeland Security I Contact Us I Central Registry Statewife Unks: Texas.gov I Texas Homeland Securty I TRan: Satewide Archive I Texas Veberans Portal
© 2022-2015 Texas Commission on Emeirsnmental Qualty

\section*{}
Central Registry
Detail of: Petroleum Storage Tank Registration 29268 For: WHEATLEY INVESTMENTS (RN102441029)
Questions or Comments >>

\section*{Page 1 of 1}

\section*{http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.invdetail\&addn_id=80428432003094}
Page 1 of 3
TCEQ CR Query - Petroleum Storage Tank Registration 29268
Self-Certification Status by Compartment
Held by: WHEATLEY INVESTMENTS LTD (CN602597478)
Detail of: Petroleum Storage Tank Registration 29268 For: WHEATLEY INVESTMENTS (RN102441029) 12860 MEMORIAL DR, HOUSTON
Registration ACTIVE
Status:
Central Registry
Query Home Costomer Search RE Search ID Search Search Results Registration Detail TCEQ Home
Mailing Address: 12860 MEMORIAL DR HOUSTON, TX 77024-4810
Financial Assurance
\[
1,000,000 \text { Insurance Or Risk Retention, expires } 12 / 18 / 2014 \text { (More) }
\]
Current: 1A 2A 3A (through last day of 06/2015)
View Complete Self-Certification History
Registered Tanks and Their Associated Systems
Table 1. Underground Storage Tank Summary

Table 2. Tank Details

\section*{http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.pgmdetail\&addn_id=80428432003094\&lgcy_sys_cd=PST\&progra... 3/9/2015}

Table S. Vapor Recovery Systems

\section*{Texas Commission on Environmental Quality}

IN THE MATTER OF AN ENFORCEMENT ACTION CONCERNING WHEATLEY INVESTMENTS LTD. RN102441029

REFORE THE
TEXAS COMMISSION ON
ENVIRONMENTAL QUALITY

\section*{AGREED ORDER \\ DOCKET NO. 2013-1271-PST-E}

\section*{I. UURISDICIION AND STIPY ATIONS}

On
MAR 42014 Commission" or "ICEQ") considered this agreement of the parties, resolving an enforcement action regarding Wheatley Investments Ltd. ("Respondent") under the authority of TEX. WATER CODE chs. 7 and 26. The Executive Director of the TCEQ, through the Enforcement Division, and the Respondent together stipulate that:
1. ... The Respondent owns and operates a convenience store with retail sales of gasoline located at 12860 Memorial Drive in Houston, Harris County, Texas (the "Facility").
2. \(\because\) The Respondent's three underground storage tanks ("USTs") are not exempt or excluded from regulation under the Texas Water Code or the rules of the Commission.
3. The Executive Director and the Respondent agree that the Commission has jurisdiction to enter this Agreed Order, and that the Respondent is subject to the Commission's jurisdiction.
4. The Respondent received notice of the violations alleged in Section II ("Allegations") on or about June 3, 2013.
5. The occurrence of any violation is in dispute and the entry of this Agreed Order shall not constitute an admission by the Respondent of any violation alleged in Section II ("Allegations"), nor of any statute or rule.
6. An administrative penalty in the amount of Four Thousand Eight Hundred Seventy-Five Dollars (\(\$ 4,875\)) is assessed by the Commission in settlement of the violations alleged in Section II ("Allegations"). The Respondent has paid Three Thousand Nine Hundred Dollars (\(\$ 3,900\)) of the administrative penalty and Nine Hundred Seventy Five Dollars

Wheatley Investments Led.
DOCKET NO. 2013-1271-PST-E
Page 2
(\$975) is deferred contingent upon the Respondent's timely and satisfactory compliance with all the terms of this Agreed Order. The deferred amount will be waived upon full compliance with the terms of this Agreed Order. If the Respondent fails to timely and satisfactorily comply with all requirements of this Agreed Order, the Executive Director may require the Respondent to pay all or part of the deferred penalty.
7. Any notice and procedures, which might otherwise be authorized or required in this action, are waived in the interest of a more timely resolution of the matter.
8... The Executive Director and the Respondent agree on a settlement of the matters alleged in this enforcement action, subject to final approval in accordance with 30 TEX, ADMIN. CODE \(\$ 70.10\) (a).
9. The Executive Director recognizes that on May 1, 2013, the Respondent implemented a release detection method for the USTs at the Facility.
10. The Executive Director may, without further notice or hearing, refer this matter to the Office of the Attorney General of the State of Texas ("OAG") for further enforcement proceedings if the Executive Director determines that the Respondent has not complied with one or more of the terms or conditions in this Agreed Order,
11. This Agreed Order shall terminate five years from its effective date or upon compliance with all the terms and conditions set forth in this Agreed Order, whichever is later.
12. The provisions of this Agreed Order are deemed severable and, if a court of competent jurisdiction or other appropriate authoxity deems any provision of this Agreed Order unenforceable, the remaining provisions shall be valid and enforceable.

\section*{II. ALLEGATIONS}

As owner and operator of the Facility, the Respondent is alleged to have failed to monitor the USTs for releases at a frequency of at least once every month (not to exceed 35 days between each monitoring), in violation of 30 TEX. ADMN. CODE \(\S 334.50\) (b)(1)(A) and TEX. WATER CODE §26.3475(c)(1), as documented during an investigation conducted on April 9, 2013 .

\section*{III. DENLALS}

The Respondent generally denies each allegation in Section II ("Allegations"),

Wheatley Investments Ltd. DOCKET NO. 2013-1271-PST-E
Page 3

\section*{IV. ORDERING PROVISIONS}
1. It is, therefore, ordered by the TCEQ that the Respondent pay an administrative penalty as set forth in Section I, Paragraph 6 above. The payment of this administrative penalty and the Respondent's compliance with all the terms and conditions set forth in this Agreed Order resolve only the allegations in Section II. The Commission shall not be constrained in any manner from requiring corrective, action or penalties for violations which are not raised here. Administrative penalty payments shall be made payable to "TCEQ" and shall be sent with the notation "Re: Wheatley Investments Ltd., Docket No. 2013-1271-PST-E" to:

\author{
Finaucial Administration Division, Revenue Operations Section \\ Attention: Cashier's Office, MC 214 \\ Texas Commission on Environmental Quality \\ P.O. Box 13088 \\ Austin, Texas 78711-3088
}
2. The provisions of this Agreed Order shall apply to and be binding upon the Respondent. The Respondent is ordered to give notice of the Agreed Order to personnel who maintain day-to-day control over the Facility operations referenced in this Agreed Order.
3. This Agreed Order, issued by the Commission, shall not be admissible against the Respondent in a civil proceeding, unless the proceeding is brought by the OAG to: (1) enforce the terms of this Agreed Order; or (2) pursue violations of a statute within the Commission's jurisdiction, or of a rule adopted or an order or permit issued by the Commission under such a statute.
4.... This Agreed Order may be executed in separate and multiple countcrparts, which together shall constitute a single instrument. Any page of this Agreed Order may be copied, scanned, digitized, converted to electronic portable document format ("pdf"), or otherwise reproduced and may be transmitted by digital or clectronic transmission, including but not limited to facsimile transmission and electronic mail. Any signature affixed to this Agreed Order shall constitute an original signature for all purposes and may be used, filed, substituted, or issued for any purpose for which an original signature could be used. The term "signature" shall include manual signatures and true and accurate reproductions of manual signatures created, executed, endorsed, adopted, or authorized by the person or pcrsons to whom the signatures are attributable. Signatures may be copied or reproduced digitally, electronically, by photocopying, engraving, imprinting, lithographing, electronic mail, facsimile transmission, stamping, or any other means or process which the Executive Director deems acceptablc. In this paragraph exclusively, the terms "electronic transmission", "owner", "person", "writing", and "written" shall have the meanings assigned to them under Tex. Bus. Org. CODE § 1.002.
5. Under 30 TEX. ADMIN. CODE \(\$ 70.10\) (b), the effective date is the date of hand-delivery of the Order to the Respondent, or three days after the date on which the Commission mails notice of the Order to the Respondent, whichever is earlier.

Wheatley Investments Ltd.
DOCKET NO, 2013-1271-PSC-E
Page 4

\section*{SIGNATURE HAE}

TEXAS COMMMSSONON EAYIRONBEENTALQUALTTY

For the Commission

Date

I, the undersigned, have read and understand the attached Agreed Order. I an authorized to agree to the attached Agreed Order on behalf of the entity indicated below my signature, and I do agree to the terms and conditions specified therein. further acknowledge that the TCEQ, in accepting payment for the penalty amount, is materially relying on such representation.

I also understand that failure to comply with the Ordering Provisions, if any, in this order and/or failure to timely pay the penally amount, may result in:
- A negative impact on compliance history;
- Greater scrutiny of any permit applications submitted;
- Referral of this case to the Attorney Generals Office for contempt, injunctive relief, additional penalties, and/or attorney fees, or to a collection agency;
* -.. Increased penalties in any futwe enforcement actions;
- Automatic referral to the Attorney Generals Office of any future enforcement actions and
- TCEQ seeking other relief as authorized by law.

In addition, any lalsiffeation of any compliance documents may result in criminal prosecution.

\section*{}

Name (Printed or typed)
Authorized Representative of
Wheatley gavestments Ltd.
Laskractionss: Send the original, signed Agreed Order with penalty payment to the Financed Adminislontion Division, Revenue Operations Section at the address in Section IY, Paragraph 1 of this. Agreed Order.

The TCEQ is committed to accessibility.
To request a more accessible version of this report, please contact the TCEQ Heip Desk at (512) 239-4357.

\section*{ \\ Compliance History Report}

PUZLISHED Compliance History Report for CN602597478, RN102441029, Rating Year 2012 which Inciudes Compliance History (CH) components from September 1, 2007, through August 31, 2012.
\begin{tabular}{|c|c|c|c|}
\hline Customer, Respondent, or Owner/Operator: & CN602597478, Wheatley Investments, ttd. & Classification: HIGH & Rating: 0.00 \\
\hline Regulated Entity: & RN102441029, WHEATLEY INVESTMENTS & Classufication: HIGH & Reting: 0.00 \\
\hline Complexity Points: & 4 & Reparat Violator: NO & \\
\hline CH Group: & 14 - Other & & \\
\hline Location: & 12860 Memorial Drive in Houston, Harris & County, Texas & \\
\hline TCEQ Region: & REGION 12 - HOUSTON & & \\
\hline
\end{tabular}

ID Number(s):
PETROLEUM STORAGE TANK REGISTRAYION
REGISTRATLON 29268
Compliance 却story Period: September 01, 2007 to August 31, 2012 Rating Year: 2012 Rating Date: 09/01/2012
Date Compliance History Report Prepared: July 15, 2013
Agency Decision Requiring Compliance History: Enforcement
Component Period Selected: July 05, 2008 to July 05, 2013
TCEQ Staf 低ember to Contact for Additional Information Regarding This Complance Pistory,
Name: Jacquelyn Green
Phone: (512) 239-2587

\section*{Sita_nad Owner/Operator (Nistory:}
1) Has the site been th existence and/or operation for the full five year compliance period? YES
2) Has there been a (known) change in ownership/operator of the site during the compliance period? No
3) If Ves for \#2, who is the clirrent owner/operator? N/A
4) If Yes for \#2, who was/were the prior N/A owner(s)/operator(s)?
5) If YES, when did the change(s) in owner or operator N/A occur?

\section*{}
A. Final Orders, court judgments, and consent decraes: N/A
B. Criminal convictions: N/A
c. Chronic excessive emissions events: N/A
D. The approval dates of investigakions (CCEDS Inv. Track. No.):

Item \(1 \quad\) … December 19, \(2008 \quad\) (710041)
Item 2 December 14, 2009 (784865)
Item 3 November 30, 2012 (1037252)
E. Written notices of violations (WOV) (CCEDS Inv. Track. No.):

A notice of violation represents a written aliegation of a violetion of a specific regulatory requirement from the commission to a regulated entity. A notice of violation is not a final enforcement action, nor proof that a violation has actually occurred.

\section*{F. Environmental audits:}

N/A
G. Type of environmental management systems (EMSs): N/A
H. Voluntary on-site compliance assessment dates: N/A
x. Participation in a voluntary pollution reduction program: N/A
J. Early compliance: N/A

Sites Outside of Texas: N/A

Texas Commission on Environmental Quality
Protecting Texas by Reducing and Preuenting Pollution
March 6, 2014

\section*{CERTIFIED MAIL RETURN RECEIPT REQUESTED}

Mr. Mark Wheatley, Owner
Wheatley Investments Ltd.
12860 Memorial Drive
Houston, Texas 77024
Re: ...TCEQ Enforcement Action
Wheatley Investments Ltd.
Docket No. 2013-1271-PST-E
Dear Mr. Wheatley:
Enclosed for your records is a fully-executed copy of the Agreed Order for the abovereferenced matter.

Please review the enclosed Agreed Order, particularly the "Ordering Provisions" section, to determine if further action will be required of you, such as the completion of technical requirements to achieve compliance. When technical requirements are listed (usually Ordering Provision No. 2 or 3), a deadline will be provided based on a specific number of days after the effective date. The effective date of this Agreed Order is three days after the date printed at the top of this letter.

Should you have any questions, please contact Jacquelyn Green, the Enforcement Coordinator assigned to this matter, at (512) 239-2587.

Sincerely,

Candice Garrett
Enforcement Division
Enclosure
cc: Jacquelyn Green, Enforcement Division
Petroleum Storage Tank Section Manager, Region 12
Page 1 of 2

Questions or Comments \(\gg\)

The list below is not sorted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Customer} & \multicolumn{5}{|l|}{Site Associated with This Customer} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Compliance History for Customer at this Site \\
(If no Site appears in thesame row, this is the Customer's overall compliance history.)
\end{tabular}} \\
\hline & Name & City or Nearest City & County & TCEQ Region & Related Numbers & Rating & Classification & Date Rated & Date Posted \\
\hline CHEVRON USA INC & WHEATLEY INVESTMENTS & & HARRIS & REGION
\(12-\)
HOUSTON & - 116132 & 0 & & 09/01/2008 & \\
\hline WHEATLEY INVESTMENTS LTD & WHEATLEY INVESTMENTS & & HARRIS & REGION
\(12-\)
HOUSTON & \[
\begin{array}{r}
.91934 \\
. \quad 29268 \\
.91934
\end{array}
\] & 9.00 & SATISFACTORY & 09/01/2009 & 11/15/2014 \\
\hline CHEVRON USA INC & WHEATLEY INVESTMENTS & & HARRIS & \begin{tabular}{l}
REGION \\
\(12-\) \\
HOUSTON \\
\hline
\end{tabular} & - 91934 & 0 & & 09/01/2008 & \\
\hline WHEATLEY INVESTMENTS LTD & WHEATLEY INVESTMENTS & & HARRIS & REGION
\(12-\)
HOUSTON & - 29268 & 9.00 & SATISFACTORY & 09/01/2010 & 11/15/2014 \\
\hline TOWN \& COUNTRY CHEVRON & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& \text { 12- } \\
& \text { HOUSTON }
\end{aligned}
\] & - 91934 & 0 & & 09/01/2008 & \\
\hline WHEATLEY INVESTMENTS LTD & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & - 91934 & 9.00 & SATISFACTORY & 09/01/2013 & 11/15/2014 \\
\hline & & & HARRIS & & & 0 & UNCLASSIFIED & 09/01/2014 & 11/15/2014 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline CHEVRON PRODUCTS COMPANY & WHEATLEY INVESTMENTS & & & \[
\left\lvert\, \begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}\right.
\] & \[
=91934
\] & & & & \\
\hline CHEVRON USA INC & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 \text { HOUSTON }
\end{aligned}
\] & - 29268 & 0 & & 09/01/2008 & \\
\hline TOWN \& COUNTRY CHEVRON & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & * 29268 & 0 & & 09/01/2008 & \\
\hline WHEATLEY INVESTMENTS LTD & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & - 116132
- 91934
- 116132
- 29268
- 91934
- 116132 & 9.00 & SATISFACTORY & 09/01/2010 & \[
11 / 15 / 2014
\] \\
\hline CHEVRON PRODUCTS COMPANY & \begin{tabular}{l}
WHEATLEY \\
INVESTMENTS
\end{tabular} & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & - 116132 & 0 & UNCLASSIFIED & 09/01/2014 & 11/15/2014 \\
\hline TOWN \& COUNTRY CHEVRON & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & - 116132 & 0 & & 09/01/2008 & \\
\hline WHEATLEY INVESTMENTS LTD & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & - 91934 & 9.00 & SATISFACTORY & 09/01/2010 & 11/15/2014 \\
\hline CHEVRON PRODUCTS COMPANY & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & - 29268 & 0 & UNCLASSIFIED & 09/01/2014 & 11/15/2014 \\
\hline WHEATLEY INVESTMENTS LTD & WHEATLEY INVESTMENTS & & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & \[
\begin{aligned}
& =29268 \\
& : 29268 \\
& .116132 \\
& .116132 \\
& \cdot \\
& \cdot 11613268
\end{aligned}
\] & \(9^{9.00}\) & SATISFACTORY & 09/01/2009 & 11/15/2014 \\
\hline
\end{tabular}

\section*{Central Registry}
Correspondence Tracking
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Tracking No. & Received/Sent & Direction & Type & Subject & Due Date & End Date & Document Date & Method \\
\hline 4634180 & \(11 / 04 / 2009\) & OUTGOING & FINAL & & & \(11 / 04 / 2009\) & \(11 / 04 / 2009\) & \\
\hline 4503427 & \(09 / 11 / 2009\) & INCOMING & FSC & & & \(11 / 04 / 2009\) & \(04 / 27 / 2009\) & \\
\hline 4634179 & \(05 / 22 / 2009\) & OUTGOING & DELFEE FNL & & & \(05 / 22 / 2009\) & \(05 / 22 / 2009\) & \\
\hline 4503426 & \(04 / 23 / 2009\) & INCOMING & TECH RESP & & & \(05 / 22 / 2009\) & \(04 / 22 / 2009\) & \\
\hline 4634176 & \(03 / 16 / 2009\) & OUTGOING & RR - CAR & & & \(03 / 16 / 2009\) & \(03 / 16 / 2009\) & \\
\hline 4634177 & \(03 / 16 / 2009\) & OUTGOING & RR - CAR & & & \(03 / 16 / 2009\) & \(03 / 16 / 2009\) & \\
\hline 4634178 & \(03 / 16 / 2009\) & OUTGOING & DELFEE OWE & & & \(03 / 16 / 2009\) & \(03 / 16 / 2009\) & \\
\hline 4503423 & \(01 / 20 / 2009\) & INCOMING & MONIT ANNL & & & \(03 / 16 / 2009\) & \(12 / 30 / 2008\) & \\
\hline 4503424 & \(01 / 20 / 2009\) & INCOMING & PROP ACT13 & & & \(03 / 16 / 2009\) & \(01 / 13 / 2009\) & \\
\hline 4503425 & \(01 / 20 / 2009\) & INCOMING & SCR & & & \(03 / 16 / 2009\) & \(01 / 13 / 2009\) & \\
\hline 4634172 & \(07 / 02 / 2008\) & OUTGOING & RR - CAR & & & \(07 / 02 / 2008\) & \(07 / 02 / 2008\) & \\
\hline 4634173 & \(07 / 02 / 2008\) & OUTGOING & RR - CAR & & & \(07 / 02 / 2008\) & \(07 / 02 / 2008\) & \\
\hline 4634174 & \(07 / 02 / 2008\) & OUTGOING & RR - CAR & & & \(07 / 02 / 2008\) & \(07 / 02 / 2008\) & \\
\hline 4634175 & \(07 / 02 / 2008\) & OUTGOING & RR - CAR & & & \(07 / 02 / 2008\) & \(07 / 02 / 2008\) & \\
\hline 4503420 & \(06 / 09 / 2008\) & INCOMING & MPR & & & \(07 / 02 / 2008\) & \(06 / 02 / 2008\) & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.cordetail\&addn_id=711366552013318
Detail of: Leaking Petroleum Storage Tanks Remediation ID Number 91934

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 4503389 & 03/15/1996 & INCOMING & MONIT ANNL & & & 04/04/1997 & 03/12/1996 & \\
\hline 4634137 & 03/11/1996 & OUTGOING & RCPT & & & 03/11/1996 & 03/11/1996 & \\
\hline 4634138 & 03/11/1996 & OUTGOING & RCPT & & & 03/11/1996 & 03/11/1996 & \\
\hline 4503387 & 03/08/1996 & INCOMING & PROP ACT 12 & & & 03/11/1996 & 02/16/1996 & \\
\hline 4503388 & 03/08/1996 & INCOMING & PROP ACT 8 & & & 03/11/1996 & 02/16/1996 & \\
\hline 4634136 & 11/06/1995 & OUTGOING & RR - CAR & & & 11/06/1995 & 11/06/1995 & \\
\hline 4503386 & 10/31/1995 & INCOMING & PROP ACT15 & & & 11/06/1995 & 10/25/1995 & \\
\hline 4634131 & 09/28/1995 & OUTGOING & RR & & & 09/28/1995 & 09/28/1995 & \\
\hline 4634132 & 09/28/1995 & OUTGOING & RR & & & 09/28/1995 & 09/28/1995 & \\
\hline 4634133 & 09/28/1995 & OUTGOING & RR & & & 09/28/1995 & 09/28/1995 & \\
\hline 4634134 & 09/28/1995 & OUTGOING & RR & & & 09/28/1995 & 09/28/1995 & \\
\hline 4634135 & 09/28/1995 & OUTGOING & RR & & & 09/28/1995 & 09/28/1995 & \\
\hline 4634130 & 09/07/1995 & OUTGOING & RR & & & 09/07/1995 & 09/07/1995 & \\
\hline 4503380 & 09/06/1995 & INCOMING & TANK CLSR & & & 09/07/1995 & 08/31/1995 & \\
\hline 4503381 & 09/06/1995 & INCOMING & PROP ACT 3 & & & 09/28/1995 & 08/29/1995 & \\
\hline 4503382 & 09/06/1995 & INCOMING & PROP ACT 5 & & & 09/28/1995 & 08/29/1995 & \\
\hline 4503383 & 09/06/1995 & INCOMING & PROP ACT 9 & & & 09/28/1995 & 08/29/1995 & \\
\hline 4503384 & 09/06/1995 & INCOMING & PROP ACT13 & & & 09/28/1995 & 08/29/1995 & \\
\hline 4503385 & 09/06/1995 & INCOMING & PROP ACT 7 & & & 09/28/1995 & 08/29/1995 & \\
\hline 4634129 & 07/03/1995 & OUTGOING & RR - CAR & & & 07/03/1995 & 07/03/1995 & \\
\hline 4503379 & 05/24/1995 & INCOMING & PROP ACT 5 & & & 07/03/1995 & 04/10/1995 & \\
\hline 4503378 & 04/03/1995 & INCOMING & MONIT ANNL & & & 05/11/2001 & 03/24/1995 & \\
\hline 4634121 & 04/14/1994 & OUTGOING & RR & & & 04/14/1994 & 04/14/1994 & \\
\hline 4634124 & 04/14/1994 & OUTGOING & RR & & & 04/14/1994 & 04/14/1994 & \\
\hline 4634125 & 04/14/1994 & OUTGOING & RR & & & 04/14/1994 & 04/14/1994 & \\
\hline 4634126 & 04/14/1994 & OUTGOING & RR & & & 04/14/1994 & 04/14/1994 & \\
\hline 4634120 & 04/13/1994 & OUTGOING & NL.R & & & 04/13/1994 & 04/13/1994 & \\
\hline 4634122 & 04/13/1994 & OUTGOING & NLR & & & 04/13/1994 & 04/13/1994 & \\
\hline 4634123 & 04/13/1994 & OUTGOING & NLR & & & 04/13/1994 & 04/13/1994 & \\
\hline 4634127 & 04/13/1994 & OUTGOING & NLR & & & 04/13/1994 & 04/13/1994 & \\
\hline 4503377 & 03/31/1994 & INCOMING & QUEST & & & 04/13/1994 & & \\
\hline 4503376 & 03/08/1994 & INCOMING & PROPOSAL & & & 04/14/1994 & & \\
\hline 4503375 & 02/23/1994 & INCOMING & MONIT ANAL & & & 04/14/1994 & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 4503373 & 09/22/1993 & INCOMING & CONTINUE-Y & & & 04/13/1994 & & \\
\hline 4503374 & 09/22/1993 & INCOMING & MES & & & 04/14/1994 & & \\
\hline 4503372 & 06/24/1993 & INCOMING & OTHER & & & 04/13/1994 & & \\
\hline 4503370 & 04/02/1993 & INCOMING & QUEST & & & 04/13/1994 & & \\
\hline 4503371 & 04/02/1993 & InCOMING & QTR MONIT & & & 04/14/1994 & & \\
\hline 4634119 & 03/02/1993 & OUTGOING & ACTN RQST & & & 03/02/1993 & 03/02/1993 & \\
\hline 4634118 & 12/28/1992 & OUTGOING & CIARIFY1-6 & & & 12/28/1992 & 12/28/1992 & \\
\hline 4503369 & 11/25/1992 & INCOMING & QTR MONIT & & & 11/25/1992 & & \\
\hline 4634108 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634109 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634110 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634111 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634112 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634113 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634114 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634115 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634116 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4634117 & 11/25/1992 & OUTGOING & RR & & & 11/25/1992 & 11/25/1992 & \\
\hline 4503367 & 09/01/1992 & INCOMING & QTR MONIT & & & 11/25/1992 & & \\
\hline 4503368 & 09/01/1992 & INCOMING & TECH RESP & & & 11/25/1992 & & \\
\hline 4503366 & 04/10/1992 & INCOMING & QTR MONIT & & & 11/25/1992 & & \\
\hline 4503365 & 01/30/1992 & INCOMING & QTR MONIT & & & 11/25/1992 & & \\
\hline 4503364 & 08/21/1991 & INCOMING & QTR MONIT & & & 11/25/1992 & & \\
\hline 4503363 & 06/03/1991 & INCOMING & QTR MONIT & & & 11/25/1992 & & \\
\hline 4503362 & 03/26/1991 & INCOMING & QTR MONIT & & & 11/25/1992 & & \\
\hline 4503361 & 01/14/1991 & INCOMING & TECH RESP & & & 11/25/1992 & & \\
\hline 4503360 & 05/19/1989 & INCOMING & COMP ASMNT & & & 11/25/1992 & & \\
\hline 4634106 & 05/12/1989 & OUTGOING & NLR & & & 05/12/1989 & 05/12/1989 & \\
\hline 4634107 & 05/12/1989 & OUTGOING & OD & & & 05/12/1989 & 05/12/1989 & \\
\hline 4503359 & 07/15/1988 & INCOMING & GENL. INFO & & & 05/12/1989 & & \\
\hline 4634104 & 06/22/1988 & OUTGOING & NLR & & & 06/22/1988 & 06/22/1988 & \\
\hline 4634105 & 06/22/1988 & OUTGOING & CAD & & & 06/22/1988 & 06/22/1988 & \\
\hline 4503358 & 05/25/1988 & INCOMING & GENL INFO & & & 06/22/1988 & & \\
\hline
\end{tabular}
Site Help \| Disclaimer \| Web Policies \| Actessibility \| Our Compact with Texans \| TCEQ Homeland Securtiy \| Contact Us \| Central Registry \| Search Hints
Report Data Errors
Statewide Links: Texas.gov \& Texas Homeland Security \| TRAIL Statewide Archive \| Texas Veterans Portal
(c) 2002-2013 Texas Commission on Environmental Quality

\section*{http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.cordetail\&addn_id=711366552013318}

\title{
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION PETROLEUM STORAGE TANK DIVISION CORRESPONDENCE IDENTIFICATION SHEET
}

Date:
Site Name: Chevron Facility No. 60108123
Site Address: \(\quad 12860\) Memorial, Houston. Texas

LPST ID No.: 91934
Facility lD No.: 0029268

This checklist must accompany all correspondence submitted to the RPR Section and should be affixed to the front of your submittal as a cover page. Please check the appropriate box for the type of correspondence which you have submitted to the RPR Section. Check all boxes that apply if you are submitting more than one type of correspondence. If you cannot find ans appropriate category, please complete the "other" section.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & PROPOSALS & & \\
\hline \(\square\) & Initial Abatement (1) & \(\square\) & Tank Removal (2) & \(\square\) & Excavation (3) \\
\hline \(\square\) & Waste Treatment (4) & \(\square\) & Site Assessment (5) & \(\square\) & Aquifer Testing (6) \\
\hline \(\square\) & VES/Sparge Testing (7) & \(\square\) & Qtriy. GW Monitoring (8) & \(\square\) & CAP Prep. (9) \\
\hline \(\square\) & GW Extrac./Treatment (10) & \(\square\) & Soil Vapor Extrac. (1) & \(\square\) & Operation \& Main. (12) \\
\hline \(\square\) & Site Closure (13) & \(\square\) & Plan A Risk Ass. (14) & \(\square\) & Plan B Risk Ass. (15) \\
\hline \(\square\) & Semi-annual GW Mon. (16)* & \(\square\) & Annual GW Mon. (18) & \(\square\) & Product Recovery (19) \\
\hline \(\square\) & Other proposal & & & & \\
\hline
\end{tabular}

\section*{REPORING FORNS}
\(\square\) Assessment Report Form (TNRCC-0562)
\(\square\) Product Recovery Report Form (TNRCC-0016)
\(\square\) Site Closure Request Fom (INRCC-0028)
* Final Site Closure Report Form (TNRCC-0038
\(\square\) Other form

\section*{MISCEHLANEOUS}
\begin{tabular}{lllll}
\(\square\) & Off-site access assistance & & \(\square\) & Deadline Extension Request \\
\(\square\) & Tank tightness test results & \(\square\) & Request for State-Lead \\
\(\square\) & Request for LPST Waste Code & & \(\square\) & Class V Reinjection Request \\
\(\square\) & Notice to Owner/Operator for CAS Services & \(\square\) & Petroleum-Substance Waste Manifest \\
\(\square\) & Notice of Continuation of Groundwater Monitoring & \(\square\) & Underground Storage Tank Registration Form \\
\(\square\) & Notice of Continuation of Operation and Maintenance & \(\square\) & Aboveground Storage Tank Registration Form \\
\(\square\) & Other (anything that does not fit into one of the categories above) & \\
\hline
\end{tabular}
- The proposal for semi-anmual monitoring and annual report (Proposal Activity 17) has been discontinued. For semi-annual monitoring, use Proposal Activity 16.

I attest that all work has been conducted in accordance with accepted indastry standards/practices and adhered to TNRCC guidance and rules. I certify that 1 am aware that misrepresentation of any of the above claims is a violation of 30 TAC \(33.4453(\mathrm{~b})(1)(\mathrm{E})\) and that this violation may result in the disciplinary actions set forth in 30 TAC 334.453 and or 334.463 and 334.465 .

If a proposal is attached for pre-approval, has the proposed work, in part or in whole, already been performed or in
progress?
\(\square\) Yes
图 No
lf yes, what work? \(\qquad\)
\begin{tabular}{|c|c|c|}
\hline Stantec Consuting Corporation (Registered Corrective Action Specialisl) & \[
\frac{\text { RCAS } 00550}{\text { (RCAS Reg. No.) }}
\] & \[
\frac{12 / 10 / 1]}{\text { (Expiration date) }}
\] \\
\hline mat \(\operatorname{snc} \leq\) & \multicolumn{2}{|c|}{\(4-27-09\)} \\
\hline (Signature) & \multicolumn{2}{|c|}{(Date)} \\
\hline (713) 93777973 & \multicolumn{2}{|c|}{(713) 983-8328} \\
\hline (Telephone \#) & \multicolumn{2}{|c|}{(FAXH)} \\
\hline Mark Smith & CAPM 1344 & 12/31/09 \\
\hline (Project Manager) & (CAPM Reg No.) & (Expiration date) \\
\hline \[
y \operatorname{Anc} A
\] & & \\
\hline (Signature) & \multicolumn{2}{|c|}{(Date)} \\
\hline (713) 937-7973 & \multicolumn{2}{|c|}{(713) 983-8328} \\
\hline (Telephone \#) ... & \multicolumn{2}{|c|}{(FAXH)} \\
\hline
\end{tabular}

By signature below, I certify that documents checked above are included.

\section*{Ravelle Jones}
(Name of Responsible Party Conlaci)

(713) 423-2641
(Telephone \#)

Chevron Environmental Management Co. (Company)
\begin{tabular}{lr}
\(\frac{5-7-09}{\text { (Date) }}\) & RECEIVED \\
(866) \(390-8082\) & JUN 082019 \\
(FAX \()\) & REGION 12
\end{tabular}

May 26, 2009

Stantec Project No. 213201027.203.450
Attn: Ms. Trudy Masan
Texas Commission on Environmental Quality
Responsible Party Remediation Section, MC-137
Petroleum Storage Tank Division
Post Office Box 13087
Austin, Texas 78711-3087
Final Site Closure Report
Chevron Products Company Facility No. 60108123
12860 Memorial Drive, Houston, Harris Connty, Texas
LPST No. 091934 Facility ID 0029268 .

\section*{RECEIVED}
\[
\begin{aligned}
& \text { JUN } 082009 \\
& \text { REGION } 12
\end{aligned}
\]

Dear Ms. Masan:
Stantec Consulting Corporation (Stantec) is pleased to submit the Final Site Closure Report documenting the plugging of the six (6) remaining site monitor wells at the above referenced facility. Monitor wells MW-2, and MW-4 through MW-8 were plugged and abandoned on April 14, 2009. The site closure activities and this report are being submitted in accordance with the Texas Commission on Environmental Quality Corrective Action Response Form dated March 16, 2009.

Stantec is under contract with Chevron Environmental Management Company (CEMC) to provide the environmental consulting services at this site and is submitting this report on behalf of CEMC. If you have any questions, please call Ravelle Jones of CEMC at (713) 432-2641 or myself at (713) 494-0969.

Very truly yours,

Mark Smith, P.G., CAPM \#1344
Senior Project Manager

Enclosures: as stated
cc: Ravelle Jones (CEMC)

Use this form to provide information on LPST site closure activities after site closure has been authorized. To request aumorization for site closure, complete and submit the Site Closure Request form (TNRCC-0028).

Complete All Applicable Blanks.
Date: May 26, 2009
\begin{tabular}{|ll|}
\hline & GENERAL INFORMATION \\
\hline LPST ID No.: 091934 & \\
\hline Responsible Party: Chevron Products Company & \\
\hline RP Address: 4800 Fournace Place & Fitily ID No: 0029268 \\
\hline Facility Name: Former Chevron Facility No. 60108123 & \\
\hline Facility Address: 12860 Memorial Drive & State: TX \\
\hline Facility City: Houston & \\
\hline
\end{tabular}

\section*{CLOSURE ACTIVITY}

Was a remediation system installed? UES NO If yes, provide a description :
Was this system removed? \(\square\) YES \({ }^{[}\)NO If no, explain why not: N/A

What is the intended future use/disposition and location of the system: N/A

List the components of the remedial system removed: N/A

List any of the remedial system components remaining at the site: N/A
\(\qquad\)
\(\qquad\)

Provide a description of site restoration activitics: N/A
\(\qquad\)
\(\qquad\)

Total number of monitoring wells and piezometers installed at the site (both on and off site): 10
Out of that number, how many monitoring wells/piezometers have been plugged: 6 plugged, 4 previously destroyed
Are there any remaining monitoring wells that have not been plugged? YES 뗭 NO
If Yes, were the wells installed under the direction of the TCEQ specifically to address the confirmed release at this site? U YES NO
Attach copies of the signed State of Texas Well Plugging Reports (Form No. TNRCC-0055) for all wells that will no longer be utilized.

For any monitoring wells not plugged, indicate intended use: N/A

Have all wastes or other materials been properly disposed of, treated or recycled? YES UNO If yes, attach documentation, if no, describe current status. Please note that site closure cannot be issued until all wastes and other materials have been properly disposed: Disposed as construction waste by driller

\section*{REPORT PREPARATION}

Project Manager: Mark Smith \(\qquad\) CAPM No.: 1344 Expiration date: 12/31/09
Company: Stantec Consulting Corporation
Address: 10235 W. Little York City:Houston State: TX Zip: 77040
Telephone No: (713) 937-7973
Fax No.: (713) 983-8328
Signature: Mac Atino Date: 4-27-09
Corrective Action Specialist: Mark Smith CAS No.: 0550 Expiration date: 12/10/11
Company: Stantec Consulting Corporation
Address: 10235 W. Little York City: Houston
Telephone No: : (713) 987-7973
Signature:

State: TX Zip: 77040
Fax No.: (713) 983-8328
Date: \(4-27-09\)

Name of Responsible Party contact: Ravelle Jones
Telephone No.: (713) 432-2641
Signature:
Date:

ATTACHMENTS:

\section*{Site Map \\ State of Texas Plugging Reports (Form No. TNRCC-0055) Agency Correspondence Photographs}

\section*{Texas Commission on Environmental Quality}

\author{
Protecting Texas by Reducing and Preventing Pollution
}

May 22, 2009

\section*{CERTIFIED MALL}
\[
93 \quad 708 \text { 2133 } 3935 \quad 2305 \text { 1850 }
\]

\section*{RECEIVED}

Ms. Ravelle Jones

\section*{JUN 152009 \\ REGIOW 12}

4800 Foumace Place
- 2 ,

Bellaire, Texas 7740I
Re: Leaking Petroleum Storage Tank (LPST) Case Closure of Subsurface Release of Hydrocarbons at Chevron Facility \(\# 60108123,12860\) Memorial Dr., Houston (Harris County), Texas
LPST ID No. 091934; Facility ID No. 29268; Priority 4.1; R-12
Dear Ms. Jones:
This letter confirms the completion of corrective action requiremenis for the release incident at the aboverefercnced facility. Based upon information submitted and with the provision that the documentation provided to this agency was accurate and representative of site conditions, we concur with the conclusions and recommendations that the site has met closure requirements. Therefore, no further corrective action is necessary. The justification for final closure includes, but is not limited to, the following criteria:
- The maximum soil contaminant concentrations in the 0 to 15 foot interval were below health-based target levels.
* There appears to be no threat of explosive vapors.
. \(\because\) There is no documented use of the affected zone within \(0.5-\mathrm{mile}\), and fulure ase is not considered likely.
- Non-aqueous phase liquids have been removed to the maximum extent practicable.
- The dissolved-phase plume is adequately delineated and appears stable or decreasing over time.
- Identified potential receptors do not appear threatened by this release.

Please note that financial assurance must be maintained for all operational storage tanks at this site. Please be aware that case closure is based on identified exposure pathways and that any remaining contaminant levels and potential exposure pathways should be evaluated when conducting any future soil excavation or construction activities at this site. Please ensure that any wastes generated from these activities are handled in compliance with all applicable regulations.

Please be advised that all monitor wells which are not now in use and/or will not be used in the next 180 days must be properly plugged and abandoned pursuant to Chapter 32.017 of the Texas Water Code and in accoldance with Title 16, Texas Administrative Code (TAC), Section 76.1004. A State of Texas Plugging Report (Form No. TCEQ-0055) is required to be submitted to the Water Well Drillers Section of the Texas

Ms. Ravelle Jones
May 22, 2009
Page 2
LPST ID No. 091934
Department of Licensing and Regulation, P.O. Box 12157, Capitol Station, Austin, Texas 78711, within thirty (30) days of plugging completion. If you have any questions regarding the future use of an existing monitor well, please contact the Texas Department of Licensing and Regulation at 512/463-7880 or 800/803-9202.

If any monitor well plugging or other necessary site restoration activities will be performed to complete site closure, complete a Final Site Closure Report and submit the report to the Central Office in Austin to document actual site closure. For sites eligible for reimbursement through the Petroleum Storage Tank Remediation Fund, written preapproval should be obtained prior to initiation of site closure activities. Reimbursement claims for activities that are not preapproved will not be paid until all claims for preapprove work are processed and paid.

Please note that the Final Site Closure Report, ifnecessary, will be the last submittal associated with this case. This letter signifies the completion of corrective action associated with the release. No subsequent TCEQ correspondence will be issued in response to the Final Site Closure Report.

Should you have any questions, please contact Ms. Trudy Masan of Darcy Environmental Group (TCEQ Privatization Contractor) at 512/342-8585, extension 204. Please reference the LPST O Number when making inquiries. Your cooperation in this matter has been appreciated.

Sincerely,

Prasanthi Bollineni or Susan Longbine
PST Privatization Contract Manager
Environmental Cleanup Section I
Remediation Division
Texas Commission on Environmental Quality
PVB/SNL/th2
091934 fin.wpd

DATE: February 13, 2009
see file for previous CFMs
THRU : Prasanthi Bollineni or Susan Longbine, TCEQ On Site Supervisor David Bratberg, Project Manager, Darcy Environmental Group

FROM: Trudy Hasan, Case Coordinator, Darcy Environmental Group David Bratberg, Case Coordinator, Darcy Environmental Group

RE ...:. File Review of Subsurface Release of Hydrocarbons at Chevron Facility \(\$ 60108123,12860\) Memorial Dr., Houston (Harris County), Texas
LPST ID No. 091934; Facility ID No. 29268; Priority 4.1; R-12

\section*{Site History}
- March 1987 - one 10,000 gallon gasoline UST and one 550 gallon waste oil tank were removed and a new UST system was installed.
- June 1988 - LPST 091934 was issued following a May 1988 report of hydrocarbons present in storm drains adjacent to the site. MW- 1 through MW- 5 were installed. NAPL was discovered in MW-3 and a skimmer was installed in the well. MW-6 through MW-8 were installed in August 1988.
- A remediation system was installed and the system was started in February 1990. Surface water discharge of the recovered groundwater was permitted. The system operated from February 1990 until October 1995.
- October 1995 - four USTs (three 10,000 gallon and one 1,000 gallon tank) were removed. Maximum concentrations of BTEX

Exposure Pathways Open:
\(\square\) GW Ingestion (onsite -current)
Z GW Ingestion (onsite- future)
EGW ingestion (offsite - current)
GGW ingestion (offsite - future)
르 Construction Worker
Plume stability moniloring
ED Soils- Exp. Vapor
ㅁ Soils - Health
므 NAPL, DTW > \(>15^{\circ}\)
O GW to surface water
므 Other and TPH were 2.91 ppm (south of dispensers) and \(3,800 \mathrm{ppm}\) (north wall of waste oil tankhold). Excavated materials were retumed to the tankhold. The current UST systen consisting of three 12,000 gallon gasoline USTs was installed.
- LPST 091934 was finaled as a 4.1 site on 5/21/2001.
- Chevron plugged and abandoned three of nine monitor wells and have been sampling the remaining wells periodically.

\section*{Release Determination}
- November 2003 - during a groundwater sampling event, MW-8 was found to contain 0.81 ft . NAPL. Initially assigned new LPST \# 116132. However, hydrocarbon fingerprinting shows product to be weathered, leaded gasoline. Not likely from a new release. A tank tigltness test was performed after the product was discovered. All lines passed. The test results are not included in the RDR.
- Because it appears that the NAPL in MW-8 is from the original release, LPST 091934 was re-opened on 7/20/2006. LPST 116132 was cross-referenced to this case.

\section*{Site Characteristics}
- Active UST facility with three 12,000-gallon gasoline tanks located at the south central portion of the property. The former tankholds are located at the southwest corner and north central portion of the property.
-75-100\% impervious cover.
- Surrounding land use is mixed commercial and residential.
- The site lithology consists of clay and sandy clay to 35' bgs.

LPST ID No. 091934
page 2
February 13, 2009

\section*{Soil Assessment}
- Maximum soil concentrations:
benzene " \(87 \mathrm{ppm}(B-8 / M W-8,25\) ', \(8 / 5 / 88\))
BTEX 1,294 ppm (B-8/MW-8, 25; 8/5/88)
TPH \(\quad 259 \mathrm{ppm}\left(\mathrm{MW}-1,10^{\prime}-12.5^{\prime}, 10 / 17 / 96\right)\)
PAH <action level (MW-1, 10'-12.5', 10/17/96)
- There has been no apparent threat of explosive vapors since the 1988 incident.
- Soil wastes were properly disposed.

\section*{Groundwater Assessment}
- Six MWs remain at this site: MW-2, MW-4, MW-5, MW-6, MW-7, and MW-8. MW-1 was plugged or destroyed during the October 1995 tank removal. MW-3, MW-9. and MW-10 were plugged in 2001 following initial site closure. Offsite MW-11 was apparently destroyed.
- . DTW ranges from \(22^{\prime}\) to \(33^{\prime}\) btoc. \(M W-2, M W-5\), and \(M W-7\) were re-developed in 2007 after being silted in. MW-7 has remained dry/obstructed about \(26^{\prime}\) bgs.
- GW gradient: Generally to the north and west
- TDS is \(1,200 \mathrm{ppm}\)
- Groundwater sampling was initiated in 1988. 21 GWM events were conducted between 1990 and 2000. 9 GWM events have been conducted since the case was re-opened in 2006. NAPL has been reported in MW-3 (historically) and MW-8.
- Maximum groundwater concentrations:
\begin{tabular}{|c|c|c|}
\hline & Historical (1990-2007) & Current (2008) \\
\hline Benzene & 22.0 (MW-8, 01/25/96) & \(4.30 \mathrm{ppm}(\mathrm{MW}-8,11 / 25 / 08)\) \\
\hline BTEX & 182 ppm (MW-8, 1988) & \(23.77 \mathrm{ppm}(\mathrm{MW-8} 8.4 / 25 / 08)\) \\
\hline MTBE & 14.8 ppm (MW-8, 1988) & \(1.50 \mathrm{ppm}(\mathrm{MWF}-8,4 / 25 / 08)\) \\
\hline TPH & \(230 \mathrm{ppm}(\mathrm{MW-8}, \mathrm{6/5/95)}\) & discontinued \\
\hline
\end{tabular}
-MW- 8 is located adjacent to the former tankhold located near the north-central portion of the property.
- The construction worker pathway is closed since the DTW is \(>15^{\prime} \mathrm{bgs}\).
- Current groundwater data indicate that the plume is stable and adequately delineated.
- Fluid wastes were properly disposed.

\section*{NAPL}
- NAPL has been reported in MW-3 and MW-8.
- A groundwater pump and treat system operated from February 1990-September 1995. No NAPL was reported after 1991, until 2008 when 0.81' of NAPL was detected in MW-8. Hydrocarbon fingerprinting shows product to be weathered, leaded gasoline with no oxygenates - from the old release.
- . Six 8-hour MDPE events conducted 2005-2006 recovered about 83 gallons of product. Product recovery appears to be limited due to the IC unit used.
* A 24-hour MDPE event conducted in March 2008 using a liquid ring pump system recovered 1,447 gallons of product (73 gallons as liquid).
- An estimated 1,530 gallons of product have been recovered to date by MDPE; an unknown volume was recovered prior to 2001.
- No NAPL has been detected since the March 2008 MDPE event; it appears that NAPL has been removed to the maximum extent practicable.

\section*{Receptors and Site Priority/Category}
- Site is located over the Beaumont Formation; future use is not likely.
- Four water supply wells were identified within \(0.5-\) mile, all \(>1,200\) feet from the site. They are all deeply screened (>250'bgs) and do not appear threatened by this release.
\(\frac{\text { Map 10 \# }}{6512802} \frac{\text { Owner }}{\text { City Houston }} \quad \frac{\text { Well use }}{\text { Public supply }} \quad \frac{\text { TD }}{780} \quad\)\begin{tabular}{lll}
Screening & Cementing \\
\hline \(97-780\) & \(?\)
\end{tabular}

LPST D No. 091934
page 3
February 13, 2009
\begin{tabular}{llllll}
6512802 & C. Stanley & Domestic & 271 & \(260-271\) & \(0-253\) \\
651283 & R Ljungdahl & Industrial & 415 & \(390-415\) & \(0-390\) \\
\(65128 J\) & M. Kindred & Domestic & 295 & \(275-295\) & \(0-280\)
\end{tabular}
* The City of Houston provides municipal water to the site and surrounding area.
- Surface water w/in 1,200 feet: none
- Subsurface utilities are located around site perimeter.
- Priority 4.1; Category Il groundwater.

\section*{Recent Submittals}

FAR (rec'd 5/21/08) and MPR, AGMR, PA8 (rec'd 6/9/08)
- FAR is for rehab of MW-2, MW-5, \& MW-7; data shows MW-7 stil" "dry", need DTdry data. Vac tnuck used as proposed; ok. MPR documents a 24-hr MDPE (03/18/08), lab data super high (1.82 gr/L); data appears correct, super high recovery, no NAPL after. AGMR documents four quarters of monitoring. Approve limited GWM to show NAPL has been removed. CARF issued \(7 / 2 / 08\).

AGMR, SCR, PA13 (rec'd 01/20/09)
- .. Two quarters of monitoring were completed as preapproved. MWV-7 has some sort of blockage about 26'bgs; dry and not sampled. No NAPL reported during last three quarters, and contaminant concentrations in MW-8 appear stable.
* Site closure is appropriate. Issue final letter and CARF to plug the six remaining MWs.

\section*{Fxposure Pathway Evaluation}
- soils: maximum soil concentrations \(0-15^{\prime}<\) heallh-based targets; closed
- soils: no apparent threat of explosive vapors; closed
- current groundwater ingestion: no existing receptors; closed.
- future groundwater ingestion: future use is not likely; closed.
- construction worker: DTW > 15'bgs; closed.
- NAPL: removed to the maximum extent practicable; closed.
- plume stability: stable and delineated; closed.

\section*{Conclusions/Recommendations}
* NAPL was originally reported at this site in 1988 , and a treatment system operated from \(\sim 1991\) to 1995 recovering an unknown volume of product. No NAPL was detected between 1992 and 2001 , and the site was closed in May 2001 as the dissolved-phase plume appeared stable. Note that a Plan \(A R B A\) was never completed for this release.
- In 2003, NAPL was detected again in MW-8, prompting this case to be re-opened. MDPE and groundwater monitoring was conducted 2005-2008, recovering more than 1,500 gallons of product. No NAPL was detected during the last three quarters of monitoring, and concentrations appear stable in MW-8. The plume has remained adequately delineated. Site closure is appropriate based. on the current data.
091934. wpd

\section*{Page 1 of 1}

\section*{}
Page 1 of 1
Detail of: Innocent Owner/Operator Program ID Number 249 For: SPRINT PCS TOWER SITE (RN100521491)
Central Registry
ID Number Status: INACTIVE
Responsible Parties: SPRINT COM

\footnotetext{
Mailing Address: 1341 W MOCKINGBIRD LN DALLAS, TX 75247-6913
}

†LZI00Z9 \(886 \varepsilon 8 \angle Z=\left.\mathrm{p}\right|^{-}\)ирредә!

Detail of: Innocent Owner/Operator Program ID Number 249 For: SPRINT PCS TOWER SITE (RN100521491) 608 W BOUGH LN, HOUSTON
ID Number Status: INACTIVE
Responsible Parties: SPRINT COM INC (CN60024
Mailing Address: 1341 W MOCKINGBIRD LN DAL

Mailing Address: 1341 W MOCKINGBIRD LN DALLAS, TX 75247-6913
\begin{tabular}{|c|l|l|l|l|l|l|}
\hline Legal & Description & Start Date & End Date & Type & Status & Status Date \\
\hline 249 & INNOCENT OWNER PROGRAM & \(07 / 17 / 2001\) & \(10 / 29 / 2001\) & CLEANUP & INACTIVE & \(10 / 29 / 2001\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Tracking No. & Type & Value & Start Date & End Date \\
\hline 9311903 & ADMINISTRATIVE STATUS & INACTIVE & \(10 / 29 / 2001\) & \\
\hline 10030525 & PROJECT MANAGER & ECORR & \(07 / 13 / 2001\) & \(10 / 29 / 2001\) \\
\hline 10030501 & APPLICATION RECEIVED DATE & \(07 / 17 / 01\) & \(07 / 17 / 2001\) & \\
\hline 10030499 & CASHIER RECEIVED DATE & \(07 / 13 / 2001\) & \(07 / 17 / 2001\) & \\
\hline 10030502 & PCA NUMBER & 32249 & \(07 / 17 / 2001\) & \\
\hline 10030503 & PROJECT NUMBER & 322490 & \(07 / 17 / 2001\) & \\
\hline 10030498 & APPLICANT INTEREST IN SITE & CURRENT OPERATOR & \(07 / 17 / 2001\) & \\
\hline 10030526 & FILE LOCATION & \(200-38\) & \(07 / 13 / 2001\) & \\
\hline 10030500 & FILE MEDIA & PAPER & \(07 / 17 / 2001\) & \\
\hline
\end{tabular}
http://wwwl5.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.pgmdetail\&addn_id=278398562001274\&lgcy_sys_cd=ARTS
Central Registry
Detail of: Dry Cleaners Registration Registration DCR11287 CLEANERS 10244 (RN103953188)
12534 MEMORIAL DR, HOUSTON
Registration ACTIVE
Status:
Held by: MWDC TEXAS INC (CN602704405) OWNER OPERATOR Since 03/10/2008
Mailing Address: 210 SPRING HILL DR STE 135 SPRING, TX 77386-2385

http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.cordetail\&addn_id=307767842014176
Detail of: Dry Cleaners Registration Registration DCR11287

\section*{Central Registry}
Registration ACTIVE
Status:
Held by: MWDC T
OWNER
Mailing Address: 210 SPRI
Mailing Address: 210 SPRING HILL DR STE 135 SPRING, TX 77386-2385
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Legal & Description & Start Date & End Date & Type & Status & Status Date \\
\hline DCR11287 & FY2015 & \(08 / 06 / 2014\) & & DROP STATION REGISTRATION & ACTIVE & \(08 / 06 / 2014\) \\
\hline DCR11287 & FY2014 & \(07 / 19 / 2013\) & & DROP STATION REGISTRATION & ACTIVE & \(07 / 22 / 2013\) \\
\hline DCR11287 & FY2013 & \(07 / 13 / 2012\) & & DROP STATION REGISTRATION & ACTIVE & \(07 / 16 / 2012\) \\
\hline DCR11287 & FY2012 & \(09 / 29 / 2011\) & & DROP STATION REGISTRATION & ACTIVE & \(10 / 06 / 2011\) \\
\hline DCR11287 & FY2011 & \(07 / 21 / 2010\) & & DROP STATION REGISTRATION & ACTIVE & \(07 / 21 / 2010\) \\
\hline DCR11287 & FY2010 & \(01 / 11 / 2010\) & & DROP STATION REGISTRATION & ACTIVE & \(01 / 22 / 2010\) \\
\hline DCR11287 & FY2009 & \(09 / 01 / 2008\) & & DROP STATION REGISTRATION & ACTIVE & \(12 / 31 / 2008\) \\
\hline DCR11287 & FY2007 & \(09 / 01 / 2006\) & \(05 / 30 / 2007\) & FACILITY REGISTRATION & INACTIVE & \(05 / 30 / 2007\) \\
\hline DCR11287 & FY2006 & \(09 / 01 / 2005\) & & FACILITY REGISTRATION & ACTIVE & \(09 / 08 / 2005\) \\
\hline DCR11287 & FY2005 & \(09 / 01 / 2004\) & & FACILITY REGISTRATION & ACTIVE & \(09 / 21 / 2004\) \\
\hline DCR11287 & FY2004 & \(09 / 01 / 2003\) & & FACILITY REGISTRATION & ACTIVE & \(10 / 17 / 2003\) \\
\hline
\end{tabular}

\section*{Page 1 of 1}
Central Registry
Detail of: IHW Corrective Action ID Number T1936 For: MW CLEANERS 10244 (RN103953188)
12534 MEMORIAL. DR, HOUSTON
Query Home
Page 1 of 2
Questions or Comments >>
Search Results ID Number Detail TCEQ Home
TCEQ CR Query - Voluntary Cleanup Program ID Number 1714

\begin{tabular}{|l|l|l|l|l|l|}
\hline Physical & Description & Start Date & Type & Status & Status Date \\
\hline \begin{tabular}{l}
LANTERN LANE SHOPPING CENTER PRO \\
CLEANERS
\end{tabular} & & \(07 / 05 / 2004\) & \begin{tabular}{l}
AFFECTED \\
PROPERTY
\end{tabular} & INVESTIGATION & 07/02/2013 \\
\hline \\
\hline Tracking No. & Type & Value & Start Date & End Date \\
\hline 9290593 & PROJECT PHASE & INVESTIGATION & \(07 / 02 / 2013\) & \\
\hline 10674988 & APPLICABLE PROGRAM RULES & TRRP & \(07 / 05 / 2004\) & \\
\hline
\end{tabular}

Page 3 of 3

\title{
Texas Commission on Environmental Quality
}

Protecting Texas by Reducing and Preventing Pollution
August 27, 2014

Mr. Michael Marcon
mmarcon@incontroltech.com
InControl Technologies, Inc.
3845 FM 1960 W., Suite 195
Houston, TX 77002
Re: … Lantern Lane Shopping Center, 12534 Memorial Drive, Houston, Harris County, Texas; Voluntary Cleanup Program (VCP) No. 1714; Customer No. CN602656985; Regulated Entity No. RN103953188

Dear Mr. Marcon:
The VCP of the Texas Commission on Environmental Quality (TCEQ) has reviewed the June 27 , 2014 submittal entitled Municipal Settings Designation Application, prepared by InControl Technologies, Inc.

The TCEQ has reviewed the submitted documents and historical documents. The TCEQ has determined that although the properties were included in the original MSD application they did not in the end receive the MSD certification. Therefore the well owners within a 5 -mile radius need to be notified of the changes that have been made and the new sites receiving the MSD. Please make sure that if there are any new wells in place since the last round of notifications that they receive the proper notifications.

A response should be submitted to my attention at the TCEQ at the letterhead address using mail code MC-221. Your response must be received on or before October 30, 2014.
Should you need additional information or wish to discuss these comments or due date, please call me at (512)239-2241.

Sincerely,

\section*{RECEIVED SEP 032014 \\ REGION 12}

Chris Swiderski, Project Manager
VCP-CA Section

\section*{Remediation Division}
\(\mathrm{CS} / \mathrm{j} d \mathrm{~m}\)
cc: Mr. Jason Ybarra, TCEQ, Waste Section Manager, Houston Regional Office, MC R-12
P.O. Box 13087 - Austin, Texas \(787 \mathrm{n}-3087\) • \(512-239-1000\) - tceq.texas.gov

\title{
Texas Commission on Environmental Quality
}

Protecting Texas by Reducing and Preventing Pollution
June 10, 2014

\section*{RECEIVED}

JUN 202014
REGION 12

Mr. Michael Marco
mmarcon@incontroltech.com
InControl Technologies, Inc.
3845 FM 1960 W., Suite 195
Houston, TX 77002
 Voluntary Cleanup Program (VCP) No. 1714; Customer No. CN602656985; Regulated Entity No. RN103953188

Dear Mr. Marco:
The VCP of the Texas Commission on Environmental Quality (TCEQ) has reviewed the March 21,2014 report entitled Technical Correspondence, prepared by InControl Technologies, Inc.
1. The TCEQ has reviewed the submitted documents and historical documents and has been unable to locate the original MSD application which would verify the original boundaries. If the original MSD application does not contain boundaries which include these new properties, a new MSD application will need to be submitted. The new MSD application would need to include notification letters to the existing well owners not previously notified within the new 5 -mile radius of the site (as modified by the inclusion of additional acreage).
2. Tetrachloroethene was detected in monitor well 1-MW-9 at a concentration of \(2.6 \mathrm{mg} / \mathrm{L}\), during the October 2011 sampling event. This concentration is in shallow groundwater located beneath an adjacent residential property sought to be added to the MSD. The TCEQ understands that the site has previously received a VCP certificate of completion (COC) for the Lantern Lane Shopping Center property. Please be aware that there may be a vapor intrusion issue on the adjacent property which may require mitigation by a responder in order to be protective of indoor receptors, regardless of whether the VCP applicant intends to secure COCs for the residential properties. If the applicant seeks to obtain COCs for the adjacent residential properties, the potential for vapor intrusion must be evaluated and, if necessary, mitigated by the VCP applicant prior to certification.

A response should be submitted to my attention at the TCEQ at the letterhead address using mail code \(\mathrm{MC}-221\). Your response must be received on or before August 20, 2014.

Mr. Michael Marcon
Page 2
June 10, 2014
VCP ID No. 1714
Should you need additional information or wish to discuss these comments or due date, please call me at (512)239-2241.

Sincerely,

Chris Swidersk, Project Manager
VCP-CA Section
Remediation Division
Texas Commission on Environmental Quality
\(\mathrm{CS} / \mathrm{mdh}\)

Cc: Mr. Jason Ybarra, TCEQ, Waste Section Manager, Houston Regional Office, MC R-12

\section*{vepl7142}

Bryan W. Shaw, Ph .D., Cham on
Carlos Rubinstein, Commissioner
Toby Baker, Commissioner
Zak Covar, Executive Director

\title{
Texas Commission on Environmental Quality
}

Protecting Texas by Reducing and Preventing Pollution

October 11, 2012

Mr. Tenel Tayar
Senior Vice President - Chief Investment Officer
AmREIT Lantern Lane, LP
8 Greenway Plaza, Suite 1000
Houston, TX 77046
Re: Certificate of Completion (COC) for Lantern Lane Shopping Center, 12534 Memorial Drive, Houston, Harris County, TX; Voluntary Cleanup Program (VCP) No.1714; Customer No. CN602656985; Regulated Entity No. RN103953188

Dear Mr. Tayar:
The Texas Commission on Environmental Quality (TCEQ) has reviewed the June 1, 2012 report entitled Revised Affected Property Assessment Report for the Lantern Lane Shopping Center as well as other requested information. Based on this review, the TCEQ has determined that the site has attained Texas Risk Reduction Program Remedy Standard A residential land use standards for all exposure pathways except the groundwater ingestion (GWGW \({ }_{l n g}\)) pathway, in accordance with 30 Texas Administrative Code \(\$ 350.32\) (Remedy Standard A). The GWGWIng pathway has been satisfactorily addressed through the issuance of a Municipal Setting Designation (MSD) certificate pursuant to Texas Health and Safety Code \(\$ 361.807\). Therefore, the TCEQ issues the enclosed final COC. The TCEQ records for this site will be maintained at the Central Records office of the TCEQ in Austin, Texas.

Response actions performed in the VCP which rely upon non-permanent institutional controls require filing of the certificate in the real property records of the county in which the site is located in accordance with 30 TAD \(\$ 333.9\). Please submit proof of filing the certificate in the real property records no later than 90 days from the date of the certificate to the TCEQ, VCP-CA Section, mail code MC-221, at the letterhead address. Failure to submit proof of filing demonstrating that the certificate was filed within 90 days of issuance may result in termination of the VCP agreement and an enforcement action.

Mr. Tenel Tayar
Page 2
October 11, 2012
VCP No. 1714

Please be aware that there may be outstanding charges reflecting TCEQ oversight activities that may still be forthcoming. You may contact Mr. Mark Arthur of my staff with any questions or comments you have at (512) 239-2362.
Sincerely,
Beth Seato
Beth Seato, Director
Remediation Division
Texas Commission on Environmental Quality
BS/MA/del
cc: Mr. Michael Marco, InControl Technologies, 3845 FM 1960 W, Suite 195 ,
\(\quad\) Houston, TX 77068
Ms. Nicole Bealle, Waste Section Manager, TCEQ Region 12 Office, Houston
Enclosure: COC

\section*{TEXAS COMMISSION ON ENVIRONMENT 2 Q QUALITY}

\section*{VOLUNTARY CLEANUP PROGRAM FINAL CERTIFICATE OF COMPLETION}

This Final Certificate of Completion (Certificate) applies to the tract of land described in Exhibit " A ", attached hereto and incorporated herein by reference. This Certificate and the related protection described herein apply solely to releases at the tract of land described in Exhibit "A" prior to the execution date of this Certificate. This Certificate shall be a covenant that runs with the land.

As provided in Section 361.609 of the Texas Health and Safety Code:
I, Beth Seaton, Director, Remediation Division, TCEQ, certify as follows:
Response actions have been completed for VCP No. 1714 as of August 29, 2012, for the tract of land described in Exhibit " \(A\) " so that the tract is acceptable for residential land use.

This certification is based on the Affidavit of Completion of Response Actions (Exhibit "B"), and is reliant upon a Municipal Setting Designation that has been certified by the TCEQ under Section 361.807 of the Health and Safety Code for this tract of land to prohibit use of groundwater. The Municipal Setting Designation Certificate is included as Exhibit " C ", attached hereto and incorporated herein by reference, and on additional site information in TCEQ files.

The following persons are qualified to obtain the protection from liability described in Section 363.610 of the Texas Heath and Safety Code:
1) An applicant who on the date of submittal of an application to the Voluntary Cleanup Program was not a responsible party under Sections 361.271 or \(361,275(\mathrm{~g})\) of the Texas Health and Safety Code; and
2) All persons (egg., future owners, future lessees, future operators and lenders) who on the date of issuance of this Certificate were not responsible parties under Sections 361.271 or 361.275 (g) of the Texas Health and Safety Code.

Further information concerning this matter may be found at the TCEQ Central File Room in Building E, Room 103 , 12100 Park 35 Circle, Austin, Texas 78753 under Voluntary Cleanup Program No.1714.

\section*{STATE OF TEXAS TRAVIS COUNTY}

BEFORE ME, on this the \(11 T /\) day of \(T O L O E\) Remediation Division, of the Texas Commission on Environmental Quality, known to me to be a representative of said commission whose name is subscribed to the foregoing instrument and she acknowledged to me that she executed the same for the purposes and in the capacity therein expressed.

Notary without Bond

\section*{Exhibit A}

\section*{Legal Description}

\begin{abstract}
A TRACT OR PARCEL OF LAND CONTAINING 6.7624 ACRES OR 294.570 SQUARE FEET OF LAND, SITUATED IN THE GEORGE BELLOWS SURVEY, ABSTRACT NO. 3, HARRIS COUNTY, TEXAS BEING OUT OF AND A PART OF LOT 20 OF BENIGNUS ACRES, MAP OR PLAT THEREOF RECORDED IN VOL. 15 , PG. 8 OF THE HARRIS COUNTY MAP RECORDS SAID 6.7624 ACRE TRACT BEING THAT SAME TRACT OF LAND CONVEYED TO AMREIT LANTERN LANE, LP IN THAT CERTAIN WARRANTY DEED FILED UNDER HARRIS COUNTY CLERKS FILE NO 20060084602 AND BEING MORE PARTICULARLY OESCRIBEO BY METES AND BOUNDS AS FOLLOWS:
\end{abstract}

BEGINNING AT A \(5 / 8 \mathrm{INCH}\) IRON ROD FOUND ON THE WESTERLY RIGHT OF WAY LINE OF BENIGNUS ROAD (BASED ON WITH OF 60 FEET) MARKING THE SOUTHEAST CORNER OF MEMORIAL PINES, SECTION TWO, MAP OR PLAT THEREOF RECORDEO IN VOL. 68, PG. 1. H.C.M.R. FOR THE NORTHEAST CORNER OF THE HEREIN DESCRIBED TRACT;

THENCE SOUTH. ALONG AND WITH THE SAID WESTERLY RIGHT OF WAY LINE OF BENIGNUS ROAD, A DISTANCE OF 350.90 FEET TO A \(3 / 4\) INCH IRON PIPE FOUND MARKING THE NORTHWEST CORNER OF THE INTERSECTION OF THE SAID WESTERLY RIGHT OF WAY LINE OF BENIGNUS ROAD, WTH THE NORTHERLY RIGHT OF WAY LINE OF MEMORIAL DRIVE (BASED ON A WITH OF 100 FEET) FOR THE SOUTHEAST CORNER OF THE HEREIN DESCRIBED TRACT:

THENCE WEST, ALONG AND WITH THE SAID NORTHERLY RIGHT OF WAY LINE OF MEMORIAL DRIVE, A OISTANCE OF 839.32 FEET TO A \(5 / 8\) INCH IRON ROD FOUND MARKING THE NORTHEAST CORNER AT THE INTERSECTION OF THE SAID NORTHERLY RIGHT OF WAY LINE OF MEMORIAL DRIVE WITH THE EASTERLY RIGHT OF WAY LINE OF TALLOWHOOD ROAD (BASED ON A MOTH OF 60 FEET) FOR THE SOUTHWEST CORNER OF THE HERE DESCRIBED TRACT;

THENCE NORTH DO DEG. 17 MIN. D SEC. EAST, ALONG AND WITH THE SAID EASTERLY RIGHT OF WAY LINE OF TALLOWWOOD ROAD. A DISTANCE OF 351.76 FEET YO A \(5 / 8\) INCH IRON ROD FOUND MARKING THE SOUTHWEST CORNER OF SAIO MEMORIAL PINES, SECTION TWO FOR THE NORTHWEST CORNER OF THE HEREIN DESCRIBED TRACT, FROM WHICH A \(5 / 8\) INCH IRON ROD FOUND FOR REFERENCE BEARS SOUTH 22 DEG. 13 MN . EAST 1.6 FEET;

THENCE SOUTH 89 DEG. 56 MIN. 30 SEC. EAST, ALONG AND WIT THE SOUTHERLY LINE OF SAID MEMORIAL PINES, SECTION TWO, A DISTANCE OF 837.58 FEET TO THE POINT OF BEGINNING AND CONTAINING 6.7624 ACRES OR 294,57D SQUARE FEST OF LAND.

Exhibit A

\section*{Exhibit "B" \\ Affidavit of Completion of Response Actions \\ VCP.No. 1714}

BEFORE ME, the undersigned authority, on this day personally appeared \(\qquad\) Chad Bran as an authorized representative of AmREIT Lantern Lane, LP, known to me to be the person whose name is subscribed below who being by me first duly sworn, upon their oath, stated as follows:

I am over the age of 18 and legally competent to make this affidavit. I have personal knowledge of the facts stated herein.

AmREIT Lantern Lane, LP (Applicant) has completed response actions pursuant to Chapter 361, Subchapter S, Texas Health and Safety Code, at the tract of land described in Exhibit "A" to this certificate that pertains to Lantern Lane Shopping Center (Site), VCP No. 1714 located at 12534 Memorial Drive, Houston, Harris County, Texas. The Site was owned by Differential Development 1994, Ltd at the time the application to participate in the Voluntary Cleanup Program was filed. The Applicant has submitted and received approval from the Texas Commission on Environmental Quality (TECQ) Remediation Division on all plans and reports required by the Voluntary Cleanup Agreement. The plans and reports were prepared using a prudent degree of inquiry of the Site consistent with accepted industry standards to identify all hazardous substances, waste and contaminated media of regulatory concern. The response actions for the Site have achieved standards acceptable for residential land use as determined by the TECQ.

The response actions substantially eliminated present or future risk to public health and safety and to the environment from releases and threatened releases of hazardous substances and/or contaminants at or from the Site. The Applicant has not acquired this certificate of completion by fraud, misrepresentation or knowing failure to disclose material information. Further information concerning the response action at this Site may be found in the final report at the central office of the TCEQ under VCP No. 1714.

The preceding is true and correct to the best of my knowledge and belief.

\section*{STATE OF TEXAS}

COUNTY OF HARRIS
SUBSCRIBED AND SWORN before me on this the 29 day of August 2012 to which witness my hand and seal of office. Jut 18, 2014

\section*{Page 1 of 2}

\section*{Central Registry Query - Regulated Entity Information}

\section*{Regulated Entity Information}
RN Number: RN100658335
Name: PILGRAM WYCLIFFE
Primary Business: No primary business
Primary Business: No primary business description on file.
Address: 12647 MEMORIAL DR, HOUSTON TX 770244800
County: HARRIS
Nearest City: No near city on file.
Near ZIP Code: 7702
Physical Location: 12647 Memorial Dr, Houston, TX
Your Search Retumed 3 Current Affiliation Records (View Affiliation History)
1-3 of 3 Records

Industry Type Codes
\begin{tabular}{|l|l|l|}
\hline Code & Classification & Name \\
\hline No NAICS or SIC Codes on file. \\
\hline
\end{tabular}

TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 70233
Questions or Comments >>

> Central Registry
> © 2002-2013 Texas Commission on Environmertal Qualiy
Page 1 of 1

\section*{TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 70231}

\section*{Page 1 of 1}

\section*{}

\title{
Central Registry Query - Regulated Entity Information
}

\section*{Regulated Entity Information}
RN Number: RN107854168
Primary Business: No primary business description on file. treet Address: 12601 MEMORIAL DR, HOUSTON TX 77024
County: HARRIS
Nearest City: HOUSTON
State: TX
Near ZIP Code: 77024
Physical Location: No physical location description on file.
Affiliated Customers - Current
Your Search Returned 1 Current Affiliation Records (View Affiliation History)
1-1 of 1 Records
Industry Type Codes
\begin{tabular}{|l|l|l|}
\hline Code & Classification & Name \\
\hline
\end{tabular}
No NAICS or SIC Codes on file.
Name: MEMORIAL GREEN

\section*{Permits, Registrations, or Other Authorizations}
There is \(\mathbf{1}\) program and ID for this regulated entity.

Page 2 of 2 http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=regent.showSingleRN\&re_id=984337312014328
- 2002-2013 Texars Commission on Environmental Quality
Page 1 of 1

\section*{Page 1 of 1}

Page 1 of 1

\section*{\(3 / 16 / 2015\)}
Page 1 of 1

> Central Registry Query - Regulated Entity Information

\section*{Regulated Entity Information}
\[
\begin{aligned}
& \text { RN Number: RN100579259 } \\
& \text { Name: C O POLYDOROS \& ASSOCIATES } \\
& \text { Primary Business: No primary business description on file. } \\
& \text { Street Address: } 12727 \text { KIMBERLEY LN, HOUSTON TX } 770244047 \\
& \text { County: HARRIS } \\
& \text { Nearest City: No near city on file. } \\
& \text { State: TX } \\
& \text { Near ZIP Code: } 77024
\end{aligned}
\]
\[
\text { Physical Location: } 12727 \text { Kimberley Ln, Houston, TX }
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Affiliated Customers - Current} \\
\hline \multicolumn{7}{|l|}{Your Search Returned 1 Current Affiliation Records (View Affiliation History) 1-1 of 1 Records} \\
\hline CN Number & Custo & mer Name & Customer Role & Details & & \\
\hline CN600289607 & ESSO & EXPLORATIONINC & OWNER OPERATOR & 5 & & \\
\hline \multicolumn{7}{|l|}{Industry Type Codes} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{|l|l|l|}
\hline Code & Classification & Name \\
\hline
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{No NAICS or StC Codes on file.} \\
\hline \multicolumn{7}{|l|}{Permits, Registrations, or Other Authorizations} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
There is \(\mathbf{1}\) program and ID for this regulated entity. \\
1-1 of 1 Records
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Program} & ID Type & & ID Number & ID Status \\
\hline \multicolumn{3}{|l|}{INDUSTRLAL AND HAZARDOUS WASTE} & SOUD WASTE REGIS & TRATION * (SWR) & 90100 & INACTIVE \\
\hline
\end{tabular}

\footnotetext{
Ske Hels I Dischamer I Web Polioes I Accessibity I Our Compact with Tecans I TCEQ Homeland Securify I Contact Us I Central Registry I Search Hints I Statenide Unks: Terasigov I Tecas Homeland Secunty I TRAaL, Statewide Arctive I Teasas Veterans Portal
- 2002-2013 Teas Comnission on Ervirommental Qualty
}
TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 90100

\footnotetext{
Ste Hels I Oisclamer I web Polces I Accessibilty I Cur Compact with Texans I TCeQ Homeland Security I Contact Us I Central Registry I Search Hints I Statewide Uniks: Texas 950 I Texas Homeiand Securty I TRAll Statewide Archive I Texas veterans portal
© 2002-2013 Teras Comnission on Ervironmental Qualty
}

\section*{http://www15.teeq.texas.gov/crpub/index.cfm?fuseaction=iwr.pgmdetail\&addn_id=579365782001297\&1gey_sys_cd=IHW\&pro... 3/16/2015}

Central Registry Query - Regulated Entity Information

\section*{Regulated Entity Information}
umber: RN102337805
Name: MOBIL OIL 00BL
Name: MOBIL OIL OOBLY View Prior Names
Primary Business: No primary business description on file.
Street Address: No street address on file. County: HARRIS

Nearest City: No near city on file.
State: TX
Near ZIP Code: 770
Physical Location: 12860 KIMBERLY \& W BELT HOUSTON TX
Your Search Returned 1 Current Affiliation Records (View Affiliation History)
1-1 of 1 Records

\section*{Affiliated Customers - Current}

\section*{\begin{tabular}{|l|l|l|c|}
\hline CN Number & Customer Name & Customer Role & Details \\
\hline CN601047954 & EXXONMOBIL OIL CORPORATION & OWNER OPERATOR & \(\Rightarrow\) \\
\hline
\end{tabular}}

> Industry Type Codes
> \begin{tabular}{|l|l|l|}
\hline Code & Classification & Name \\
\hline \multicolumn{2}{|c|}{ No NAICS or SIC Codes on file. } \\
\hline
\end{tabular}

\section*{Permits, Registrations, or Other Authorizations}
Page 1 of 1
TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 80248
- 2502-2013 Texas Commission on Envirormertal Quality

\section*{Central Registry}
\[
\begin{array}{lll}
\text { Query Home Customer Search } \quad \text { RE Search } \quad \text { Lo Search } \quad \text { Document Search } \quad \text { Search Resplts } \quad \text { TCEQ Home } \\
\hline
\end{array}
\]

Ste Helo I Disclamer I Web Policies I Accessibilty I Our Compact enth Teeans I TCeQ Homelans Security I Contact Us I Central Repisty I Search Hints I
Report Data Errors satewide Lirls: Texas.gov I Texas Momeland Secunty I TRAll Stastwide Active I Texas veterans Portat
\begin{tabular}{|c|c|c|c|}
\hline ¢owos or & ¢دе\% 31 & & 2wor A ame \\
\hline
\end{tabular}

\section*{Page 1 of 1}
\begin{tabular}{rr}
Page 1 of 1 \\
Search Options \(\quad\) CR Questions or Comments >> \(\quad\) TCEQ Home \\
\hline
\end{tabular}

\footnotetext{
Go To: Title V Federal Operating Permits
}
03/16/2015 ------------AirPermits IMS - PROJECT RECORD
Customer Name: Exxonmobil repining AND SUPPLY Legal Name: ExxonMobil Oit Corporation
CN Number: CN601047954
\begin{tabular}{ll}
Region: HOUSTON \(\quad\) ACCount: & Central Registry Id: RN102337805 \\
COunty Name: HARRIS & City: \\
LOcation: 12860 KIMBERLY \& W BELT HOUSTON TX & \\
\hline
\end{tabular}
PROIECT INFORMATION
Project Administrative Name: FORMER SHELL OIL STATION 12-BLY

\section*{\(\begin{array}{lll}\text { Project Number: } & \mathbf{9 6 6 1 0} & \text { Permit Number: } \\ \text { Project Received Date: } & \mathbf{5 4 6 8 0} \\ & \mathbf{0 3 / 3 1 / 2 0 0 3} & \text { Renewal Date: }\end{array}\)}
Permit Type: Permit by rule
Issued Date: 04/07/2003
Site Help | Disclaimer I Web Policies | Accessibility I Our Compact with Texans | TCEQ Homeland Security | Contact Us
Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal
© 2002-2013 Texas Commission on Environmental Quality

\section*{Page 2 of 2}

\section*{§I0Z/9I/E}
http://www1 1.tceq.state.tx.us/oce/ch/index.cfm?fuseaction=main.Search\&formid=rern\&rern=102337805\&doit=Submit
ID Number Status: INACTIVE \(\begin{aligned} & 10802 \text { KATY FWY, HOUSTON }\end{aligned}\)
Responsible Parties: WEATHERFORD US LP (CN600288302)
Maling Address: 1301 MCKINNEY ST HOUSTON, TX 77010-3031
Quessions or Comments >>
Central Registry
Correspondence Tracking
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Central Registry} \\
\hline \multicolumn{9}{|l|}{Detail of: Voluntary Cleanup Program ID Number 1137} \\
\hline \multicolumn{9}{|l|}{For: WEATHERFORD US HOUSTON (RN100675230)} \\
\hline \multicolumn{9}{|l|}{10802 KATY FWY, HOUSTON} \\
\hline \multicolumn{9}{|l|}{ID Number Status: INACTIVE} \\
\hline \multicolumn{9}{|l|}{Responsible Parties: WEATHERFORD US LP (CN600288302)} \\
\hline \multicolumn{9}{|l|}{Mailing Address: 1301 MCKINNEY ST HOUSTON, TX 77010-3031} \\
\hline \multicolumn{9}{|l|}{Correspondence Tracking} \\
\hline Tracking
\[
\mathrm{No}
\] & Receired/Sent & Direction & Type & Sobject & Due Date & End Date & \begin{tabular}{l}
Date \\
Document
Date
\end{tabular} & Method \\
\hline 12036740 & 03/05/2007 & twCOMING & WITRDEAWAL & & 05/04/2007 & 05/02/2007 & 02/26/2007 & \\
\hline 11128352 & 10/12/2005 & OUTGOINS & COMMENTS/NOD & & & 10/12/2505 & 10/12/2005 & \\
\hline 11075206 & c8/23/2605 & INCOMING & RACR A & & 10907/2005 & 10/12/2005 & 06101/2005 & \\
\hline 11037567 & 07/25/2005 & INCOMING & \[
\begin{aligned}
& \text { TEOHNICAL } \\
& \text { COREESPONDENCE }
\end{aligned}
\] & CHANGE OF CONTACT & 03168/2005 & 08/15/2005 & 07/19/2006 & \\
\hline 10943954 & 04/27/2505 & incoming & restonse TO COMVENTS & & 06/11/2005 & 06/30,2005 & 04/22/2006 & \\
\hline 10061366 & 12/3012004 & INCOMING & UIC AUTHORIZATION & & 02/23/2005 & 01/05/2005 & 12/28/2004 & \\
\hline 10801565 & 11/12/2004 & incoming & GW/MEDLA MONITORING RPT & & 12/27/2004 & 12/13/2004 & 07/31/2004 & \\
\hline 10801567 & 11/12/2004 & incoming & APAR & & 01/11/2005 & 02/28/2005 & 12/31/2053 & \\
\hline 10801571 & 11/12/2004 & incoming & rap a & & 12/27/2004 & 02/25/2005 & 10/15/2094 & \\
\hline 10671301 & 07/01/2004 & OUTGOING & COMRENTS/NCO & & & 07/01/2004 & 07/01/2004 & \\
\hline 10429412 & 12/16/2003 & incomenc & APAR & & 02/14/2004 & 07/01/2004 & 12/15/2003 & \\
\hline 10398889 & 11/18/2003 & InCOMENG & TECHNACAL CCRRESPONDENCE & & 01/02/2504 & 12/17/2003 & 12/11/2003 & \\
\hline 20318168 & 09063/2003 & INCONENG & TECMNECA cCRUESAONDENCE & TXCOT ISSUES & 10/23/2003 & 10/14/2003 & 09/05/2003 & \\
\hline 10509323 & 02020/2003 & 3NCONENG & TECNECN ccrarespondence & & 08/20/2003 & 08/20/2003 & 08/20/2503 & monet \\
\hline 10305589 & 08/05/2003 & INCONETNG & OW/medta MONETORING RPT & MABCH 2003 & 09/19/2003 & 09/31/2093 & 07/29/2003 & OVERNEGHT \\
\hline 1024174\% & 08/13/2003 & 2ncconting & TECHNECA CORRESPONDTNCE & ADJMCENT SITE SAMPLING & 04/27/2003 & 04/17/2003 & 03/10/2603 & USPS \\
\hline 10231465 & 03/11/2093 & OUTGOING & COMMENTS/TOD & & 03/26/2003 & 00/11/2003 & 0312/2003 & PHONE \\
\hline 1023513) & 03/66/2003 & incoming & SITE INVEST WORK PLANLETTER & & 04/20/2003 & 03/11/2003 & 02/27/2003 & USps \\
\hline 10207206 & 11/10/2002 & OUTGOING & ACCESS & ACCESS UPOATE INQUIRY & & 11/28/2502 & 12/13/2002 & PHONE \\
\hline 10203273 & 10/28/2002 & incoming & TEOHNICAL CORRESPONDENCE & OFFSITT ACCESS & 12/12/2002 & 11/18/2002 & 10/28/2002 & OHONE \\
\hline 16050165 & 12/28/2601 & incoming & STATUS UPDATE & & & 01/22/2002 & 12/19/2001 & Us85 \\
\hline
\end{tabular}

Query Home Customer Search RE Search Io Search Search Results ID Number Detail TCRQ Home
Detail of: Voluntary Cleanup Program ID Number 1137 For: WEATHERFORD US HOUSTON (RN100675230)
ID Number Status: INACTIVE
Responsible Parties: WEATHERFORD US LP (CN600288302)
Mailing Address: 1301 MCKINNEY ST HOUSTON, TX 77010-3031

> \begin{tabular}{|l|l|} \hline & \\ \hline End Date & Typ \\ \hline \end{tabular}
TCEQ CR Query - Voluntary Cleanup Program ID Number 1137

\section*{Central Registry}

\section*{Page 2 of 2}

\section*{Central Registry}
Responsible Parties: WEATHERFORD US LP (CN600288302)
Mailing Address: 1301 MCKINNEY ST HOUSTON, TX 77010-30

Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us | Central Registry | Search Hints | Report Data Errors
Statewide Links: Tex Statewide Links: Texas.gov I Texas Homeland Security | TRAIL Statewide Archive I Texas Veterans Portal (2) 2002-2013 Texas Commission on Environmental Quality
Page 1 of 1 Detail of: IHW Corrective Action Solid Waste Registration 31159

\section*{Central Registry} Solid Waste ACTIVE
Registration
Status: 10802 KATY FWY, HOUSTON
Responsible Parties: WEATHERFORD US INC (CN600919369) View Compliance History Mailing Address: PO BOX 27608 HOUSTON, TX 77227-7608

\section*{Correspondence Tracking}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tracking No. & Received/Sent & Direction & Type & Subject & Due Date & End Date & Document Date & Method \\
\hline 19004474 & 02/11/2015 & INCOMING & GW/MEDIA MONITORING RPT & GW MON RPT & 05/12/2015 & & 02/06/2015 & USPS \\
\hline 18992634 & 01/26/2015 & OUTGOING & REQUEST FOR INFORMATION & & & 01/26/2015 & 01/26/2015 & USPS \\
\hline 18992642 & 01/26/2015 & PENDING & P GW/MEDIA MONITORING RPT & & 04/01/2015 & & & \\
\hline 18811427 & 12/05/2014 & INCOMING & GW/MEDIA MONITORING RPT & & 03/05/2015 & 01/26/2015 & 11/26/2014 & OVERNIGHT \\
\hline 17343658 & 07/24/2013 & INCOMING & TECHNICAL CORRESPONDENCE & & 08/23/2013 & 08/19/2013 & 07/22/2013 & \\
\hline 14708501 & 05/17/2011 & OUTGOING & APPROVAL & & & 05/17/2011 & & \\
\hline 14669737 & 04/18/2011 & INCOMING & Status update & STATUS UPDATE & 05/18/2011 & 05/17/2011 & 04/13/2011 & \\
\hline 12751090 & 07/14/2009 & INCOMING & TECHNICAL CORRESPONDENCE & PROJ RE-ACTIV UNDER CA PROG & 08/13/2009 & 07/15/2009 & 07/14/2009 & \\
\hline 1085835 & 05/26/2000 & OUTGOING & APPROVAL CONDITIONAL & & & 05/26/2000 & & USPS \\
\hline
\end{tabular}

Page 2 of 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1088172 & 05/19/1999 & OUTGOING & APPROVAL & & & 05/19/1999 & & USPS \\
\hline 1062419 & 04/09/1999 & InCOMING & RRS FINAL RPT STD 1 & CONSIDERATION FOR STD 1 CLOSURE FOR FACILTTY WATSO & 07/08/1999 & 05/19/1999 & 04/06/1999 & USPS \\
\hline 1060082 & 06/10/1994 & INCOMING & RRS FINAL RPT STD 2 & RRS2 FINAL REPORT & 12/01/2002 & 05/26/2000 & & USPS \\
\hline
\end{tabular}

\footnotetext{
Site Help \| Disclaimer \| Web Policies \| Accessibility \| Our Compact with Texans \| TCEQ Homeland Security \| Contact Us \| Central Registry \| Search Hints | Report Data Errors
Statewide Links: Tex
(c) 2002-2013 Texas Commission on Environmental Quality
}

Detail of: IHW Corrective Action Solid Waste Registration 31159 For: WEATHERFORD US HOUSTON (RN100675230)
Central Registry
Questions or Corrments >>
 http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.pgmdetail\&addn_id=583304412005201\&lgcy_sys_cd=ARTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & - WQ0002627000 & & & & & \\
\hline WEATHERFORD US INC & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 \cdots \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- TXD053628467 \\
- \(5 \times 2600344\)
\end{tabular} & 0 & & UNCLASSIFIED & \[
09 / 01 / 2012
\] & 11/15/2014 \\
\hline \[
\begin{aligned}
& \text { FOMER } \\
& \text { WEATERFORD } \\
& \text { FACILITY }
\end{aligned}
\] & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- TXD053628467 \\
- 31159 \\
: 31159
\end{tabular} & 0 & & UNCLASSIFIED & 09/01/2012 & 11/15/2014 \\
\hline WEATHERFORD US INC & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 \cdots \\
& \text { HOUSTON }
\end{aligned}
\] & \[
\begin{aligned}
& =1137 \\
& =1137
\end{aligned}
\] & 0 & & UNCLASSIFIED & 09/01/2012 & 11/15/2014 \\
\hline \begin{tabular}{l}
FOMER \\
WEATERFORD FACILITY
\end{tabular} & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- 31159 \\
- \(5 \times 2600344\) \\
- \(5 \times 2600344\)
\end{tabular} & 0 & & UNCLASSIFIED & 09/01/2013 & 11/15/2014 \\
\hline WEATHERFORD US INC & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- 31159 \\
(WQ0002627000 \\
- 38731
\end{tabular} & 0 & & UNCLASSIFIED & 09/01/2014 & 11/15/2014 \\
\hline FOMER WEATERFORD FACILITY & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12 . \\
& \text { HOUSTON }
\end{aligned}
\] & -1137 & 0 & & UNCLASSIFIED & 09/01/2013 & 11/15/2014 \\
\hline WEATHERFORD US INC & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & REGION 12 HOUSTON & \begin{tabular}{l}
- TX0092983 \\
- 5X2600344 \\
- TX0092983 \\
- 38731 \\
- 5X2600344 \\
- 31159 \\
- TX0092983
\end{tabular} & 0 & & UNCLASSIFIED & 09/01/2012 & 11/15/2014 \\
\hline \begin{tabular}{l}
FOMER \\
WEATERFORD \\
FACILITY
\end{tabular} & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& 12- \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- TX0092983 \\
- TXD053628467 \\
- \(5 \times 2600344\)
\end{tabular} & 0 & & UNCLASSIFIED & 09/01/2012 & 11/15/2014 \\
\hline
\end{tabular}
Page 3 of 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline WEATHERFORD US INC & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& \text { 12- } \\
& \text { HOUSTON }
\end{aligned}
\] & : WQ0002627000 & 0 & UNCLASSIFIED & 09/01/2013 & 11/15/2014 \\
\hline FOMER WEATERFORD FACILITY & WEATHERFORD US HOUSTON & HOUSTON & HARRIS & \[
\begin{aligned}
& \text { REGION } \\
& \text { HO- } \\
& \text { HOUSTON }
\end{aligned}
\] & \begin{tabular}{l}
- TXD053628467 \\
- TX0092983 \\
- 1137
\end{tabular} & 0 & UNCLASSIFIED & 09/01/2012 & 11/15/2014 \\
\hline
\end{tabular}
What's a "site"?
A "site" (sometimes called a "regulated entity") is any person or thing that is of environmental interest to the TCEQ. At a "site", one or more regulatory activities of interest to us occur or have occurred in the past. Some examples of sites are:
- Industrial plants, such as the Exxon Baytown Facility
- Small businesses, such as Texaco Gas Station \#200 or Elroy's Dry Cleaning \& Laundry
- Public facilities, such as the City of Austin's Hornsby Bend Wastewater Treatment Plant
What's a "customer"?
A "customer" owns, operates, is responsible for, or is affiliated with a regulated
entity. Examples include:
- Major industrial corporations, such as Exxon USA, Exxon Inc, or Texaco Inc
- Small businesses, such as Karl Redmond dba Karl's Kleaners, which owns several dry-cleaner locations
- Governmental bodies, such as the City of Austin, the United States Air Force, or a municipal utility district
- Individuals, such as Karl A. Redmond, owner of Karl Redmond dba Karl's Kleaners

\footnotetext{
Retur
Return to top
Learn more about compliance histories
}

Page 1 of 1
Page 1 of 2
Questions or Comments >>
ID Search Search Results Solid Waste Registration Detail TCEQ Home
TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 31159
Central Registry Detail of: Industrial and Hazardous Waste Solid Waste Registration 31159
For: WEATHERFORD US HOUSTON (RN100675230)
10802 KATY FWY, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: WEATHERFORD US INC (CN600919369)
OWNER OPERATOR View Compliance History
Mailing Address: PO BOX 27608 HOUSTON, TX 77227-7608
\begin{tabular}{|c|}
\hline Facility Information \\
\hline Registration Number: 31159 \\
Status: Inactive \\
Site Name: TUBULAR PRODUCTS \& EQUIPMENT \\
Company Name: WEATHERFORD US INC \\
Site Street Address: 10802 KATY FWY, HOUSTON, TX, 77043 \\
Site Location: 10802 Katy Fwy, Houston, TX \\
County: HARRIS \\
EPA Number: TXDO53628467 \\
Registration Type: Generator \\
Generator Type: Industrial \\
SIC Code: \\
NAICS Code: 332721 Precision Turned Product Manufacturing \\
\hline
\end{tabular}

Page 2 of 2

> Detail of: Industrial and Hazardous Waste Solid Waste Registration 31159 For: WEATHERFORD US HOUSTON (RN100675230) 10802 KATY FWY, HOUSTON

> Solid Waste INACTIVE
> Registration
> Held by: WEATHERFORD US INC (CN600919369) OWNER OPERATOR View Compliance History
Mailing Address: PO BOX 27608 HOUSTON, TX 77227-7608

\section*{Central Registry}
\begin{tabular}{|l|l|l|l|}
\hline Sequence Number & Description & Unit Type & Status \\
\hline 001 & & Tank & ACTIVE \\
\hline 002 & & Tank & ACTIVE \\
\hline 003 & & Container storage area & ACTIVE \\
\hline
\end{tabular}
Detail of: Industrial and Hazardous Waste Solid Waste Registration 31159
For: WEATHERFORD US HOUSTON (RN100675230)
10802 KATY FWY, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: WEATHERFORD US INC (CN600919369)
OWNER OPERATOR View Compliance History
Mailing Address: PO BOX 27608 HOUSTON, TX 77227-7608

\section*{Central Registry}
crros Facility Information

\section*{IHW Waste Management Unit}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Sequence Number: 002 & Unit Type: Tank & Unit Status: ACTIVE & \multicolumn{1}{|l|}{ Description: } \\
\hline Permit Number & UIC Number & \begin{tabular}{l}
Manages Off-Site \\
Waste
\end{tabular} & Management & Capacity & \begin{tabular}{l}
Regulatory \\
Status
\end{tabular} \\
\hline & & No & \begin{tabular}{l}
141 (Storage, bulking, \\
and/or transfer off site - no \\
treatment/recovery, fuel \\
blending or disposal at this \\
site.)
\end{tabular} & & \\
\hline
\end{tabular}
IHW Waste Detail
(c) 2002-2013 Texas Commission on Environmentel Quality

Detail of: Industrial and Hazardous Waste Solid Waste Registration 31159
For: WEATHERFORD US HOUSTON (RN100675230)
10802 KATY FWY, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: WEATHERFORD US INC (CN600919369)
OWNER OPERATOR View Compliance History
Mailing Address: PO BOX 27608 HOUSTON, TX 77227-7608 (

\section*{IHW Waste Management Unit}

\section*{Central Registry}

Query Home Customer Search

TCEQ CR Quey Instor
IHW Waste Detail
\begin{tabular}{|l}
\hline Permit Number \\
\hline \\
\\
\hline
\end{tabular}
Waste Code:
No Waste Stream Information exists for this Waste Management Unit

TCEQ CR Query - Petroleum Storage Tank Registration 38731

\section*{Central Registry}

Detail of: Petroleum Storage Tank Registration 38731 For: WEATHERFORD US HOUSTON (RN100675230)

10802 KATY FWY, HOUSTON
Registration INACTIVE
Status:
Query Home Customer Search RE Search TD Search Document Search Search Results TCEQ Home
\begin{tabular}{l}
Detail of: Petroleum Storage Tank Registration 38731 \\
For: WEATHERFORD US HOUSTON (RN100675230) \\
\(\quad 10802\) KATY FWY, HOUSTON \\
Registration INACTIVE \\
Status: \\
Held by: WEATHERFORD US INC (CN600919369) \\
OWNER OPERATOR View Compliance History \\
Mailing Address: PO BOX 27608 HOUSTON, TX 77227-7608 \\
\hline Related Information: \\
Registration Information \\
There is no information related to this Registration in the following categories: \\
Commissioners' Actions \\
Correspondence Tracking \\
Effective Enforcement Orders \\
Criminal Convictions \\
Proposed Enforcement Orders \\
Complaints \\
Discharges \\
Emergency Response Events \\
Emission Events \\
Fish Kills \\
Other Incidents \\
Investigations \\
Periodic Reports
\end{tabular}

Ste Hels I Dnclainer I web Polices I Accessibilty I Cur Compact with Texans | YCEQ Honeland Scourity I Contact Us I Central Regitry I Seareh Hints I Report Data Errors
Statewide Uink! Texas gow I Tecas Homeland Securty I Thath Seatewide Archive I Texas Veberans Portal

\section*{3/16/2015}
Page 1 of 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tank & Design \& Materials & Corrosion Protection & Release Detection & Spill Containment and Overfill Prevention & Installation Contractor & Installer & Test Result & Related Informatior ^ \\
\hline 1 & 1:Single Wall (Steel) & & & & & & & Tank Summary Compartment Piping Vapor Recovery \\
\hline
\end{tabular}
Table 3. Compartment Details
\begin{tabular}{l}
\begin{tabular}{|l|l|l|l|l|l|l}
\hline Tank & Compartment & \begin{tabular}{l}
Capacity \\
(gallons)
\end{tabular} & Principal Substance & Other Substance & Release Detection & \begin{tabular}{l}
Spill Containment \\
and \\
Overfill Prevention
\end{tabular} \\
\hline 1 & A Related Informatior
\end{tabular} \\
\hline
\end{tabular}
> \begin{tabular}{|l|l|l|l|l|l}
\hline Tank & Type of Piping & Piping Material & \(\begin{array}{l}\text { Design and } \\
\text { External } \\
\text { Cantainmant }\end{array}\) & Connectors and valves & Corrosion Protection Release Detection
\end{tabular} \begin{tabular}{|c}
\\
\hline\(\prec\)
\end{tabular}

Page 3 of 3
Page 1 of 1
TCEQ CR Query - Wastewater Permit WQ0002627000
Query Home Customer Search RE Search ID Search Document Search Search fesults TCEQ Home

\title{
Texas Commission on Environmental Quality
}

Protecting Texas by Reducing and Preventing Pollution
January 26,2015

MssKarin Whitton
Weatherford
2000 St. James Place \(\%\)
Houston, Texas 77056
Re: Comments with Request for Information
Groundwater Monitoring Report, dated November 26, 2014
Former Weatherford Site,
10802 Old Katy Road, Houston, Texas 77043
SWR No. 31159; RNio0675230; CN600919369
Dear Ms. Whitton:
The Texas Commission on Environmental Quality (TCEQ) has reviewed the above-referenced report. A summary of the site conditions is provided below followed by comments with a request for additional delineation of chemicals of concern (COCS) in groundwater.

Nine wells are screened in the first groundwater bearing unit (GWBU), which is at approximately 24 to 45 feet below ground surface (bgs). Ten wells are screened in the second GWBU, which is at approximately 58 to 70 feet bs.

The following summary is for the last sampling event completed in October 2014 for the first GWBU. The well (MW-22S) in the apparent source area is impacted by the following COCs: tetrachloroethene (PCE); trichloroethene (TCE); cis-1, 2-dichloroethene (cis-DCE); trans-1, 2dichloroethene (trans-DCE) ; 1, 1-dichloroethene (1,1 DCE) and vinyl chloride (VC). All of those chemicals were reported with concentrations exceeding the residential assessment level (RAL). PCE was reported with a concentration of \(8.59 \mathrm{mg} /\). One or more of the above chemicals were reported above the RAL in all of the other onsite wells, exclusive of MW- 27 S which is located furthest from the apparent source area. The down gradient boundary of the plume is shown to extend approximately 150 feet off-site, although there is no well control to support the boundary shown. The two wells off-site are located a substantial distance from the site, ranging from approximately 550 feet to 700 feet.

The same chemicals given above are present in the second GWBU. Three of the onsite wells were reported with concentrations of PCE; TCE; 1, 1 DCE and VC above the RAL. Similar to the first GWBU, PCE was reported with the highest concentrations (ranging from \(0.782 \mathrm{mg} / \mathrm{l}\) to \(0.981 \mathrm{mg} / \mathrm{I})\) in three of the on-site wells. The down gradient boundary of the plume is shown to RECEIVED

extend further than the first GWBU, approximately 350 feet off-site. Similar to the first GWBU, there is no well control to support the boundary shown. The three wells off-site are located a substantial distance from the site, ranging from approximately 550 feet to 800 feet. PCE was detected in one of those wells (MW-26D) at a concentration (\(0.026 \mathrm{mg} / \mathrm{I}\)) above the RAl. The \(P C E\) is shown on the site figure as not being associated with the on-site plume.

\section*{Comments}
1. Based on the site figure, it appears that lateral delineation wells for both the first and second GWBU were not installed closer to the site because of the Katy Freeway.
2. The TCEQ notes that the consultant is recommending that Weatherford pursue a City of Houston Municipal Setting Designation (MSD).
3. As of the date of this letter, the TCEQ has not been notified that a MSD application has been/will be completed.
4. The TCEQ does not concur that the second GWBU has been delineated either laterally or vertically.

\section*{Request for Information}
1. With the following exception (see below), please install a well near the source area in the next deeper groundwater bearing unit and collect a groundwater sample for analysis of COCs. However, if COCS are delineated vertically in the unsaturated soil pronile to below the RAL before reaching the third GWBU unit, then a well is not necessary.
2. With respect to lateral delineation, it needs to be determined if the PCE in the off-site well (MW-26D; located approximately 550 feet off-site) is part of the on-site plume. In order to do so a well needs to be installed off-site. The best location for the well would be in the northeast section of the Houston Garden Centers property.

Please provide the requested information within 60 days from the date of this letter.
Please note that it is the continuing obligation of persons associated with a site to ensure that municipal hazardous waste and industrial solid waste are managed in a manner which does not cause the discharge or inminent threat of discharge of waste into or adjacent to waters in the state, a nuisance, or the endangerment of the public health and welfare as required by 30 TAC §335.4.

Ms. Whitton
Page 3
January 26, 2015
SWR No. 31159

Questions concerning this letter should be directed to me at (512) 239-2378. When responding by mail, please submit an original and one copy of all correspondence and reports to the TCEQ Remediation Division at Mail Code MC-127 with an additional copy submitted to the local TCEQ Region Office.

Corrective Action, VCP-CA Section
Remediation Drvision
Texas Commission on Environmental Quality
\(\mathrm{MED} / \mathrm{mdh}\)
cc: Mr. Michael Marcon, InControl Technologies, 3845 Cypress Creek Plwy., Suite 195, Houston, TX 77068
Mr. Jason Ybarra, Waste Section Manager, TCEQ Region 12 Office, Houston
Table 1. Summary of Detected Volatilc Organic ant! Semivolatile Organic Compounds in Subsurface Soil Samples Former Weatherford Corporation Facility 10802 Old Ksty Road Houston, Texas

\footnotetext{

}
Table 2. Groundwater Level Elevations
Former Weatherford Corporation Site 10802 Old Katy Road
Houston, Texas
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Well Number & Date & \begin{tabular}{l}
Casing \\
Elevation (a) (feet)
\end{tabular} & \begin{tabular}{l}
Depth \\
To Product Below Casing (feet)
\end{tabular} & Depth To Water Below Casing (feet) & \begin{tabular}{l}
Product \\
Thickness (feet)
\end{tabular} & \begin{tabular}{l}
Potentiometric Surface \\
Elevation (b) (feet)
\end{tabular} \\
\hline MW-1 & 9/24/96 & 80.09 & np & 26.50 & np & 53.59 \\
\hline NW-2 & 9/24/96 & 83.24 & np & 24.22 & np & 59.02
5029 \\
\hline MW-3 & 9/24/96 & 82.99 & np & 32.70 & np & 5.29 \\
\hline MW-4 & 9/24/96 & 83.64 & np & 22.92 & np & 60.72 \\
\hline MW-5 & 9/12/96 & 84.23 & 23.51 & 27.99 & 4. & 52.21 \\
\hline MW-6 & 9/24/96 & 80.51 & np & 26.69 & np & 53.82 \\
\hline MW-7 & 9/24/96 & 80.55 & \(n \mathrm{p}\) & 26.71 & np & 53.84 \\
\hline MW-8 & 9/24/96 & 83.70 & np & 22.39 & np & 61. \\
\hline MW-9 & 9/24/96 & 84.19 & np & 23.89 & \(n \mathrm{n}\) & 60. \\
\hline MW-10 & 9/24/96 & 85.54 & np & 25.60 & np & 59.94 \\
\hline MW-11 & 9/24/96 & 81.64 & np & 24.62 & np & 57.02 \\
\hline TW-1 & 9/24/96 & 86.78 & np & 21.16 & np & 65.62 \\
\hline TW-2 & 9/24/96 & 81.61 & np & 27.29 & np & 54.32 \\
\hline
\end{tabular}

\footnotetext{
(a) Per survey conducted by Bowos \& Ascen ing a product specific gravity or 0.90 .
(b) Corrected for
}

Table 3. Summary of Field Measured Groundwater Qually Parameters Former Weatherford Corporation Facility
10802 Old Katy Road
Houston, Texas
\(\left.\begin{array}{cccccc}\begin{array}{c}\text { Well } \\ \text { Nwaber }\end{array} & \text { Date } & \begin{array}{c}\text { pH } \\ \text { (su) }\end{array} & \begin{array}{c}\text { Conductivity } \\ \text { (umhos/cm) }\end{array} & \begin{array}{c}\text { Temperature } \\ \text { (degrees }\end{array} \text { Appearance }\end{array}\right]\)
\(\mathrm{m}=\) stunderd units
trmboulan \(=\) micrombos per centimytict
deqrees F = degrees finrentiot
nsw wot sampled
Im * mat recorded Former Weatherford Corporation Facility 10802 Old Katy Rosd Hourton，Texas
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & \begin{tabular}{l}
Sample \\
Date
\end{tabular} & Benzeric & Chloro benzene \(\mathrm{mg} / \mathrm{l}\) & Chioroelhane
mgl & Dichloroflouro－ methane mg L & 1．1－Dichloro－ thane mg L & 1．2－Dichloro－ ethane \(\mathrm{mg} / \mathrm{L}\) & 1．1－Dichioro－ ethene mg L & \[
\begin{aligned}
& \text { 1.2-Dichloron } \\
& \text { ethers } \\
& \mathrm{mg} / \mathrm{L}
\end{aligned}
\] & \[
\begin{gathered}
\text { Ehyl } \\
\text { benzene } \\
\text { mgh. }
\end{gathered}
\] & Isopropyl benterso \(\mathrm{mg} / \mathrm{L}\) & Methylens Chlorido \(\mathrm{mg} / \mathrm{L}\) & Methyl－tert－ butyl caber \(\mathrm{mg} / \mathrm{L}\) & \begin{tabular}{l}
Napithalese \\
my
\end{tabular} & n －Barty－ benterat mg／ \\
\hline & & ＜0，005 & ＜0．005 & ＜0，005 & \(n\) & ＜0，005 & ＜0．005 & 0.006 & ＜0．003 & ＜0．005 & ni & ＜0．005 & ne & n 8 & nin \\
\hline PB－2 & 91296 & \(<0.005\) & ＜0．005 & \(<0.005\) & \(n 4\) & ＜0．005 & ＜0．005 & \(<0.005\) & \(<0.005\) & 0.044 & \(n 4\) & ＜0，005 & nA & n月 & na \\
\hline PB－4 & 9／13／9s & ＜0．005 & ＜0．005 & \(<0.005\) & na & ＜0．005 & ＜0．005 & 0.006 & \(<0.005\) & \(<0.005\) & n\＄ & 40.005 & ns & an & ns \\
\hline PB－S & 9112／96 & ＜0．005 & ＜0．005 & \(<0.005\) & B4 & 0.025 & ＜0，005 & 0.025 & 0.054 & ＜0．005 & \(n\) & ＜0．005 & \({ }^{\text {ma }}\) & ng & ns \\
\hline PB－7 & 9／10／96 & ＜0．005 & \(<0.005\) & ＜0．005 & na & ＜0．005 & ＜0，005 & ＜0，005 & ＜0，005 & ＜0．005 & \(n 8\) & \(<0.005\) & na & na & ns \\
\hline PB． 8 & 911896 & ＜0．005 & ＜0．005 & ＜0．005 & na & 0.008 & ＜0．005 & 0.009 & 0.689 & ＜0．005 & nn & \(<0.005\) & na & na & na \\
\hline PB－9 & 9／13／96 & ＜0，005 & ＜0．005 & ＜0，005 & ne & 0.008 & ＜0．005 & ＜0．005 & 0.058 & ＜0．005 & HR & \(<0.005\) & na & ns & ne \\
\hline 98．11 & 911196 & ＜0．005 & ＜0．005 & \(<0.005\) & nz & 0.093 & ＜0．005 & 0.056 & 0.135 & ＜0．005 & \％ & co．005 & nя & ns & \(\underline{2}\) \\
\hline PS－12 & \(9111 / 96\) & ＜0．005 & ＜0，005 & \(<0.005\) & \(\xrightarrow{\text { ni }}\) & ＜0．0005 & \(<0.0003\) & 0.0037 & 0.0160 & \(<0.0003\) & \(<0.0001\) & \(<0.005\) & ns & 40.0003 & 0.0003 \\
\hline \multirow[t]{3}{*}{MW．1} & 2／18／84 & \(<0.0003\) & ＜0．0003 & ＜0，001 & \(<0.005\) & ＜0．005 & \(<0.005\) & 0.014 & ＜0，005 & \(<0.005\) & \(<0.005\) & 0.014 & 0.0088 & 40.005 & ＜0．005 \\
\hline & 11／94 & ＜0．005 & \(<0.005\) & ＜0．005 & \(<0.005\) & & \(<0.005\) & ＜0．005 & \(<0.005\) & ＜0．005 & nis & ＜0，005 & ns & ni & 鮕 \\
\hline & 9／25／96 & ＜0．005 & ＜0．005 & ＜0．005 & \(\xrightarrow{\text { na }}\) & ＜0，005 & \(<0.00003\) & 0.0032 & 0.0389 & \(<0.0003\) & ＜0．0001 & \(<0.005\) & na & 40.0003 & －0．0003 \\
\hline \multirow[t]{3}{*}{MW－2} & 2／19194 & 0.0006 & 0.0012 & ＜0，001 & ＜0．005 & 0.0420 & \(<0.005\) & 0.019 & 0.061 & ＜0．005 & ＜0．005 & 0.014 & 0.0082 & ＜0．005 & co．005 \\
\hline & \(11 / 94\) & \(<0.005\) & ＜0．005 & ＜0．005 & ＜0．005 & & & \(<0.005\) & 0.012 & \(<0.005\) & ns & \(<0.005\) & bs & n3 & \(\square\) \\
\hline & 9／25196 & ＜0．005 & ＜0．005 & ＜0，005 & nz & ＜0．005 & \(<0.0003\) & \(<0.0002\) & 0.0044 & \(<0.0003\) & \(<0.0001\) & \(<0.005\) & n＊ & ＜0．0003 & 0.0003 \\
\hline \multirow[t]{3}{*}{MW－3} & 2／18／94 & ＜0．0003 & \(<0.0003\) & ＜0．001 & \(<0,005\) & 0.0011 & \(<0.005\) & 0.029 & 0.076 & \(<0.005\) & \(<0.005\) & 0.016 & 0.0085 & 40.005 & 40.005 \\
\hline & 11／94 & \(<0.005\) & ＜0．005 & ＜0，005 & 0.005 & 0.012 & \(<0.005\) & 0.112 & 0.213 & ＜0．00s & nı & \(<0.005\) & na & ns & na \\
\hline & \(9 / 24 / 96\) & \(<0.005\) & ＜0．005 & ＜0．005 & ns & 0.144 & 0.0005 & 0.013 & 0.0012 & \(<0.0003\) & \(<0.0007\) & \(<0.005\) & 38 & 40.0003 & ＜0．0003 \\
\hline \multirow[t]{3}{*}{MW－4} & 2／19／94 & 0.0006 & ＜0．0011 & 0.0074 & \(<0.005\) & 0.020 & 0.0005 & 0.026 & ＜0．005 & 40.005 & ＜0．005 & 0.014 & co．00s & \(<0.005\) & 40.005 \\
\hline & 11／94 & ＜0，005 & ＜0．005 & 0.0210 & ＜0．005 & 0.048 & & \(<0.005\) & \(<0.005\) & ＜0．003 & ns & 40.005 & ns & ns & b9 \\
\hline & 9／24／96 & ＜0．005 & ＜0，005 & ＜0．005 & ne & ＜0．005 & ＜0．005 & ＜0．005 & & 29 & 0， 13 & 0.005 & na & 0.0012 & 0.0051 \\
\hline MW．S & 2／19／94 & 0.0006 & \(<0.0003\) & ＜0，001 & ＜0．005 & 0.0008 & \(<0.0003\) & \(<0.0020\) & 0.0007 & 0.005 & \(<0005\) & ＜0．0100 & \(<0.005\) & co． 005 & co．005 \\
\hline \multirow[t]{2}{*}{MW－6} & 11／94 & ＜0．005 & ＜0．005 & ＜0．005 & ＜0．005 & ＜0．005 & ＜0．005 & \(<0.005\) & 4.00 & ＜0，005 & S & \(<0.005\) & ne & n & na \\
\hline & 9／24／96 & ＜0．005 & \(<0.005\) & \(<0.005\) & Ha & ＜0，005 & ＜0．005 & ＜0．00 & ， & 005 & \(<0.005\) & \(<0.0100\) & \(<0.005\) & ＜0．005 & 0.005 \\
\hline \multirow[t]{2}{*}{MW－7} & 11／94 & \(<0.005\) & ＜0．005 & \(<0.005\) & \(<0.005\) & 0.011 & ＜0．005 & 0.0 & 0.030 & \(<0.005\) & na & 40.005 & ma & \％ & na \\
\hline & 9／25／96 & ＜0．005 & ＜0．005 & \(<0.005\) & na & 0.020 & ＜0．00 & ＜0，005 & \(<0.005\) & \(<0.005\) & na & ＜0．003 & \({ }^{18}\) & na & 1 \\
\hline MW． 8 & 9／24／96 & ＜0，005 & \(<0.005\) & ＜0．005 & na & ＜0，005 & ＜0．005 & \(<0.005\) & 40.005 & \(<0.005\) & ns & \(<0.005\) & Ba & \({ }^{2}\) & 18 \\
\hline MW．9 & 9／24／96 & ＜0．005 & ＜0．005 & ＜0，005 & na & ＜0，005 & \(<0.005\) & \(<0.005\) & ＜0．005 & 0.005 & n & 0.005 & \({ }^{\text {bs }}\) & De & m \\
\hline MW． 10 & 9／24／96 & \(<0.005\) & ＜0．005 & ＜0，005 & na & ＜0．005 & ＜0．005 & 0.049 & 0.949 & 40.005 & \(n\) & 0.005 & \％ & na & m \\
\hline MW．11 & 9／24／96 & ＜0．005 & ＜0．005 & \(<0.005\) & \(\stackrel{n A}{00}\) & \(\frac{0.045}{0.0065}\) & ＜0．005 & ＜0．005 & ＜0．005 & \(<0.003\) & \(<0.005\) & 0.015 & 0.0090 & 00.005 & 40.005 \\
\hline \multirow[t]{3}{*}{TW－1} & 11／94 & ＜0．005 & ＜0．005 & \(<0.005\) & ＜0．005 & 0.0063 & \(<0.0003\) & 0.0076 & 40.005 & \(<0.0003\) & \(<0.0003\) & \(<0.005\) & na & 0.0003 & c0．0003 \\
\hline & \(2 / 18194\) & ＜0，0003 & \(<0.0003\) & \(<0.001\) & ＜0．005 & & & \(<0.005\) & ＜0．005 & ＜0．005 & 88 & ＜0．005 & n＊ & ni & na \\
\hline & \(9724 / 96\) & \(<0.005\) & ＜0．005 & \(<0.005\) & \({ }^{\text {na }}\) & ＜0．005 & ＜0．005 & 0.140 & 0.130 & \(<0.005\) & ＜0．005 & 0.019 & 0.0086 & ＜0．005 & c0．005 \\
\hline \multirow[t]{3}{*}{TW． 2} & \(11 / 94\) & ＜0，005 & \(<0.005\) & \(<0.005\) & ＜0．005 & 0.094 & 0.0014 & 0.230 & 0.0938 & \(<0.0003\) & 0.0031 & 0.022 & 品 & 00.0003 & 00.0003 \\
\hline & 2／18／94 & 0.0091 & ＜0．0003 & －＜0．001 & 0.0110 & 0.011 & 0.0014 & 0.196 & 0.010 & ＜0．005 & na & \(<0.005\) & 8 & 㐋 & \({ }^{6}\) \\
\hline & 9／25／96 & ＜0．005 & ＜0．003 & ＜0．005 & ni & & & & 0.07 & 07 & no & 0.005 & ne & 1.45 & ®6 \\
\hline
\end{tabular}

\footnotetext{
OW MSC＂Groundwalet Media Specific Concentration
na wnot analyzed
}

10802 Old Katy Road
Houston，Texas
Sample Sample
Sample Sample
Number
Nate
Nepth meke mekg meks mekg mefk
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{6.0 .5} \\
\hline PB－1 & 9712796 & 0－5 & 0.066 & 40.005 & 0.018 & \(\infty 0.005\) & ＜0，005 & 00.005 & na & na & 0.005 & \(<0.005\) & \＄0．020 & \(<0.005\) \\
\hline PR－2 & & 5－10 & \(\infty .010\) & \(\infty 0,005\) & \(<0.010\) & \(<0.005\) & 00.005 & \(\infty 0.005\) & 骂 & 123 & \(<0.005\) & \(\infty 0.005\) & 0.020 & 0.005 \\
\hline & 9132196 & 4－8 & 40.010 & \(\infty 0.005\) & \(\infty\)－010 & 40.005 & 40.005 & ＜0．005 & na & 83 & 0.005 & \(<0.005\) & 0.020 & －0．005 \\
\hline \multicolumn{15}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & & & \\
\hline & & 10－15 & ＜0．010 & ＜0，005 & 40.010 & \(<0.005\) & 0.031 & 0.005 & na & na & ＜0，005 & ＜0．005 & －0．020 & ＜0．005 \\
\hline \multirow[t]{3}{*}{PB－4} & \multirow[t]{2}{*}{9／13／96} & 5－7．5 & \(\leq 0.010\) & 00.005 & －0．010 & \(<0.005\) & \(\bigcirc 0.005\) & 00.005 & \(\underline{18}\) & 182 & ＜0，005 & ＜0．005 & \(\infty 0.020\) & \(\bigcirc 0.005\) \\
\hline & & 15－20 & － 0.010 & ＜0．005 & \(<0.010\) & 40.005 & 40.005 & 40.005 & na & 139 & 00.005 & \(\bigcirc 0.005\) & \(\infty \times 0.020\) & \(\bigcirc 0.005\) \\
\hline & \multirow[t]{3}{*}{9／12／96} & 25 & \(<0.050\) & ＜0．020 & \(<0.050\) & \(<0.020\) & 0.020 & 0.080 & 1.040 & 1.190 & \(\bigcirc 0.020\) & \(<0.020\) & \(<0.080\) & \(<0.005\) \\
\hline \multirow[t]{2}{*}{PD－5} & & 0．5 & 0.032 & －0．005 & \(<0.010\) & 00.005 & ＜0．005 & \(\leqslant 0.005\) & ＜0．660 & ＜0．660 & ＜0．005 & \(<0.005\) & \(\infty 0.020\) & 00.005 \\
\hline & & 10.15 & 40.010 & 00.005 & \(<0.010\) & ＜0．005 & ＜0．005 & 50.005 & 口a & na & \(<0.005\) & ＜0．005 & ¢0．020 & \(<0,005\) \\
\hline MW－8 & 9／16／96 & 24－25 & \(<0.010\) & \(<0.005\) & ＜0．010 & \(\bigcirc 0.005\) & 0.005 & \(\infty 0.005\) & п2 & na & \(<0.005\) & \(<0.005\) & 0.020 & 0.0005 \\
\hline \multicolumn{15}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \(<0.005\) & & & 8a & ＜0．005 & \(\infty 0.005\) & \(<0.020\) & \(\infty 0.005\) \\
\hline \multicolumn{15}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{ll}
\hline PB－6 & \(9 / 18 / 96\) \\
\hline
\end{tabular}} & 20．24 & \(\begin{array}{r}0.258 \\ \hline 0010\end{array}\) & 0.035 & \(<0.050\) & 3.960 & 40.020 & 0.032 & \(\square\) & n3 & 0.030 & 0.056 & \(\bigcirc 0.080\) & \(<0.005\) \\
\hline \multirow[t]{2}{*}{P8．7．} & \multirow[t]{2}{*}{9／10／96} & 7.8 & \(<0.010\) & \(<0.005\) & \(<0.010\) & 40.005 & 0.035 & \(<0.005\) & na & na & \(<0.005\) & \(<0,005\) & \(<0.020\) & \(\bigcirc 0.005\) \\
\hline & & 26－28 & \(<0.018\) & \(<0.005\) & \(<0.010\) & 00.005 & ＜0．005 & ＜0．005 & na & na & 40.005 & ＜0．00S & －0．020 & ＜0．005 \\
\hline 98－8 & 9／18／96 & 1－6 & \(<0.010\) & \(\infty 0005\) & \(<0.010\) & \(<0.005\) & 40.005 & 00.005 & na & na & ＜0．005 & \(<0.005\) & ＜0．020 & \(<0.005\) \\
\hline PB－9 & 9／13／96 & 30－31．5 & \(<0.010\) & \(<0.005\) & \(<0.010\) & 0.005 & \(<0.005\) & 40.005 & \(\stackrel{39}{ } 0.330\) & \(\stackrel{0}{ } \times 3.30\) & \(\bigcirc 0.005\) & 40.005 & 40.020 & \(<0.005\) \\
\hline \multirow[t]{2}{*}{PB－11} & \multirow[t]{2}{*}{9／11／96} & 32－35 & \(<0.010\) & \(<0.005\) & \(<0.010\) & \(<0.005\) & \(<0.005\) & 0.007 & n3 & na & 1.620 & 00005 & 0.020 & 40.005 \\
\hline & & 35．38 & \(<0.010\) & 40.005 & \(<0.010\) & \(<0.005\) & 40.005 & \(<0.005\) & na & na & 0.012 & ＜0．005 & \(\bigcirc\) & 40.005 \\
\hline \multirow[t]{2}{*}{P－12} & \multirow[t]{2}{*}{9／11／96} & 16－20 & \(<0.010\) & \(<0.005\) & 40.010 & \(<0.005\) & 0.045 & 40.005 & 8 & na & 40.005 & 40.005 & \(<0.020\) & 0.007 \\
\hline & & 23－2．6 & \(<0.010\) & ＜0．005 & \(<0.010\) & \(\infty 0.005\) & \(<0.005\) & 40.005 & n2 & 品 & －0．005 & 40.005 & \(<0.020\) & \(\bigcirc 0.005\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MW－11 9／17／96}} & 10－15 & \(<0.010\) & ＜0．005 & \(<0.010\) & 40.005 & 0.259 & 00.005 & na & na & 0.430 & 0.091 & \(<0.020\) & \(<0.005\) \\
\hline & & 40－41．5 & 40.050 & 40.020 & \(<0.050\) & 40.020 & \(\bigcirc 0.020\) & \(<0.020\) & ла & 123 & 21.200 & 0.020 & 40.080 & \(<0.005\) \\
\hline SAl－ind & & & 4160 & 1.62 & 1400 & 256 & 108 & 17000 & 7720 & ne & 207 & 2.85 & 5800 & 2040 \\
\hline GWP－ind & & & 1020 & 0.5 & 511 & 10 & 7 & 70 & 409 & ne & 0.5 & 0.5 & 1000 & 1020 \\
\hline
\end{tabular}

\footnotetext{

}

\section*{Page 2 of 2}
TCEQ CR Query - IHW Corrective Action Solid Waste Registration 31402

Central Registry
Query Home Customer Search ME Search to Search Document Search Search Resvits TCEQ Home
\[
\begin{aligned}
& \begin{array}{l}
\text { Detail of: IHW Corrective Action Solid Waste Registration } 31402 \\
\text { For: FLUOROCARBON PLASTIC \& RUBBER PRODUCTION (RN100663798) } \\
\text { 10420 KATY FWY, HOUSTON } \\
\text { Solid Waste INACTIVE } \\
\text { Registration } \\
\text { Status: } \\
\text { Responsible Parties: THE FLUOROCARBON COMPANY (CN600395438) Since 11/06/1998 } \\
\text { Maling Address: PO BOX 3402 HOUSTON, TX } 77253-3402 \\
\hline \text { Related Information: } \\
\text { Corrective Action Information } \\
\text { There is no information related to this Corrective Action in the following categories: } \\
\text { Commissioners' Actions } \\
\text { Correspondence Tracking } \\
\text { Effective Enforcement Orders } \\
\text { Criminal Convictions } \\
\text { Proposed Enforcement Orders } \\
\text { Complaints } \\
\text { Discharges } \\
\text { Emergency Response Events } \\
\text { Emission Events } \\
\text { Fish Kills } \\
\text { Other Incidents } \\
\text { Investigations } \\
\text { Periodic Reports } \\
\hline
\end{array} \\
& \hline
\end{aligned}
\]

She Help I Disclaimer I Web Polcies | Acceswbitty I Our Compact with Texans I TCEQ Homelasd Secunity I Contact Us I Central Registry I Search Hints I heport Data trrors
Stabewide Links: Texas.gov I Teras Homeland Securky I TRatL Satewide Archive I Texars veterars Portal 8 2002-2013 Texas Commission on Environmental Qualty

\section*{3/16/2015}

\section*{Central Registry}
Detail of: IHW Corrective Action Solid Waste Registration 31402 For: FLUOROCARBON PLASTIC \& RUBBER PRODUCTION (RN100663798)
10420 KATY FWY, HOUSTON
Solid Waste INACTIVE
Registration
Registration
Quedtions or Commerts >>
Query Home Customer Search RE Search ID Search Search Results SqSid Waste Registration Detail
Page 1 of 2

\section*{Central Registry}

Detail of: Industrial and Hazardous Waste Solid Waste Registration 31402
For: FLUOROCARBON PLASTIC \& RUBBER PRODUCTION (RN100663798)
10420 KATY FWY, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: THE FLUOROCARBON COMPANY (CN600395438)
OWNER OPERATOR Since 11/06/1998
Mailing Address: PO BOX 3402 HOUSTON, TX \(77253-3402\)

\begin{tabular}{|l|l|}
\hline View Annual Waste Summary not available \\
\hline
\end{tabular}

\footnotetext{
View Annual Waste Summary not available
}

Page 2 of 2
Page 1 of 1

Page 1 of 2

<< sมuจumos so suopsano
Document Search Search Results TCEQ Home
Detail of: Industrial and Hazardous Waste Solid Waste Registration 31402 For: FLUOROCARBON PLASTIC \& RUBBER PRODUCTION (RN100663798)
10420 KATY FWY, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: THE FLUOROCARBON COMPANY (CN600395438)
OWNER OPERATOR Since 11/06/1998
Mailing Address: PO BOX 3402 HOUSTON, TX 77253-3402

\section*{Central Registry}

> IHW Waste Detail

\section*{IHW Waste Management Unit}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Sequence Number: 003 & Unit Type: Tank & Unit Status: ACTIVE & Description: \\
\hline Permit Number & UIC Number & \begin{tabular}{l}
Manages Off-Site \\
Waste
\end{tabular} & Management & Capacity & \begin{tabular}{l}
Regulatory \\
Status
\end{tabular} \\
\hline & & No & & & \\
\hline
\end{tabular}
Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us | Central Registry | Search Hints |
Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal

Query Home Customer Search RE Search IO Search Document Search Search Results TCEQ Home

\section*{Central Registry}
Related Information:
Held by: PRP INC (CN600372205)
Solid Waste CANCELLED
Registration
or katy fwy houston
OWNER Since 08/23/2001
Mailing Address: Not on file
of: Industrial and Hazardous Waste Solid Waste Registration 71589
For: FLUOROCARBON PLASTIC \& RUBBER PRODUCTION (RN100663798)
10420 KATY FWY, HOUSTON
Solid Waste CANCELLED
Solid Waste Registration Information
There is no information related to this Solid Waste Registration in the following categories: Commissioners' Actions
\[
\begin{aligned}
& \text { Effective Enforcement Orders } \\
& \text { Criminal Convictions } \\
& \text { Proposed Enforcement Orders } \\
& \text { Complaints } \\
& \text { Discharges } \\
& \text { Emergency Response Events } \\
& \text { Emission Events } \\
& \text { Fish Kills } \\
& \text { Other Incidents } \\
& \text { Investigations } \\
& \text { Periodic Reports } \\
& \hline
\end{aligned}
\]
Ste Helo I Disclamer I Web Polices I Accessibily I Cur Compact with Tevans | TCEQ Homeland Security I Contact Us | Central Registry I Search Hints I

© 2002-2013 Texas Comftission on Efvironmental Qualty
- http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.viewAddnDetail\&addn_id=618447342001309\&rn=RN10066379...
Page 1 of 1
Questions or Comments >> ID Search Search Results Solid Waste Registration Detail TCEQ Home Detail of: Industrial and Hazardous Waste Solid Waste Registration 71589
For: FLUOROCARBON PLASTIC \& RUBBER PRODUCTION (RN100663798)
1042 KATY FWY, HOUSTON
Solid Waste CANCELLED
Registration
Status:
Held by: PRP INC (CN600372205)
OWNER Since 08/23/2001
Mailing Address: Not on file
Central Registry
Program Area Data not available for this Additional ID
 Report Data Errors
Statewide Links: Te

THIS IS NOT A PERAET AND DOES NOY CONSTITUTE RUTHORIZATION OF GNY WASTE MANAGEMENT ACTIVITIES OR FACYLITIES LISTED BELOU. REQUTREMENTS FOR SOLTO WASTE MANAGEMENT ARE PROVIOED BYTEXAS ADMENISTRATIVE COOE SECTION 335 OF THE RULES OFTHE TEMAS WATER COAMESSION \&TUC: CHANGES OR ADOITIONS TO WASTE HANAGE AENT WETHOQS REFERREDTO IN THIS NOTICE REOUTRE WRITTEN NOTIFICATION TO THE: TUC.

OATE OF NOTXEE \(30-02-87\)
REGISTRETION DATE: DI-OS-79
REGISTRATION NUMBER: 3402
EPA I.O. NUFBER: WOO89799522
 HATYON PERTAINENG TOKYOUR OPERAYION. PLEESE REFER TO. THAY NUMEER I TN : ANY: CORRESPONDENCE.

COMPMNY NABE FLUOROCARBON COMPANY THE
MATLING ADORESS: PLASTRC \& RUBBER PRODUCTS DYV.
P. O. VBDNE 3402

HOUSTON:*

20420 OLD KATY WOA O, HOUSTONQTEXAS
CONYACTPERSONF ELON HUEGELEE:
PHONE: \(8735466-4365\)
NUPBER OF EMPLOVEESG EREATER ITAK 100 ,
THC OESTRICT: OF
REGISTRATION STATUS: TNACTHECH
REGISTRAT TON TYPE G GENERATORITRANSPORTER
HAZARDOUS WASTE GUATES
SHALL QUANTITY GENERATOR
To URSTE GENERATED:
WASTE
NUMBER DESCRTPTION CLASS CODE DESPOSTTION

001 PLANT REFUSE, GENEREL NISC. II 279760 OFF-SITE
NO2 SUQP SLUDGE, CONTARNENG AISC. I 142050 ON-SITEMOFF-SITE/SOL
CHEAICALS
003 ACTO; ORGANLC GACETIC:FORETC. IH 911850 ON-SITE/DFF-SITE PROPIDNIC E BUTYRIC:

EPA HAZKRDOUS MASTE NOS. EREFER YO 40 CFR PART 261 FOR OESCRIPIIONS: FOOS: FOOZ
ATTON NUMBER= 31402
Y NEME: FI.... FLUOROCARBON COMPANY. THE
```


## G SHIPPING/REPORIXNG: NOT APPLICABLE

```
III. ON-SITE WSTE RANRGEMENT FACILITIES:
FAC NO.
FACXITY
sterus
```



```
OITTANK
STORAEE
OF CISTE NUPGERIS:002.003
Q3. TANK
ACtyE
STORAGE
OF HASTE NUMQERIS; 002
UNLESS OTHERUYSE STATED ABOVE FACILTTSES ARE LOCATEO AT 20420 OLDKATY ROAD, HOUSTON. TEXAS COUNTYOF HARRIS
IU. RECORES.
A. FOR PURPOSES OFRELLTNG ANNUKL REPORTS PURSUKNT TO TEXAS HOMTRTSTRATYUECQQE SECTION 335 OF THE RULES OF THE THC PERTATNTNG TO RNDUSTRIAL SOLID UASTE MANAGEAENT, RECOROS SHOUL O BE MAENEA INED FOR STORAGE PROCESSING KNDIOR DISPOSAL OF THE FOLLOWTNG WASTERS LISTED IN PART I:
DOS 279760 PGANPREFUSE GENERAL MISC.
002741050 SUMP SLUDGE, CONTAENING MISC. CHEHYCALS
QU3 9ILBHO ACID. ORGANLC IACETIC: FORMIC. PROPIONIC E BUTYRIC
```





## Analytical Lab Results

Date Sampled: $\quad \therefore \quad 4-8-85$
Date received:
Lab Number

| Sample Number/ Description | $\begin{aligned} & \text { PCBs } \\ & (\mathrm{ppb}) \end{aligned}$ | Methylene Chloride $\qquad$ <br> (ppb) | Oil \& Grease ( $\mathrm{mg} / \mathrm{l}$ ) | $\begin{gathered} \text { Trichloroethylene } \\ \text { (ppb) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| MW-1/water | <0.1 | $<10.0$ | 12.0 | 206.0 |
| MW-2/water | NT | $<10.0$ | <1.0 | 26.0 |
| MW-3/water | NT | $<10.0$ | $<1.0$ | <10.0 |
| MW-4/water | NT | $<10.0$ | <1.0 | <10.0 |

[^1]
$65)$ Jot lis．6－1050 I5sued： $9 / 1 / 28$
Keviseñ： $4 / 2 \mathrm{j} / \mathrm{BB}$ Fage 1 of 4

|  | 14 |  | 14 | i | 9月1t／s | 8.0 | 1 | 1 H |  | ç／Li／a | $0 \cdot 1$ | S日／90／5 |  | ¢－ | 80－9－貯 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 14 |  | LH | \％ |  | 14 | ； | 2 | ！ | ¢¢1：1\％ | \％＇0 | 58／9015 |  | ＜－1 | 70－9－8 |
|  | 111 |  | 14 | ； |  | 14 | 1 | 境 | ！ | 98／LI／5 | 501 | 50／90／5 |  | 1－9 | 10－7－74 |
|  |  |  |  | ； |  |  | ！ |  | \％ |  | $!$ |  |  |  |  |
|  | 13 |  | $1 \%$ | ； | 59／LTS | 10 | 1 | in | 1 | 5elti／g | ¢＇t | 5179015 |  | £－$\downarrow$ | ［0－9－4n |
|  | $1 /$ |  | 1 N | ； | 58／12／5 | U＇T | ： | 14 | 1 | getlits | 9＊ | $59190 / \mathrm{T}$ |  | 2－1 | 39－5－6 |
|  | 期 |  | 14 | 1 | c9／20］s． | 9.0 | ； | ${ }^{4}$ | ； | se／be／s | 01 | 5819015 |  | 1－1） | 10－を等 |
|  |  |  |  | i： |  |  | ＋ |  | ； |  | $t$ |  |  |  |  |
|  | U |  | 1 N | ！ |  | In | ！ | 卦 | ； | S20tila | 10 | 93／90／5 |  | E－ 2 | ［ $20-5-54$ |
|  | 娕 |  | IN | i |  | H | \％ | I | ！ | 59／L1／5 | $9 \%$ | 52／90／3 |  | L－I | 39－5－3H |
|  | 愘 |  | 1 K | ！ | ． | d | ； | 1／ | ！ | C2／Li／\％ | $0 \cdot 0$ | ¢919n！ |  | $1-8$ | 但－6－7 |
|  |  |  |  | ； |  |  | 1 |  | ； |  | ！ |  |  |  |  |
|  | 14 | \％ | IN | ！ | g\％itis | $0 \cdot 1$ | t | 1.1 | 1 | g3lilis | 0.1 | 59／90／5 |  | \＆－2 | （2）－ $\mathrm{C}-9 \mathrm{H}$ |
|  | 1 |  | 1H | ； | 58／It／s | 80 | 1 | 1 H | 1 | 5814／5 | 8 g | c8／90／8 |  | －1 | 70－¢－5H |
|  | 1 N |  | 14 | 1 | c8／Iz／g | 97 | 1 | 14 | I | ç／L1／G | g\％ | celat＇s |  | 1－9 | 19－5－6 |
|  |  |  |  | \％ |  |  | ！ |  | ！ |  | ； |  |  |  |  |
|  | 1H | ： | IS | 1 |  | 1 L | ！ | 11 | ！ | çlilis | 80 ： | 59／90／3 |  | s－i | §0－2－0．th |
|  | in | $\cdots$ | 1 N | 1 | 52］12\％ | 01 | 1 | IN | ！ | c8／Ltis | $0 \cdot 1$ | 5890／9 |  | ¢－1 | 20－6－0\％ |
|  | 14 |  | 14 | ； | 58／た／\％ | 8.0 | ， | 1 m | ！ | 59／L5\％ | ＇t 1 | cerouls |  | ［－3 |  |
|  |  |  |  | ！ |  |  |  |  | ！ |  | ； |  |  |  |  |
|  | 14 |  | IN | ； | Sa／tic | 9.1 | 1 | H | ； | ¢8／L1／5 | $0 \cdot 1$ | 98／90／s |  | \＆－Z | ¢0－1－駺 |
|  | IN |  | 18 | t |  |  | $t$ | 1 | ！ | c8／L1／s | ¢＇1 | ¢9／90／E |  | l－1 | 20－5－9］ |
|  | 14 | － | 1 H | $\stackrel{1}{5}$ |  | 1 H | 1 | $1 \%$ | ； | 9814：\％ | 011 | 5日ly |  | 1－2 | 19－T－21\％ |
|  |  |  |  | 1 |  |  | t |  | 1 |  | ！ |  |  |  |  |
| ¢812\％た | bi | S87tic／s | 18．7 | ： | $\vdots$ | 1 H | i | 1 H | ！ | 98／LJ／2 | 14 | ¢8／61／\＆ |  | \％ | 9－64 |
|  | $1{ }^{1}$ | 39／zu／a | $66^{\prime} 9$ | i |  | 1\％ | ！ | 18 | 1 | çallu／E | c＇z ！ | 93／51／8 |  | ［ 0 | 5－6 |
| 5812lic | 011） | cgitels | 26．7 | ！ | ； | IN | \％ | dil | 1 | g\％／2u／s | 暞； | 98／61／8 |  | 8.0 | －64 |
| ¢9／Luts | 0＇1） | gatzers | $55^{\circ} \mathrm{P}$ | 1 |  | 1 H | \％ | In | ； | 98／ZZ／ | 14 ： | 58／bits |  | 8\％） | ¢－4t |
|  | IN | ç／tels | $90^{\circ} 1$ | 1 |  | 1 | ！ | $1{ }^{\prime}$ | 1 | gallufy | ［＇0）； | 58／61／8 |  | $9 \cdot 1$ | \％－解 |
|  | 14 | 59／U2！ | 81.9 | \％ |  | LN | 1 | 18 | ； | calzz／e | 10 ： | 59／ble |  | 80 | 1－1的 |
| 91นาห＊ | （50） | O3x．746 | （＇n＇s） |  | 531人姆8 | 促d！ |  | （ Hd） |  | 0312\％ | （ dod $^{\text {d }}$ | 83.3485 | （1） | 7683314 | 838日缹 |
| 3140 | $587 \%$ | $3{ }^{3}$ | Hf |  | 3iva | 0าม181－${ }^{4}$ | 3100 | 31\％ |  | 314 | 30199 ${ }^{\text {a }}$ | 3143 |  | HId ${ }^{\text {d }}$ | 31cas |
|  |  |  |  |  |  | ${ }^{1} 1$－0y07 H 2 |  | 8x974 |  |  |  |  |  |  |  |
|  |  | ．．． |  |  |  | －ISI－Z1！ | － | $1-11^{\prime} 1$ |  |  | － | ： |  | ！ |  |



|  | 14 |  | 14 | i | 9月1t／s | 8.0 | 1 | 1 H |  | ç／Li／a | $0 \cdot 1$ | S日／90／5 |  | ¢－ | 80－9－貯 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 14 |  | LH | \％ |  | 14 | ； | 2 | ！ | ¢¢1：1\％ | \％＇0 | 58／9015 |  | ＜－1 | 70－9－8 |
|  | 111 |  | 14 | ； |  | 14 | 1 | 境 | ！ | 98／LI／5 | 501 | 50／90／5 |  | 1－9 | 10－7－74 |
|  |  |  |  | ； |  |  | ！ |  | \％ |  | $!$ |  |  |  |  |
|  | 13 |  | $1 \%$ | ； | 59／LTS | 10 | 1 | in | 1 | 5elti／g | ¢＇t | 5179015 |  | £－$\downarrow$ | ［0－9－4n |
|  | $1 /$ |  | 1 N | ； | 58／12／5 | U＇T | ： | 14 | 1 | getlits | 9＊ | $59190 / \mathrm{T}$ |  | 2－1 | 39－5－6 |
|  | 期 |  | 14 | 1 | c9／20］s． | 9.0 | ； | ${ }^{4}$ | ； | se／be／s | 01 | 5819015 |  | 1－1） | 10－を等 |
|  |  |  |  | i： |  |  | ＋ |  | ； |  | $t$ |  |  |  |  |
|  | U |  | 1 N | ！ |  | In | ！ | 卦 | ； | S20tila | 10 | 93／90／5 |  | E－ 2 | ［ $20-5-54$ |
|  | 娕 |  | IN | i |  | H | \％ | I | ！ | 59／L1／5 | $9 \%$ | 52／90／3 |  | L－I | 39－5－3H |
|  | 愘 |  | 1 K | ！ | ． | d | ； | 1／ | ！ | C2／Li／\％ | $0 \cdot 0$ | ¢919n！ |  | $1-8$ | 但－6－7 |
|  |  |  |  | ； |  |  | 1 |  | ； |  | ！ |  |  |  |  |
|  | 14 | \％ | IN | ！ | g\％itis | $0 \cdot 1$ | t | 1.1 | 1 | g3lilis | 0.1 | 59／90／5 |  | \＆－2 | （2）－ $\mathrm{C}-9 \mathrm{H}$ |
|  | 1 |  | 1H | ； | 58／It／s | 80 | 1 | 1 H | 1 | 5814／5 | 8 g | c8／90／8 |  | －1 | 70－¢－5H |
|  | 1 N |  | 14 | 1 | c8／Iz／g | 97 | 1 | 14 | I | ç／L1／G | g\％ | celat＇s |  | 1－9 | 19－5－6 |
|  |  |  |  | \％ |  |  | ！ |  | ！ |  | ； |  |  |  |  |
|  | 1H | ： | IS | 1 |  | 1 L | ！ | 11 | ！ | çlilis | 80 ： | 59／90／3 |  | s－i | §0－2－0．th |
|  | in | $\cdots$ | 1 N | 1 | 52］12\％ | 01 | 1 | IN | ！ | c8／Ltis | $0 \cdot 1$ | 5890／9 |  | ¢－1 | 20－6－0\％ |
|  | 14 |  | 14 | ； | 58／た／\％ | 8.0 | ， | 1 m | ！ | 59／L5\％ | ＇t 1 | cerouls |  | ［－3 |  |
|  |  |  |  | ！ |  |  |  |  | ！ |  | ； |  |  |  |  |
|  | 14 |  | IN | ； | Sa／tic | 9.1 | 1 | H | ； | ¢8／L1／5 | $0 \cdot 1$ | 98／90／s |  | \＆－Z | ¢0－1－駺 |
|  | IN |  | 18 | t |  |  | $t$ | 1 | ！ | c8／L1／s | ¢＇1 | ¢9／90／E |  | l－1 | 20－5－9］ |
|  | 14 | － | 1 H | $\stackrel{1}{5}$ |  | 1 H | 1 | $1 \%$ | ； | 9814：\％ | 011 | 5日ly |  | 1－2 | 19－T－21\％ |
|  |  |  |  | 1 |  |  | t |  | 1 |  | ！ |  |  |  |  |
| ¢812\％た | bi | S87tic／s | 18．7 | ： | $\vdots$ | 1 H | i | 1 H | ！ | 98／LJ／2 | 14 | ¢8／61／\＆ |  | \％ | 9－64 |
|  | $1{ }^{1}$ | 39／zu／a | $66^{\prime} 9$ | i |  | 1\％ | ！ | 18 | 1 | çallu／E | c＇z ！ | 93／51／8 |  | ［ 0 | 5－6 |
| 5812lic | 011） | cgitels | 26．7 | ！ | ； | IN | \％ | dil | 1 | g\％／2u／s | 暞； | 98／61／8 |  | 8.0 | －64 |
| ¢9／Luts | 0＇1） | gatzers | $55^{\circ} \mathrm{P}$ | 1 |  | 1 H | \％ | In | ； | 98／ZZ／ | 14 ： | 58／bits |  | 8\％） | ¢－4t |
|  | IN | ç／tels | $90^{\circ} 1$ | 1 |  | 1 | ！ | $1{ }^{\prime}$ | 1 | gallufy | ［＇0）； | 58／61／8 |  | $9 \cdot 1$ | \％－解 |
|  | 14 | 59／U2！ | 81.9 | \％ |  | LN | 1 | 18 | ； | calzz／e | 10 ： | 59／ble |  | 80 | 1－1的 |
| 91นาหม | （50） | O3x．746 | （＇n＇s） |  | 531人姆8 | 促d！ |  | （ Hd） |  | 0312\％ | （ dod $^{\text {d }}$ | 83.3485 | （1） | 7683314 | 838日缹 |
| 3140 | $587 \%$ | $3{ }^{3}$ | Hf |  | 3iva | 0าม181－${ }^{4}$ | 3100 | 31\％ |  | 314 | 30199 ${ }^{\text {a }}$ | 3143 |  | HId ${ }^{\text {d }}$ | 31cas |
|  |  |  |  |  |  | ${ }^{1} 1$－0y07 H 2 |  | 8x974 |  |  |  |  |  |  |  |
|  |  | ．．． |  |  |  | －ISI－Z1！ | － | $1-11^{\prime} 1$ |  |  | － | ： |  | ！ |  |

$\because \longrightarrow$



1， 2 2－Tai－

[^2]虹
㤩

| $\square$ |
| :---: |
| $\stackrel{3}{3}$ |

 651 Jas lia. 6-1050

Payye 2 of 4




Hote:
() Sauples collicted by kesourte Enginteringŭ, inc., in 1985 and 1986.
2) All anaiyses perforadd by Southern fetroleul laboratories in atiordance with EfA Guidelities.








Sisw $6-1050$
：¢5jued．2／83
firysed：9／23／88
fag̣i 1 ot 1
foratr fluatccarbon froperty


| min melec | CHA家 | SLisidar | Comine | 6030起 |  |  | 0 L | \％ | 6 ctin | Fibu | Et |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Than Linit | $\cdots$ | Hニ̈Е | ${ }^{\text {a }}$－${ }_{\text {ch }}$ | 絾它苼 |  | AESA |  |  | Fivid | Ethatik | SLunt |
|  | $\stackrel{\text { ¢ }}{5}$ | 10 | 11 | 12 | A | S |  |  |  |  |  |

Ante Shutle：

Campalins

| Chlor caethase | 16－12 | （1） | ［11 | 12 | 412 | （1） | ＜ 31 | ： 1 | 12 | 41 | ：1 | （1） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eroapaethane | 10－1？ | ¢15 | （i） | 12 | 42 | ＜11 | （1） | （is | ＜12 | ［11 | ！ 1 | 110 |
| Vinyl Chloritie | 10－12 | （1） | （i） | ［12 | （12 | 611 | ！！ | （：1 | ： 21 | ！ | ＜1： | 65 |
| Sturaethang | 10－12 | St | 4： | ＜12 | ＜12 | S11 | 11 | （1） | © 12 | ［11 | \％ | 10 |
|  | ：1－12 | 2 2 $=$ | ¢ 3 | 103 | 17 \％ | 12 \％ | $3 \pm$ | 13 B | 93 | 95 | 123 | $4=$ |
| Aistone | （1） 12 | 213 | 3 | 38 | $3 \dot{3}$ | 153 | 348 | \％ 8 | 27 a | 2 E | 3 3 | $\because$ |
| Cefoen disulfica | 5－6 | ＜ 5 | $\bigcirc$ | ＜a | － | ¢ 6 | ＜ | － 6 | $\therefore 5$ | ： 6 | ＜ 5 | ； 5 |
| 1，i，bichiuroethere | 5－6 | ＜5 | ； | ＜ 6 | ＜6 | ＜ 6 | ＜ | ： 0 | ＜ 6 | \％ 6 | ＜ 5 | く |
| 1， 1 ，Dichiorosthane | 5－6 | ： 5 | ¢ 5 | ＜b | $\leqslant 6$ | （s） | ＜ 6 | ＜${ }^{\text {d }}$ | ＜ 6 | ¢ 6 | $\bigcirc 5$ | ［ 5 |
| Trans－i， 2 －pichloruettene | 5－6 | ＜ 5 | 65 | ＜o | （6） | ＜ | ¢ | ＜${ }^{\text {a }}$ | ＜ | ＜ 6 | ＜ 5 | ＜ 5 |
| Chatofora | 5－5 | ＜ 5 | $\therefore 5$ | ¢ 6 | ＜ 6 | ＜ 6 | ＜6 | ； 6 | －${ }^{\text {a }}$ | ［6 | ¢ | ¢5 |
| 9， 2 －aichlaruathane | 54 | ＜E | くら | ＜ | （b | Sb | 66 | ＜ 6 | ＜ 6 | ； 6 | ＜ 5 | ： 5 |
| 2－Butanone | 11－12 | 158 | $15 \mathrm{~B}=$ | $11 \mathrm{~B}=$ | $12 \mathrm{E}=$ | 188 | 12 B | 1） 3 | 11 $E=$ | $9 \mathrm{~g}=$ | 115 | 14 |
| 1，1， 1 －Trichloroethane | 5－6 | ＜5 | 45 | ＜6 | ＜ 6 | ＜ 6 | ＜ 6 | ＜6 | ＜${ }^{\text {b }}$ | ¢ 6 | ＜ 5 | ＜ 5 |
| Carbon Setracthorida | 5－6 | ＜ 5 | ¢ 5 | \＆ 6 | ¢ 6 | ＜ 6 | ＜ 6 | ： 6 | （b | © 6 | ＜ 5 | （5 |
| Vinyl fettate | 10－12 | （1i | ＜11 | \｛12 | （12 | ＜11 | （1） | （1） | （12 | S11 | （1） | （10 |
| Stosodicticromethane | 5－5 | ＜ 5 | （5 | $\because 6$ | $\therefore 6$ | ＜ 6 | ¢ | $\therefore 6$ | \％ | ＜ 6 | ¢ | $\therefore 5$ |
| ！，2－dichloroprapane | 5－6 | ＜ 5 | 65 | ＜ | 66 | is | ＜6 | $\therefore 6$ | ¢ | 86 | ＜ 5 | ： 5 |
| Ifans－1，3－Dichloropripere | 5－6 | ＜ 5 | ＜ 5 | ＜6 | ＜ 6 | ＜ 6 | ＜ | ＜ 6 | ＜ 6 | ＜6 | $\checkmark 5$ | ＜ |
| Trichlaroathene | $5 \%$ | ＜ 5 | ＜ 5 | ＜ | （6） | ＜6 | ＜ | ＜ | ＜ 6 | ＜ | ＜ 5 | ＜5 |
| Fibrosochuromethatie | 5－6 | ＜ 5 | ＜ 5 | \＆ 6 | ［b | ： 6 | © | $\therefore 6$ | So | ＜6 | ＜ 5 | ＜ 5 |
| 1，1，2－trichioroethane | 5－6 | ¢ | （5） | ＜ 6 | ＜ 6 | ＜b | ＜ 6 | 46 | is | ＜ 6 | ＜ 5 | ＜ 5 |
| 3enzena | 5－6 | ＜ 5 | ¢5 | \＆ 6 | ＜ 6 | 4 6 | ＜ | \＆ 6 | ¢ 6 | ¢ 6 | \＆ 5 | ＜ 5 |
| Cis－1，3－0ichiaragropent | $5{ }^{\text {á }}$ | ＜ 5 | ＜ | ＜6 | ＜6 | ＜ 6 | ＜ | ＜ 6 | ¢ | ＜ | ＜ 5 | ： 5 |
| Drasifora | $5 \sim 6$ | ＜ 5 | $\therefore 5$ | \＆ 6 | ＜ 6 | ＜6 | く | \％ 6 | $\therefore$ ¢ | － 1 | $\bigcirc 5$ | ¢5 |
| S－Kethyl－－Pentanose | 10－12 | （1） | （1） | \｛！2 | 12 | $g=$ | 11 | ＜11 | sif | （1） | （i） | （\％ |
| E－Hexanore | ：0－12 | （1） | （11 | （12 | ， 12 | 4 | ［f | ¢！ | ． 12 | ！ | S11 | （1） |
| Tetrachloroetheiat | 5 | － 5 | ＜ 5 | ＜ 6 | ＜ | ＜ 6 | ＜ | ＜ | $\therefore$ ： | ＜ | ¢5 | ＜ 5 |
| 1，1，2，2－fetrachloruethang | 5－6 | $\bigcirc 5$ | ＜ 5 | ＜ 6 | $\therefore 6$ | $\therefore 6$ | ¢ | ＜6 | ＜ 6 | $\therefore 6$ | － 5 | ¢ |
| Toluene | 5－6 | ＜ 5 | （ 5 | ＜ 6 | ＜o | $3=$ | ＜ | ＜ 6 | 16 | $2=$ | ＜ | ＜ 5 |
| Chiorobenyene | 5－6 | ¢ 5 | ＜5 | ＜ 6 | ＜ 6 | ¢ | ＜${ }_{6}$ | $\therefore$ | 86 | $\bigcirc 6$ | ＜ 5 | （5 |
| Etayltenzent | 546 | ＜ 5 | ＜ | ＜6 | ＜o | ＜6 | ＜ 6 | ¢ 6 | ＜ 6 | ＜ | ＜ 5 | ＜ |
| Styrene | 5－6 | ＜ 5 | ＜ 5 | ＜ 6 | ＜ 6 | ＜ 6 | ¢ 0 | ＜ 6 | 46 | $\bigcirc 6$ | ＜ | ＜ |
| dylene | 5－6 | ＜ 5 | 15 | st | ＜6 | （ 6 | ＜ 6 | ＜ 6 | 56 | 56 | $\bigcirc 5$ | ¢5 |
| Totat valathes metectid： |  | $3{ }^{2}$ | 5 | 49 | 8 | 221 | ${ }^{2}$ | 43 | 49 | 45 | \％ | 4 |
|  |  | 40 | 0 | 10 | 3 | 160 | 献 | 困 | ND | 2 | \％ | $\cdots$ |

细等：

[^3]

TARLE 3．7A
FREMIGUS GRDOMOMATER SA TEST RESULTS： VDLATHLE ORGARIC ARKBLYSES（HG／L） Faraer Fluorocarbon Property 10420 Old Katy fipad，Houston，Texas

ES1 Jod Nr 6－1050
155uet：1／58
Revised：9／23／88
Page 1 of 1

| RE！ | HE\｛L | WEL | WEL． | HELL |
| :---: | :---: | :---: | :---: | :---: |
| 枵觻 | 號－1 | \％${ }^{\text {H }}$－ 2 | 成－3 | 期－4 |
|  | 4－8－85 | 4－8－85 | 4－8－85 | 4－8－85 |
|  | 4－9－85 | 4－9－85 | 4－9－85 | 4－9－85 |



HOTES：if Saples collected by Resourte Engineering，lisca，in 1985.
2）All analyses perforaed by Southern Petroleun Laboratorias，Inc．， in atcordate mith EPA guidelines．
3）Aboreviations：NT－not tested
NO＝not detected


Foratr Fluerocarbon froperty 10420 0ld Katy Road，Houston，Yexas

GSI Jot H0．6－1050
lssued：9／1／28
Revisedi 9／23／8日
Eage 1 of 3

| SAhfle <br>  | DATE SAMPLCTH | Dite AGALYIED | 积THYLEAE <br> CHIORIDE <br> （ p p b ） | TMCHORR－ ETHENE （ppb） | FCB5 <br> （ $\rho \mathrm{pb}$ ） | 日IL： 6fEñSE （4gุ／1） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | 4／02／85 | $4109 / 65$ | ． 10 | 206 | ＜1 | 12.0 |
| 足－1 | $9 / 23 / 86$ | H | －${ }^{\text {U1 }}$ | 600 | NT | H1 |
| 嚁－1 | MR | 哏 | HT | 1380 | H3 | HT |
| 臇－2 | 4108185 | 4／07／25 | $\leq 10$ | 26 | HT | ． 31.0 |
| 枵－2 | 9／23／86 | 12 | NT | 110 | H | H |
| 滑－2 | $\pm$ | 7 | W | $\leqslant 7$ | －－ | －－ |
| M12－3 | $4108 / 85$ | 4／05／85 | 40 | $\ldots 10$ | 31 | 1.0 |
| － $\mathrm{H}_{5}-\frac{4}{4}$ | 4／08／85 | 4109165 | 510 | 110 | IIT | \＄1．0 |
| 1－5 | 4／16／85 | 4／18／85 | NT | （10） | H | HT |
| H5－6 | 4／1s／85 | 4／18／35 | IIT | ＜10 | －NT | H |
| 龍－7 | 4／16／85 | 4／12／85 | H］ | ＜10 | HT | NI |
| ，攷－7 | k | $N R$ | ［1T | ＜ 7 | HT | HT |
| 紜－8 | 4／16／85 | 4／18／85 | NT | ＜10 | HT | HT |
|  | 7／25／36 | $\pm$ | 3 H | ＜10 | NT | HI |
| ．龍－8 | NR | H18 | ．${ }_{\text {HT}}$ | $\cdots \leqslant 7$ | dT | HT |

NETES：
1）Saniles collected by fiesource Engineering，Im．
2）All analyses perforata by Southern Petroleua Laboratorise，inc．，
3）Sources of data are REI／ERT reports，andior Rel／eft trabsuitalas to Houston Froperty Developmentiold hidy hud 22 Ltd．
4）kbtreviations：fT－net tested
給－nut reportad
mole 3.7 B

Furser fluorocarben froperty 10420 ald faty Road, Houstan, Texas


MDES:

1) Sappies collacted by हesource Engineering, inc.
2) All analyees perforzed by Scuthern Fiztrolean Laboratories, line.,
3) Sources of data are fEl/ERT repurts, atidor REI/ERT transaithals to Houston froperty developaent/atd haty foad 28 Ltd.
4) Abbreviations: NT - not tested

MR - not raported

TAbし－ 3.7 B

Forber fluorutaridü fruperty
10420 01d Katy fiead，Hüston，Texas

| SAM秝LE | Ointe | BATE | HETHYEEIE <br>  | TnICALORO－ ETHE㰦 | PCE5 | OIL \＆ EREASE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Henter | SmMplen |  | （ppos） | Spb | （ptb | （䊺月） |
| 枵－1 | ＊ | t | －＊ | ＜ 5 | － | －－ |
| HE－2 | ＊ | ＊ | －－ | $\therefore 5$ | $\cdots$ | －－ |
| H5－3 | ＊ | $\pm$ | －－ | ． 380 | －－ | ．．．－－ |
| HC－4 | \＃ | $\pm$ | －－ | 42 | －－ | －－ |
| HC－5 | $\pm$ | I | －－ | $\cdots$ | －－ | －－ |
| HC－6 | ＊ | I | －－ | 75 | －－ | －－ |
| HC－7 | $\pm$ | $\pm$ | －－ | 45 | $\cdots$ | $\cdots$ |
| H0－8 | $\pm$ | ＊ | －－ | ＜ | －－ | －－ |
| 130－9 | ＊ | ＊ | －－ | ． 5 | －－ | ．．－- |
| Ctis | ＋＊ | 4 | H | 111 | NT | NT |
| $6^{[5}$ | 䋛 | $\pm$ | HT | 67 | M | HT |
| Kin－20 | ： | ＊ | $\ldots$ | ．．． 37 | －－ | －－ |
| H H －21 | $\pm$ | I | －－ | 23 | －－ | －－ |
| ［1\％－22 | \％ | t | $\cdots$ | 35 | － | －＂ |
| 等－23 | ＊ | $\pm$ | －－ | 2200 | －－ | －－ |
|  | ＊ | \％ | －－ | 290 | － | － |
| 䛧－25 | $\pm$ | ＊ | －m | 4600 | － | ．$\quad$－ |
| D⿴囗 | 4／16／86 | 4／13／65 | HT | $\leqslant 10$ | HT | $\cdots$ |

HOTES：
1）Saiples collected by Resource Engineering，inc．
2）All analyEes performed by Southarn fatroleu Laboratories，Inc．，
3）Sourtes of data are REI／ETT reports，and／or REL／ERT transittals to Houston Property Developant／0ld Katy Road 23 Ltd ．
4）Abbreviations：if－not tested
䌙－not reported
5）Hell 0 － 1 located on adjacent Hyatt mastries property， Roported deth to fte（REI）

$$
\begin{array}{r}
81-7 x \\
793
\end{array}
$$

Es／lZ／L 88

 21－暗
784



舟

我要

|  <br> 713 |
| :---: |
|  |  |

空
훙흘흘
은응ㅇㅇㅇnnnnwon

 흐를

울

$$
\approx \text { 空 }
$$



空思
HEL
相
 IN．DETEC－
JOK liMit
iUE HIN
응응N心nかwnw灾容
$\underset{\sim}{2}$
$m=$

$$
\approx x
$$$\vec{m}$

$$
0 E
$$



$$
\infty \infty
$$

$\infty$10

## rokedtans

## GAKPIE DATE： AMSLYSIS DRTE：

SAKPIE DATE：
AMSLYSIS DRTE：

## Chlorgaelhzne

BronosethaneChloroethapenelinylene Chlorlde产
Carbos Disulfita
1, f－0ichloraethene 1，f－0ichlorgethene
1，1－Dichlorsethane Trans－1，2－9ichlornethene
Chlorofora 1，2－Dichlore 2－8utanone
I， 1,1 －Trlchloroethane
 Viny！Acetate Grocosichlorosethane
1，2－vichl orepropane
Irans－1，3－Dichloragropene
Trlchloroethent Trlchlorgethent
Dibrozachlorongthane
1，1，2－Trichloroplhane
Cis－1，3－0ithloripropene
Cis－l，3－0itmorspropene
Bresofors


## Telrachloroetheste

1，1，2，2－Tetrachlor cethane
흘
Chlorobenzene
Styrene
$\mathrm{I}_{2}^{2} \mathrm{t}^{2 \text { nTrifluoroflhane }}$


$$
\underset{y}{4}
$$

$$
\begin{aligned}
& \text { yELL } \\
& \text { Hir }-19
\end{aligned}
$$

## $7 / 25 / 88$ $8 / 03 / 88$

$$
\begin{aligned}
& \text { 응응 } \\
& \infty \\
& \text { ル vs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 的윤 }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{2}{\circ} \\
& 20 \\
& \because n \\
& \text { に~0 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 雄 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 名ジロ } \\
& \text { ミ~ } \\
& \text { ごが } \\
& \stackrel{\pi}{4} \\
& \text { ~u } \\
& \because 8 \\
& \text { ○こ }
\end{aligned}
$$

## CONPDULS

SAMPLE DATE：
RKALYSIS DREE：

## 1. $\varnothing$ EXECOTIVE SUMMARY

During the period of 1962 to 1986 , the former fluorocarbon Co. property, located at 1.0420 old katy Road in Houston, Texas, was occupied by several commercial industrial companies involved in the manufacture of plastic and rubber products. Industrial operations were discontinued on this site in December, 1985, and all facilities dismantled the following year. However, site investigations conducted since the time of facility closure have detected residual concentrations of hazardous chemical substances within the surface soils and shallow groundwater underlying this property. In order to identify the potential sources of this contamination and confirm current contaminant concentrations, Groundwater Services, Inc. (GSI), has compiled available information on past waste handiing practices at this facility and conducted a preliminary soil. and groundwater testing program. This report details the procedures and results of this preliminary site investigation.

Existing historical information has been collected and reviewed to identify past owners of the former fluorocarbon property and characterize their hazardous substance and waste handing practices. principal sources of historical data included property deed records, state and local environmental agency files, commercial aerial photographs, and previous environmental site investigations. Within the scope of the GSI investigation, no direct interviews were conducted with former property owners, operators, or employees. Available records show this 12 -acre tract to have been used for industrial operations from 1952 to 1986. A molded plastics manufacturing plant constructed on this site in 1.962 and operated successively by Wyatt Metal \& Boiler Works, Inc., U.S. Industries, Inc., plastic \& Rubber products, Inc., and the Eluorocarbon company. past operating practices that potentially contributed to soil and groundwater contamina- tion at this site include discharge of industrial wastewater into earthen drainage ditches, overflows from an underground acid waste holding tank, oil spillage from hydraulic presses and a waste oil recycling facility, and alleged disposal of degreasing agents (trichloroethylene) on the ground surface. The Eluorocarbon Co. discontinued manufacturing operations at this site in December, 1.985, and all industrial facilities were dismantled by the end of the following year.

Home Depot, Inc., entered negotiations for the purchase of the fluorocarbon site in 1985 and completed the transaction in January, 1986. During 1985, a series of environmental site investigations were conducted by Resource Engineering, Inc. (REI), to evaluate the potential environmental liabilities associated with this property. The property was purchased by old Katy Road 28 fimited partnership in late

January, 1986, and site investigations were continued to facilitate formal closure of the industrial plant in accordance with state industrial waste regulations. The Texas water commission (TWC) approved soil excavation at four locations to remedy soil contamination by methylene chloride but required that additional investigations be conducted to determine the full extent of groundwater contamination detected in the vicinity of the former acid waste tank. Subsequent monitoring well installations showed trichloroethylene contamination of near-surface groundwater to be far more extensive than previously inferred. The property remains undeveloped at the present time.

In June-August, 1988, GSI conducted a preliminary site investigation at the former fluorocarbon property to characterize general hydrogeologic site conditions and confirm soil and groundwater contamination levels. Geologic data presented in previous site reports show the site stratigraphy to consist of a surface layer of silty, sandy clay approximately 10 ft in thickness, underlain by a 5-7 ft thick sand deposit, in turn underlain by a second clay layer. Static water level measurements conducted by GSI indicate the sand layer to be saturated, with groundwater moving in a general southeast direction beneath the site under a lateral flow gradient of $\emptyset .005$ - $\quad$. $\quad$ ( $\mathrm{ft} / \mathrm{ft}$. Laboratory analyses of soil samples confirm oil contamination of surface soils at several locations in the vicinity of the former manufacturing facility. fotal petroleum hydrocarbon (mpH) concentrations in areas of visible soil contamination range from 1740 to over 14,000 ppm. Volatile organic analyses of soil samples obtained from depths of 0.5 to three feet below grade found no residual waste solvents (i.e. methylene chloride, trichloroethylene, etc.) in the vicinities of the four closure excavations completed in 1986. However, measurable concentrations of trichloro- ethylene were detected in 12 of the 19 existing site monitoring wells, confirming relatively extensive contamination of groundwater within the near-surface sand layer underlying the site. A maximum trichloroethylene concentration of $53, \emptyset \emptyset \emptyset \mathrm{ppb}$ was measured in groundwater collected from well MW-lø located north of the former manufacturing building. Field and laboratory analyses completed to date are not adequate to define the full extent of soil and groundwater contamination beneath the former Fluorocarbon property.

The conclusions of this report are based solely upon available documentation and preliminary analytical data. GSI offers no warranty for the accuracy or completeness of this available information.





## Page 1 of 2

Affiliated Customers - Current
Your Search Returned $\mathbf{3}$ Current Affiliation Records (View Affiliation History)
RN Number: KN100060924 - RB Concrca CEMTER

## Regulated Entity Information

Central Registry Query - Regulated Entity Information
http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=regent.showSingleRN\&re_id=393534952001309

## Page 2 of 2

## http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=regent.showSingleRN\&re_id=393534952001309

TCEQ CR Query - Regulated Entity Information

## Permits, Registrations, or Other Authorizations

There are a total of $\mathbf{1 1}$ programs and IDs for this regulated entity. Click on a column name to change the sort order.
1-11 of 11 Records

| Program $A$ | ID Type | ID Number | ID Status |
| :--- | :--- | :--- | :--- |
| AIR NEW SOURCE PERMITS | ACCOUNT NUMBER | HG9849V | ACTIVE |
| IHW CORRECTIVE ACTION | SOLID WASTE REGISTRATION \# (SWR) | 34348 | INACTIVE |
| INDUSTRIAL AND HAZARDOUS WASTE | EPA ID | TXD981518566 | INACTIVE |
| INDUSTRIAL AND HAZARDOUS WASTE | SOLID WASTE REGISTRATION \# (SWR) | 34348 | INACTIVE |
| LEAKING PETROLEUM STORAGE TANKS REMEDIATION | ID NUMBER | 103725 | INACTIVE |
| LEAKING PETROLEUM STORAGE TANKS REMEDIATION | ID NUMBER | 107730 | INACTIVE |
| LEAKING PETROLEUM STORAGE TANKS REMEDIATION | ID NUMBER | 98181 | INACTIVE |
| PETROLEUM STORAGE TANK REGISTRATION | REGISTRATION | 33347 | INACTIVE |
| PETROLEUM STORAGE TANK STAGE II |  |  |  |
| STORMWATER | PERMIT | TXROST311 | CANCELLED |
| VOLUNTARY CLEANUP PROGRAM | ID NUMBER | 2100 | INACTIVE |

[^4]8 2002-2013 Texas Commission on Environmental Quality
Page 1 of 2

Questions or Comments >>

Page 2 of 2
(c) 2002-2013 Texas Commission on Environmental Quality

## Central Registry

Detail of: IHW Corrective Action Solid Waste Registration 34348 For: SPRING BRANCH SERVICE CENTER (RN100666924)



## Central Registry

 Detail of: IHW Corrective Action Solid Waste Registration 34348Page 2 of 2


[^5]TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 34348
Central Registry
Detail of: Industrial and Hazardous Waste Solid Waste Registration 34348 For: SPRING BRANCH SERVICE CENTER (RN100666924)


[^6]O 2502-2013 Tecas Commission on Erwironmental Qualty

> Detail of: Industrial and Hazardous Waste Solid Waste Registration 34348 For: SPRING BRANCH SERVICE CENTER (RN100666924) 10310 KATY FWY, HOUSTON

> Solid Waste INACTIVE
> Registration
> Held by: CENTERPOINT ENERGY HOUSTON ELECTRIC LLC (CN601095797)
OWNER OPERATOR Since 12/02/1986 View Compliance History
Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700

## .lctio: Facility Information

IHW Waste Management Units

| Sequence Number | Description | Unit Type | Status |
| :--- | :--- | :--- | :--- |
| 001 | WASTE OIL COLLECTION TANK | Tank (sub-surface) | CLOSED |
| 002 | Car wash sump | Sump | CLOSED |
| 003 | Drum storage area | Container storage area | CLOSED |
| 004 | PCB storage area | Container storage area | CLOSED |
| 005 | BINS | Container storage area | CLOSED |
| 006 | Lift rack sump | Sump | CLOSED |

Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us | Central Registry | Search Hints |
Report Data Errors
Statewide Links: Te
Statewide Links: Texas.gov | Texas Homeland Security | TRAIL Statewide Archive | Texas Veterons Portal
Page 1 of 2
Detail of: Industrial and Hazardous Waste Solid Waste Registration 34348 For: SPRING BRANCH SERVICE CENTER (RN100666924) 10310 KATY FWY, HOUSTON
Solid Waste INACTIVE
Registration
Status:
Held by: CENTERPOINT ENERGY HOUSTON ELECTRIC LLC (CN601095797) OWNER OPERATOR Since 12/02/1986 View Compliance History Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700

## Central Registry

## Mcrioi Facility Information

## IHW Waste Management Unit

| Sequence Number: 001 | Unit Type: Tank <br> (sub-sufface) | Unit Status: CLOSED | Description: WASTE OIL COLLECTION TANK |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Permit Number | UIC Number | Manages Off-Site <br> Waste | Management | Capacity | Regulatory <br> Status |
|  |  | No |  |  |  |

## IHW Waste Detail

Waste Code:
No Waste Stream Information exists for this Waste Management Unit

## http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.ihwwastedetail\&WST_MGT_UNIT_ID=27617\&FAC_ID=11793... 3/16/2015

2. $10 \mathrm{I}{ }^{2 \mathrm{sic}} \mathrm{e}_{\mathrm{d}}$
Questions or Comments >>
Search Results TCEQ Home
yวues 子uวunsod
RE Search ID Search
Customer Search
Query Home

## Central Registry

Detail of: Industrial and Hazardous Waste Solid Waste Registration 34348 For: SPRING BRANCH SERVICE CENTER (RN100666924)
10310 KATY FWY, HOUSTON
Solid Waste INACTIVE Solid Waste INACTIVE
Registration
Held by: CENTERPOINT ENERGY HOUSTON ELECTRIC LLC (CN601095797) OWNER OPERATOR Since 12/02/1986 View Compliance History
Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700

## Mcrais Facility Information

## IHW Waste Management Unit

| Sequence Number: 002 | Unit Type: Sump | Unit Status: CLOSED | Description: Car wash sump |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Permit Number | UIC Number | Manages Off-Site <br> Waste | Management | Capacity | Regulatory <br> Status |
|  |  | No |  |  |  |

IHW Waste Detail
No Waste Stream Information exists for this Waste Management Unit
Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us | Central Registry | Search Hints | Statewide Links: Texas.gov | Texas Homeland Sccurity | TRAIL Statewide Archive | Texas Veterans Portal
Page 2 of 2
Page 1 of 2

$$
\text { Page } 2 \text { of } 2
$$

## §10Z/9l/E

Site Help \| Disclamer \| Web Policies \| Accessibility \| Our Compact with Texans \| TCEQ Homeland Security \| Contact if \| Central Registry \| Search Hints \|
Report Data Frrors
Statewide Links: Texas gov \| Texas Homeland Security \| TRALL Statewide Archive \| Texas Veterans Portal
(C) 2002-2013 Texas Commission on Environmental Quality


|  | $\begin{aligned} & \text { SERVICE } \\ & \text { CENTER } \end{aligned}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOYER INC | SPRING <br> BRANCH <br> SERVICE <br> CENTER | HOUSTON | HARRIS | REGION $12-$ HOUSTON | - HG9849V | 0 |  | 09/01/2011 |  |
| BOYER INC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION 12- HOUSTON | * HG9849V <br> - 34348 <br> - 33347 <br> - 103725 <br> - 107730 <br> - 2100 <br> - HG9849V | 0 | UNCLASSIFIED | 09/01/2010 | 11/15/2014 |
| MOUSTON LIGHTING \& POWER COMPANY | SPRING <br> BRANCH <br> SERVICE <br> CENTER | HOUSTON | HARRIS | REGION $12-$ HOUSTON | - 33347 <br> - 2100 <br> * 2100 | 0 | UNCLASSIFIED | 09/01/2011 | 11/15/2014 |
| CENTERPOINT ENERGY HOUSTON EIECTRIC LlC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | $\begin{aligned} & \text { REGION } \\ & 12- \\ & \text { HOUSTON } \end{aligned}$ | - 34348 <br> - 107730 <br> - HG9849V <br> - TXD981518566 <br> - 98181 <br> - TXD981518566 | ${ }^{0}$ | HIGH | 09/01/2009 | 11/15/2014 |
| BOYER INC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION 12 - HOUSTON | - TXD981518566 <br> - 34348 | 0 |  | 09/01/2011 |  |
| BOYER INC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION $12-$ HOUSTON | - 2100 <br> - 98181 | 0 |  | 09/01/2011 |  |
| BOYER INC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION 12 . HOUSTON | - 103725 <br> - TXR05T311 <br> * HG9849V | 0 | UNCLASSIFIED | 09/01/2009 | 11/15/2014 |


|  | $\left.\begin{aligned} & \text { SERVICE } \\ & \text { CENTER } \end{aligned} \right\rvert\,$ |  |  |  | = 107730 <br> * 33347 <br> : TXR05T311 <br> - 103725 <br> = 98181 <br> : HG9849V |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HOUSTON LIGHTING \& POWER COMPANY | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION 12 HOUSTON | - HG9849V <br> - 103725 <br> - 107730 <br> - 103725 | 0 | UNCLASSIFIED | 09/01/2011 | 11/15/2014 |
| CENTERPOINT ENERGY HOUSTON ELECTRIC LLC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION 12HOUSTON | - 34348 <br> - TXR05T311 <br> - 107730 <br> - 2100 <br> - 107730 | 0 | HIGH | 09/01/2008 | 11/15/2014 |
| BOYER INC | SPRING BRANCH SERVICE CENTER | HOUSTON: | HARRIS | REGION 12 HOUSTON | * 107730 | 0 |  | 09/01/2011 |  |
| BOYER INC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION $12-$ HOUSTON | - TXROST311 <br> - 107730 | 0 |  | 09/01/2011 |  |
| BOYER INC | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS | REGION <br> $12-$ <br> HOUSTON | - 34348 <br> - 2100 <br> - 107730 <br> - 33347 <br> - TXR05T311 <br> - 33347 | 0 | UNCLASSIFIED | 09/01/2008 | 11/15/2014 |
| HOUSTON LIGHTING \& POWER COMPANY | SPRING BRANCH SERVICE CENTER | HOUSTON | HARRIS |  | - 34348 <br> - 107730 <br> - 34348 | 0 | UNCLASSIFIED | 09/01/2011 | 11/15/2014 |



## Page 7 of 7

## §Ioz/9l/E

## http://www1 1.tceq.state.tx.us/oce/ch/index.cfm?fuseaction=main.Search\&formid=rern\&rern=100666924\&doit=Submit

of: Industrial and Hazardous Waste Solid Waste Registration 34348
For: SPRING BRANCH SERVICE CENTER (RN100666924) 10310 KATY FWY, HOUSTON

Solid Waste INACTIVE
Registration
Held by: CENTERPOINT ENERGY HOUSTON ELECTRIC LLC (CN601095797) Held by: CENTERPOINT ENERGY HOUSTON ELECTRIC LLC (CN60109STM)
OWNER OPERATOR Since 12/02/1986 View Compliance History
Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700 Facility Information

IHW Waste

| Texas Waste Code | Waste Description |
| :---: | :---: |
| 0005409H | Solvent contaminated rags are rags contaminated with solvent, dried paint, and oily residues. Rags are used during painting for cleanup activities, and they are also used in maintenance-related activities for cleaning or degreasing equipment. Existing wastestream on Notice of Registration. |
| 0006204 H | Spent solvent is a clear and colorless to dark gray/black opaque liquid and hasa strong organic odor. Spent solvents are generated during various painting andmaintenance activites (i.e., cleaning, degreasing, etc.). Existing wastestreamon Notice of Registration. |
| 0008209H | Liquid paint waste includes unused paint that has not hardened and still flows. This waste will also include paint thinner that is not used as a cleaning solvent but as a thinning agent for the paint. Periodically paint that is not used must be disposed of. Existing wastestream on Notice of Registration. |
| 0010219 H | Waste diesel is a liquid with either one or two visible phases. If two phases are present, the lighter (upper) phase is diesel and the heavier (lower) phase iswater. Diesel is used throughout the facility in various pieces of equipment. Occasionally this fuel becomes contaminated with water due to condensation, water leaking into tanks, or equipment demage allowing coolant to contaminate the fuel |
| 0011219H | Waste gasoline is a liquid with either one or two visible phases. If two phasesare present, the lighter (upper) phase is gasoline and the heavier (lower) phase is water. Gasoline is used throughout the facility in various pieces of equipment. Occassionally this fuel becomes contaminated with water due to condensation, water leaking into tanks, or cquipment damage allowing coolant to contaminate |
| 0013307H | Metal grinding waste is powdery brown/black metal fines. It is generated from the various types of grinding equipment utilized in the machine shops, and fieldlocations for smoothing and finishing metal surfaces. This waste is composed ofgrinding fines, cutting oil, coolant, solvents, and degreasers. Initial generation December, 1993. |
| 0014101 H | Machine coolant is a liquid which is composed of water, machine coolant, cuttingoils, solvents, and grinding fines. It is generated from the various machiningoperations as a function of a heat transfer medium. First generated approximately December, 1993. |
| 0020409H | Paint waste, solid includes dry, unused paint that is hardened and no longer flows. Periodically paint that is not used loses its solvents and will no longer flow. This dry, unused paint is disposed. The composition |

Detail of

Solid Waste INACTIVE Status:
Held by:
Questions or Comments >>

## Central Registry

## 3/16/2015

## TCEQ CR Query - Industrial and Hazardous Waste Solid Waste Registration 34348

|  | of this waste will vary with each shipment but will consist mainly of dry paint. Existing wastestream on Notice of Registration. |
| :---: | :---: |
| 0030409H | Paint waste debris is comprised of used plastic and cloth drop cloths used to cover equipment and floors during painting activities. Paint waste debris also includes any rags, filters, stirring sticks, and paint brushes. Existing wastestream. |
| 01013111 | Asbestos |
| 01031191 | Diesel contaminated with water (Class 1) |
| 01061191 | Gasoline contaminated with water (Class 1) |
| 01073011 | Hydrocarbon contaminated soll |
| 01083011 | Mineral oil contaminated soil ( $<1 \mathrm{ppm}$ PCBs) has an oily hydrocarbon odor and thecolor varies from light brown to black. This waste has been generated by spillcleanup activities. Existing wastestream on Notice of Registration. |
| 01093191 | Blast Grit (Class 1) is dry blast media contam. w/rust, debris \& paint chips \& is generated from surface preparation.Recycling: Waste is recycled by Southern Crushed Concrete in Houston, TX as feedstock for road aggragate per notificationon 14Jul98. |
| 01103101 | Used oil filters is composed of used vehicle or machine oil filters. Used oil filters are generated during routine vehicle or machinery maintenance when they are removed for disposal. Existing wastestream on Notice of Registration. |
| 01133081 | RCRA empty metal containers of all types and sizes that meet all requirements ofRCRA empty ( 31 TAC $335.41(f)(2))$. This waste is generated by general plant operations and maintenance activities. Existing wastestream on Notice of Registration. |
| 01144061 | RCRA empty plastic or fiber containers of all types and sizes that meet all requirements of RCRA empty ( 31 TAC $335.41(f)(2)$ ). This waste is generated by general plant operations and maintenance activities. Existing wastestream on Notice of Registration. |
| 01166031 | Lift rack sump waste is brown to black sludge material with a strong hydrocarbonodor. Hydraulic lift seals and cylinders periodically leak oil into the lift rack. Oil is also released into the lift rack during vehicle maintenance activities. Additionally, this waste is comprised of rinse water from floor washing activities. Existing wastes tream on Notice of Registration. |
| 01172961 | Spent antifreeze is a liquid with low viscosity. It is also opaque and green tobrown in color. Antifreeze (ethylene glycol) is used in various pieces of equipment as a coolant and/or as instrumentation liquid to lower the freczing pointand raise the boiling point of the coolant and/or liquid. Periodically this material must be drained and disposed of. Existing wastestream on Notice of Registra |
| 01194091 | Waste grease |
| 01202061 | Waste oil is used hydraulic, mineral or motor olls from vehicles, electrical equipment or any other mechanical equipment. Any oil in this category contains less than 1 ppm PCBs. Used oil is drained from various pieces of equipment or vehicles periodically. Existing wastestream on Notice of Registration. |
| 01216031 | Vehicle wash rack sludge |
| 01234091 | Spent roofing material varies in size and shape. It is composed of tar paper, asphalt, gravel, and foam insulation. It is a dark brown to black and has a slight hydrocarbon odor. It is generated from replacing worn or damaged roofs. Existing wastestream on Notice of Registration. |
| 01254891 | Floorsweep is a brown/red saw dust with a hydrocarbon odor. Floorsweep is generated as a result of dust and dirt control from floor sweeping activities. Existing wastestream on Notice of Registration. |
| 01273071 | Metal grinding waste (dry) are powdery brown/black metal fines. It is generatedfrom the various types of grinding equipment utilized in the machine shops, andfield locations for smoothing and finishing metal surfaces. It also includes welding slag that is chipped or ground from surface welds, and boiler rust from the surface preparation of boiler tubes. These machining operations use no coolant |
| 01284091 |  |


|  |  |
| :---: | :---: |
| saopipedes 80d－uon | 16I290＊0 |
| （wdd 005＜）shoypeder god | 1862¢0ャ0 |
|  | 180¢z0ャ0 |
| （диәидеал ןеэррэы <br>  | 260ャ09z0 |
| suqpp əssem zuled | 260ヶ6tz 0 |
|  | 260ャ8 ${ }^{\text {¢ }} 0$ |
|  | 260tくがO |
| ＇uopens！6zy <br>  <br>  <br>  | 288ャ0ャZ0 |
|  wnaן， <br>  <br>  | 210¢8Iz0 |
|  <br>  <br>  <br>  | 288bくIz0 |
|  | z2066020 |
|  <br>  <br>  | 261E90z0 |
|  <br>  <br>  <br>  | ZIOES0Z0 |
|  <br>  <br>  | 290＊5020 |
| ＇uopensiбoy jo әonon uoweansonsem 6upsix3＇sapinpae <br>  <br>  | z80££020 |
|  <br>  <br>  <br>  | 206£1020 |
| иоредя16әд зо әopou uo <br>  | 168b0510 |
|  | 160£0ャ10 |
|  | 160t6z10 |
|  <br>  |  |

TCEQ CR Query - Leaking Petroleum Storage Tanks Remediation ID Number 103725

© 2052-2013 Texas Commisyion on Enviconmental Qualty

## Page 1 of 1


Query Home Customer Search RE Search rD Search Document Search Search Results TCEQ Home

Query Home Customer Search ar seanch

## Central Registry <br> Detail of: Leaki

of: Leaking Petroleum Storage Tanks Remediation ID Number 107730
For: SPRING BRANCH SERVICE CENTER (RN100666924)
ID Number Status: INACTIVE $\begin{aligned} & 10310 \text { KATY FWY, HOUSTON } \\ & \text { IN }\end{aligned}$
ID Number Status: INACTIVE
Responsible Parties: HOUSTON LIGHTING \& POWER COMPANY (CN600276653) Since 08/25/1993 View Compliance History
Mailing Address: PO BOX 1700 HOUSTON, TX $77251-1700$
Related Information:
Correspondence Tracking
There is no information related to this ID Number in the following categories: Commissioners' Actions
Effective Enforcement Orders
Criminal Convictions Criminal Convictions Proposed Enforcement Orders
Complaints
Complaints
Discharges Report Oata Irrors
Statewide Lnis: Texarsgov | Teas Homeland Securky I TRalL Statewide Arehive I Texas Veterans Portal - 2002-2013 Texas Commission on Environmertal Qualiky
Ske Help I Discisimer I Web Policies | Accessiblity I Cur Compact with Texans I TCEQ Homeland Secunty I Contact Us I Central Registry I Search Hints I

## http://wwwl5.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.viewAddnDetail\&addn_id=696425372013324\&rn=RN10066692...

## Page lof 1

$$
\begin{aligned}
& \text { Questions or Comments >> }
\end{aligned}
$$

Detail of: Leaking Petroleum Storage Tanks Remediation ID Number 107730
For: $\operatorname{SPRING}$ BRANCH SERVICE CENTER (RN100666924)
10310 KATY FWY, HOUSTON
atus: INACTIVE 10310 KATY FWY, HOUSTON
ID Number Status: INACTIVE

## Central Registry



 Report Data Errors
Statewide Links: Texas.gov \| Texas Homeland Security \| TRAIL Statewide Archive I Texas Veterans Portal
(c) 2002-2013 Texas Commission on Environmenta\{ Quality
TCEQ CR Query - Leaking Petroleum Storage Tanks Remediation ID Number 98181
$\begin{aligned} & \text { Central Registry } \\ & \text { Detail of: Leaking Petroleum Storage Tanks Remediation ID Number } 98181 \\ & \text { For: SPRING BRANCH SERVICE CENTER (RN100666924) } \\ & \text { 10310 KATY FWY, HOUSTON } \\ & \text { ID Number Status: INACTIVE } \\ & \text { Responsible Parties: HOUSTON LIGHTING \& POWER COMPANY (CN600276653) Since 08/25/1993 View Compliance History } \\ & \text { Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700 } \\ & \text { Related Information: } \\ & \text { Correspondence Tracking } \\ & \text { ID Number Information } \\ & \text { There is no information related to this ID Number in the following categories: } \\ & \text { Commissioners' Actions } \\ & \text { Effective Enforcement Orders } \\ & \text { Criminal Convictions } \\ & \text { Proposed Enforcement Orders } \\ & \text { Complaints } \\ & \text { Discharges } \\ & \text { Emergency Response Events } \\ & \text { Emission Events } \\ & \text { Fish Kills } \\ & \text { Other Incidents } \\ & \text { Investigations } \\ & \text { Periodic Reports }\end{aligned}$
Questions or Comments >>
Query Home Customer Search RE Search ID Search Documeot Search Search Results TCEQ Home
Ske Hels I Disclamer I Web Policies I Accessibilty I Cur Compect with Texens I TCEQ Homelend Security | Coneact Us I Cestral Regisory I Search Hists I
$\begin{aligned} & \text { Report Oata Errors } \\ & \text { Statewise Liks: Texas-gov I Texas Homeland Securly I Thas Suatewide Archme I Texas Veverans Portal }\end{aligned}$
© 2022-2013 Texas Commission on Ervinonmental Qualty
Page 1 of 1
Questions or Comments >> Detail of: Leaking Petroleum Storage Tanks Remediation ID Number 98181 For: SPRING BRANCH SERVICE CENTER (RN100666924) 10310 KATY FWY, HOUSTON

## Central Registry

Correspondence Tracking

| Tracking No. | Received/Sent | Direction | Type | Subject | Due Date | End Date | Document Date | Method |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4745288 | $03 / 21 / 2008$ | OUTGOING | FINAL |  |  | $03 / 21 / 2008$ | $03 / 21 / 2008$ |  |
| 4745287 | $01 / 03 / 2008$ | OUTGOING | NLR |  |  | $01 / 03 / 2008$ | $01 / 03 / 2008$ |  |
| 4591133 | $12 / 07 / 2007$ | INCOMING | TECH RESP |  |  | $01 / 03 / 2008$ | $10 / 30 / 2007$ |  |
| 4745286 | $11 / 05 / 2007$ | OUTGOING | FINAL |  |  | $11 / 05 / 2007$ | $11 / 05 / 2007$ |  |
| 4591132 | $09 / 06 / 2007$ | INCOMING | REL DET |  |  | $11 / 05 / 2007$ | $07 / 27 / 2007$ |  |
| 4745285 | $09 / 29 / 1999$ | OUTGOING | NLR |  |  | $09 / 29 / 1999$ | $09 / 29 / 1999$ |  |
| 4591131 | $07 / 07 / 1999$ | INCOMING | FSC |  |  | $09 / 29 / 1999$ | $06 / 29 / 1999$ |  |
| 4745248 | $01 / 15 / 1999$ | OUTGOING | NLR |  |  | $01 / 15 / 1999$ | $01 / 15 / 1999$ |  |
| 4745283 | $01 / 15 / 1999$ | OUTGOING | RR - CAR |  |  | $01 / 15 / 1999$ | $01 / 15 / 1999$ |  |
| 4745284 | $01 / 15 / 1999$ | OUTGOING | FINAL |  |  | $01 / 15 / 1999$ | $01 / 15 / 1999$ |  |
| 4745282 | $01 / 14 / 1999$ | OUTGOING | RR |  |  | $01 / 14 / 1999$ | $01 / 14 / 1999$ |  |
| 4591128 | $11 / 10 / 1998$ | INCOMING | ASS A- ADD |  |  | $01 / 14 / 1999$ | $11 / 09 / 1998$ |  |
| 4591129 | $11 / 09 / 1998$ | INCOMING | PROP ACT13 |  |  | $01 / 15 / 1999$ | $11 / 09 / 1998$ |  |
| 4591130 | $11 / 09 / 1998$ | INCOMING | SCR |  |  | $01 / 15 / 1999$ | $11 / 09 / 1998$ |  |
| 4745281 | $03 / 17 / 1998$ | OUTGOING | RR - CAR |  |  | $03 / 17 / 1998$ | $03 / 17 / 1998$ |  |
|  |  |  |  |  |  |  |  |  |

http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.cordetail\&addn_id=936461142013318
Responsible Parties: HOUSTON LIGHTING \& POWER COMPANY (CN600276653) Since 08/25/1993 View Compliance History Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700


Questions or Comments >>

[^7]
## Central Registry

Detail of: Petroleum Storage Tank Registration 33347
For: SPRING BRANCH SERVICE CENTER (RN100666924)
Registration INACTIVE
Query Home Customer Search RE Search ID Search Document Search Search Results TCEQ Home


\section*{Investigations <br> | Investigation Date | Investigation Type |
| :--- | :--- |
| $10 / 13 / 2010$ | Compliance Investigation |
| $11 / 04 / 2011$ | Compliance Investigation |}

[^8]
## Central Registry

## 

Questions or Comments $\gg$

$$
\begin{array}{lllllll}
\text { Query Home } & \text { Customer Search } & \text { RE Search } & \text { ID Search } & \text { Search Results } & \text { Registration Detail } & \text { TCEQ Home } \\
\hline \hline
\end{array}
$$

## Central Registry


Held by: CENTERPOINT ENERGY HOUSTON ELECTRIC LLC (CN601095797)
OWNER OPERATOR Since 12/02/1986 View Compliance History
Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700

| Tank | Design \& Materials |  | Corrosion Protection |  | Release Detection |  | Spill Containment and <br> Overfill Prevention |  | Installation Contractor |  | Installer | Test Result | Related Informatior ${ }^{\wedge}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1A | $\begin{aligned} & \text { 1:Single Wall } \\ & \text { (Steel) } \end{aligned}$ |  | Ext Dielectric Coat/Wrap/Tape Field Install Cath Protec Composite (Steel/FRP) |  | A: 1: Ext Vapor/Tracer Monitoring A: 2: Ext Groundwater Monitoring A: 4: Auto Tank Gauge \& Inv Cntrl |  | A: 1: Tight Fill Fitting <br> 2: Fac Built Spill Cont/Bckt/Sump 3: Delivery Shutoff Valve |  |  |  |  |  | Tank Summary <br> Compartment <br> Piping <br> Vapor Recovery |
| $<$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Table 3. Compartment Details |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tank |  |  | Compartment | Capa (gall | acity lons) | Principal Su | bstance | Other | Substance | Release D | Detection | Spi and <br> Ove | ill Contain erfill Preve | ment <br> vention | Related Information |
| 1A | A | 1000 |  |  |  | Empty |  |  |  |  | acer <br> g <br> ater <br> g <br> Tank <br> Inv Cntrl |  | : Tight Fill <br> : Fac Built ont/Bckt/Su <br> : Delivery alve | Fitting Spill ump Shutoff | Tank Summary <br> Tank Details Piping Vapor Recovery |

Table 4. Piping Systems

| Tank | Type of Piping | Piping Material | Design and <br> External <br> Containment | Connectors and valves | Corrosion Protection | Release Detection | Related Inforn |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 5. Vapor Recovery Systems

| Tank | Type of Stage 1 | Date Installed | Type of Stage 2 | Date Installed | Related Information |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1A | Two Point System | $06 / 28 / 1991$ |  | Tank Summary <br> Tank <br> Compartails <br> Piping |  |

Page 1 of 1
Page 1 of 2
Water Quality General Permits and Registration Search Summary of Authorization TXR05T311 Permit/Registration Number: $\begin{array}{r}\text { TXRO5T311 } \\ \text { Authorization Status: } \\ \text { TERMINATED }\end{array}$ Date Coverage Began: 05/28/2006 Date Coverage Ended: 08/07/2007
Authorization Details
Site Name on Permit/Registration: BOYER
Authorization Type: INDUSTRIAL
Ms4 Operator : CITY OF HOUSTON
Sector : E
Questions or Comments >>


## Page 1 of 1

(c) 2002-2013 Texas Commission on Environmental Quality

## http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.cordetail\&addn_id=796453952007284

## Central Registry

Detail of: Voluntary Cleanup Program ID Number 2100 For: SPRING BRANCH SERVICE CENTER (RN100666924) 10310 KATY FWY, HOUSTON
ID Number Status: INACTIVE
Mailing Address: PO BOX 1700 HOUSTON, TX 77251-1700

$$
\begin{array}{|c|l|l|l|l|l|l|}
\hline \text { Legal } & \text { Description } & \text { Start Date } & \text { End Date } & \text { Type } & \text { Status } & \text { Status Date } \\
\hline 2100 & \text { VOLUNTARY CLEANUP } & 10 / 04 / 2007 & 03 / 27 / 2008 & \text { CLEANUP } & \text { INACTIVE } & 04 / 18 / 2008 \\
\hline
\end{array}
$$

| Tracking No. | Type | Value | Start Date | End Date |
| :--- | :--- | :--- | :--- | :--- |
| 12140424 | PROJECT MANAGER | VMODAK | $10 / 19 / 2007$ | $03 / 27 / 2008$ |
| 12139459 | PROJECT MANAGER | DCHRISTI | $10 / 11 / 2007$ | $11 / 15 / 2007$ |
| 9288444 | ADMINISTRATIVE STATUS | INACTIVE | $04 / 18 / 2008$ |  |
| 12139458 | PCA NUMBER | 34295 | $10 / 11 / 2007$ |  |
| 12139460 | PROJECT NUMBER | 342950 | $10 / 11 / 2007$ |  |
| 12139451 | CASHIER RECEIVED DATE | $10 / 02 / 2007$ | $10 / 11 / 2007$ |  |
| 12139463 | APPLICATION RECEIVED DATE | $10 / 04 / 2007$ | $10 / 11 / 2007$ |  |
| 9286328 | APPLICANT INTEREST IN SITE | OWNER | $10 / 11 / 2007$ |  |
| 12139461 | REGION NOTIFIED | $10 / 04 / 2007$ | $10 / 11 / 2007$ |  |
| 12139454 | FILE MEDIA | PAPER | $10 / 11 / 2007$ |  |
| 9311549 | OTHER PROGRAM | EPA | $10 / 11 / 2007$ |  |


http://www15.tceq.texas.gov/crpub/index.cfm?fuseaction=iwr.pgmdetail\&addn_id=796453952007284\&lgcy_sys_cd=ARTS

## そjo $z$ 288.

Central Registry
Detail of: Voluntary Cleanup Program ID Number 2100 For: SPRING BRANCH SERVICE CENTER (RN100666924)

© 2002-2913 Texas Commission on trrirsnmental Cuality http://www15.tceq.texas.gov/crpub/index.cm?fuseaction=iwr.phyadetail\&addn_d=796453920 28 \&phys_id=12139465\&p..

# Texas Commission on Environmental Quality 

Protecting Teats by Reducing and Preventing Pollution

July 18, 2017

Mr. Douglas R. Harris<br>Environmental Manager<br>Center Point Energy Houston Electric, LLC<br>P.O. Box 1700<br>Houston, TX 77251-1700<br>JUL 252011<br>REGION 12<br>Re: Approval of Waste Management Unit Closure/Change in Status Request, former Spring Branch Service Center, dated June 29, 2011<br>NOR WMU Nos. 001, 002, 003, 004, 005, and 006<br>10310 Old Katy Road, Houston, TX (Harris County);<br>TCEQ SWR No. 34348; EPA ID No. TX981518566; Customer No. CN601095794; Regulated Entity No. RN100666924*

RECEIVED

Dear Mr. Harris:
The Texas Commission on Environmental Quality (TCEQ) has reviewed your unit closure/change in status request for Waste Management Unit (WMU) Nos. 001, 002, 003,004, 005 , and 006 associated with the above referenced Notice of Registration (NOR). According to the documentation provided, the facility generator status for the Spring Branch Service Center is currently considered a Municipal Conditionally Exempt Small Quantity Generator facility, As such, municipal generators are required to notify the TCEQ of waste management units used to manage hazardous wastes. Although, waste management units used to manage only municipal non-hazardous waste do not require closure under Chapter 335, Title 30 of the Texas Administrative Code, units used to store hazardous waste (regardless of whether the unit is listed or is required to be listed on the facility's NOR) are required to be closed in accordance with 30 TAD 335.8 .

Based on our review of the NOR, WMU Nos.001,002,004 and 006 are currently listed as active status units that do not manage hazardous waste (only municipal non-hazardous waste). Technically these units are not required to be reported nor listed on the above referenced NOR. As such, an administrative correction to NOR 34348 is hereby approved for the TCEQ Registration and Reporting Team to update the unit activity status of WMU Nos. 001, 002, 004 , and oof from 'Active' to 'Not Required'.
The June 29, 2011 report also provides supporting documentation supporting the closure of WMU No. 003 and 005 (drum and bin storage areas, respectively) in accordance with 30 TAD 335.8. According to the NOR, waste streams) managed in WMU No. 003 and 005 (drum and bin storage areas, respectively) are considered hazardous. Based on information contained in the report and other information available to staff, the TCEQ accepts the closure of WMU Nos, 003 and 005 . The activity status of WMU No. 003 and 005 is hereby approved for the TCEQ Registration and Reporting Team to update the unit activity status of WMU No. 003 and 005 from 'Active' to 'Closed'. No further action is required under 30 Texas Administrative Code (TAD) $\$ 335.8$ for WMU No. 003 and 005.

Mr. Douglas Harris
Page 2
July 18, 2011
TCEQ SWR No. 34348
Please be aware that it is the continuing obligation of persons associated with a site to ensure that municipal hazardous waste and industrial solid waste are managed in a manner which does not cause the discharge or imminent threat of discharge of waste into or adjacent to waters in the state, a nuisance, or the endangerment of the public health and welfare as required by 30 TAC \$335.4. If the activities described in the report fall to comply with these requirements, please take any necessary and authorized action to correct such conditions. A TCEQ field inspector may conduct an inspection of the site to determine compliance with the report.
A copy of this letter has been forwarded to the TCEQ Registration aud Reporting Section to complete the updates to your Notice of Registration (NOR). For questions regarding the NOR, please contact the Registration and Reporting Section at (512) 239-6413.
Questions concerning this letter should be directed to me at (512) 239-2358. When responding by mail, please submit an original and one copy of all correspondence and reports to the TCEQ Remediation Division at Mail Code MC-127 with an additional copy submitted to the local TCEQ Region Office. Please note that the Remediation Division has instituted a policy of sending letters via Portable Document Format (PDF) and email when appropriate. Therefore, current email addresses and the site identification information in the reference block should be included in all future submittals.

Sincerely,
Elaner T.Wehne
Eleanor T. Wehner, P.G.
CA Program Technical Specialist
Corrective Action Team 1, VCP-CA Section
Remediation Division
Texas Commission on Environmental Quality
ETW/jdm
cc: . Ms. Nicole Bealle, Waste Program Manager, TCEQ Region 12 Office, Houston
Mr. Edward Minter, Team Leader, TCEQ Registration and Reporting Section (MC- 129)

13003 Southwest Freeway - Slite $190 \cdot$ Stafford Texas 77477 * (888) 540-0804 • Fax (281) 494-0496

April 3, 2008

Ms. Vicki Modak
TCEQ
Environmental Clearup
12100 Park Circle 35
Bidg D


Austin, Texas 78753
RE; : Transmittal of Recycled Soil Bills of Lading
Former CenterPoint Energy Spring Branch Service Center
Houston, Harris County, Texas
VCP ID No. 2100.
Former LPST ID No. 98181
Dear Ms. Modak:
Please find the attached Bills of Eading for the recycled soil that was excavated at the former CenterPoint Energy Spring Branch Service Center (VCP ID No. 2100). The soil excavation was documented in the report entitled "Site Assessment/Soil Remediation Summary Report" prepared by Groundwater and Environnental Services, Inc. and dated March 19, 2008. At the time of the publishing of that report, the soil had not been transported to the recycling facility. The soil was transported to HPP Recycles, Inc. from March 24 through March 27, 2008. As indicated from the attached Bills of Lading, a total of 1206 cubic yards was transported to the recycling facility.

If you have any questions or comments, please do not hesitate to contact me.
Sincerely,
GROUNDWATER \& ENVIRONMIENTAL SERVICES, INC.


James Hodges
Scnior Project Manager

Scot Duhon, Centerfont Energy (via ehait)
Robin Franks, TGE Resources, lnc. (via email)

$$
\begin{aligned}
& \text { RECEIVED } \\
& \text { RAPR } 0420 \mathrm{OB} \\
& \text { REGION } 12
\end{aligned}
$$



DATE: 03/06/2015
Robert J, Metzger
Avilies Engineering Corporation
5790 Windfern Road
Houston, TX 77041
Re: Your Texas Public Information Act Request dated $03 / 03 / 15$ requesting Hazardous Materials for Key Map $489-\mathrm{G}, \mathrm{H} \& \mathrm{M}$

Dear Mr. Metzger,
In response to your above-referenced request, which was received by the City of Houston on $3 / 06 / 15$. the custodian of records has located 3 page $(s)$ of responsive documents. The fee for these documents is $\$ .79$ ( $\$ .30$ for the copies, plus $\$ .49$ for postage) and has been deducted from your account.

If you have any questions regarding this matter, please contact Fire/EMS Records at 832.394.6862.
Sincerely,
Danielle Ivy
HFD Fire/EMS Records
600 Jefferson, Ste. 860
Houston, Texas 77002
T. 832.394 .6860
hfdemsrec@houstontx.gov




## APPENDIX D

## PHYSICAL SETTING SOURCE DOCUMENTATION



United States Department of Agriculture
NRCS
Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

## Custom Soil Resource Report for Harris County, Texas

Memorial Drive



## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/ nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http:// offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.
The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means
for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) $720-2600$ (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

## Contents

Preface ..... 2
How Soil Surveys Are Made ..... 5
Soil Map ..... 7
Soil Map ..... 8
Legend ..... 9
Map Unit Legend ..... 10
Map Unit Descriptions ..... 10
Harris County, Texas ..... 12
Ak-Addicks-Urban land complex ..... 12
Gu-Gessner-Urban land complex ..... 13
HatA-Hatlif-Pluck-Kian complex, 0 to 1 percent slopes, frequentiy flooded ..... 14
Mu-Verland-Urban land complex ..... 17
URLX—Urban tand ..... 18
References ..... 20

## How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscelfaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated materiat in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.
Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.
The sois and misceltaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landiorm. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of sois or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profises that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soiss in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic ciasses (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

## Custom Soil Resource Report

Individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defired by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soillandscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soll typicalify vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.
While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.
Predictions about soil behavior are based not only on soif properties but also on such variables as climate and biological activity. Soil conditions are predictable over tong periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report


# Map Unit Legend 

| Harris County, Texas (TX201) |  |  |  |
| :---: | :---: | :---: | :---: |
| Map Unit Symbol | Map Unik Name | Acres in AOI | Percent of AOP |
| Ak | Addicks-Urban land complex | 5.2 | 2.2\% |
| Gu | Gessner-Urban fand complex | 199.5 | 84.4\% |
| Hata | Hatliff-Pluck-Kian complex, 0 to 1 percent slopes, frequently flooded | 18.8 | 7.9\% |
| Mu | Verland-Urban land complex | 2.9 | 1.2\% |
| UREX | Urban land | 10.1 | 4.3\% |
| Totais for Area of interest |  | 236.4 | 100.0\% |

## Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscetlaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of solis of a single faxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils of miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic

## Custom Soil Resource Report

classes but rather to separate the landscape into landforms or landform segments that have similar use and management requitements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soif properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soits of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detaifed soil maps are phases of soit series. The name of a soil phase commonty indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas.
These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soits or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soiss or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas sepatately. The pattern and relative proportion of the solls or miscellaneous areas are somewhat similar. AlphaBeta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have iittle or no soif material and support little or no vegetation. Rock outcrop is an example.

## Custom Soil Resource Report

## Harris County, Texas

## Ak-Addicks-Urban land complex

## Map Unit Setting

National map unit symbol: db8g
Elevation: 0 to 4,000 feet
Mean annual precipitation: 8 to 60 inches
Mean annual air temperature: 54 to 73 degrees $F$
Frost-free period: 180 to 310 days
Farmland classification: Not prime farmiand

## Map Unit Composition

Addicks and similar soils: 55 percent
Urban land: 40 percent
Minor components: 5 percent
Estimates are based on obsenvations, descriptions, and transects of the mapunit.

## Description of Addicks

## Setting

Landform: Flats
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Loamy fluviomarine deposits of early pleistocene age

## Typical profile

H1-O to 11 inches: loam
H2-11 to 49 inches: loam
H3-49 to 78 inches: loam
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat); Moderately high to high
( 0.57 to $1.98 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: About 12 to 21 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 35 percent
Salinity, maximum in profile: Nonsaline ( 0.0 to 2.0 mmhos $/ \mathrm{cm}$ )
Sodium adsorption ratio, maximum in profile: 4.0
Available water storage in profile: High (about 12.0 inches)

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3 w
Hydrologic Soil Group: B/D
Ecological site: Loamy prairie 44-56" pz (R150AY741TX)

## Custom Soil Resource Report

## Description of Urban Land

Typical profile
H1-0 to 40 inches: variable
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (noningated): 8s
Hydrologic Soil Group: D

## Minor Components

Unnamed
Percent of map unit: 5 percent

## Gu-Gessner-Urban land complex

## Map Unit Setting

National map unit symbol: db92
Elevation: 0 to 4,000 feet
Mean annual precipitation: 8 to 60 inches
Mean annual air temperature: 54 to 73 degrees $F$
Frost-free period: 180 to 310 days
Farmland classification: Not prime farmland

## Map Unit Composition

Gessner and similar soils: 55 percent
Urban land: 35 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

## Description of Gessner

## Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Loamy $\ddagger$ luviomarine deposits of early pleistocene age.

## Typical profile

H1-0 to 16 inches: foam
H2-16 lo 80 inches: loam
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly draned
Rumoff class: Negligible

## Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high ( 0.57 to $1.98 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Occasional
Salinity, maximum in profile: Nonsaline ( 0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$ )
Available water storage in profile: High (about 10.0 inches)

## Interpretive groups

Land capability classification (irrigated): 4w
Land capability classification (nonirtigated): 4w
Hydrologic Soil Group: B/D
Ecological site: Lowiand $35-56^{\prime \prime} \mathrm{pz}$ (R150AY537TX)

## Description of Urban Land

## Typical profile

Ht-0 to 40 inches: variable

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8s.
Hydrologic Soil Group: D

## Minor Components

Unamed
Percent of map unit: 10 percent

## HatA-Hatliff-Pluck-Kian complex, 0 to 1 percent slopes, frequently flooded

Map Unit Setting<br>National map unit symbol: 1vykn<br>Elevation: 20 to 150 feet<br>Mean annual precipitation: 48 to 62 inches<br>Mean annual air temperature: 67 to 69 degrees $F$<br>Frost-free period: 240 to 300 days<br>Farmland classification: Not prime farmland

## Map Unit Composition

Hatliff and similar soils: 38 percent
Pluck and similar soils: 35 percent
Kian and similar soils: 24 percent
Minor components: 3 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

## Custom Soil Resource Report

## Description of Hatiliff

## Setting

Landform: Flood plains
Landform position (three-dimensional): Rise
Microfeatures of landform position: Bafs
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Loamy alluvitm of holocene age

## Typical profile

A-0 to 12 inches: loam
Bw1-12 to 38 inches: fine sandy loam
Bw2 - 38 to 62 inches: fine sandy loam
$\mathrm{Bg}-62$ to 80 inches: fine sandy loam

## Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High ( 1.98 to $5.95 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: About 44 to 64 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 7.1 inches)

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2 w
Hydrologic Soil Group: A

## Description of Pluck

## Setting

Landform: Flood plains
Landform position (three-dimensional): Dip
Microfeatures of landform position: Channels
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Loamy alluvium

## Typical profile

A-O to 6 inches: fine sandy loam
Bg1-6 to 34 inches: loam
Bg2-34 to 60 inches: loam
Bg3-60 to 80 inches: loam
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat). Very low to moderately low ( 0.00 to $0.06 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: About 3 to 6 inches

## Custom Soil Resource Report

Frequency of flooding: Frequent
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline ( 0.0 to $0.5 \mathrm{mmhos} / \mathrm{cm}$ )
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: High (about 10.5 inches)

## Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 5w
Hydrologic Soil Group: C/D

## Description of Kian

## Setting

Landform: Flood plains
Landform position (three-dimensionall: Dip
Microfeatures of landform position: Channels
Down-slope shape: Linear
Across-slope shape: Concave, linear
Parent material: Loamy alluvium

## Typical profile

A. 0 to 5 inches: fine sandy loam

Bw- 5 to 26 inches: fine sandy loam
Bg1-26 to 55 inches: fine sandy loam
Bg2 - 55 to 80 inches: loamy fine sand
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low ( 0.00 to $0.06 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: About 3 to 10 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline ( 0.0 to $0.5 \mathrm{mmhos} / \mathrm{cm}$ )
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Moderate (about 7.8 inches)
Interpretive groups
Land capability classification (irngated): None specified
Land capability classification (nonirrigated): 5w
Hydrologic Soil Group: D

## Minor Components

## Simelake

Percent of map unit: 2 percent
Landform: Flats
Landform position (three-dimensionall: Talf
Down-slope shape: Linear
Across-slope shape: Linear

## Cowmarsh

Percent of map unit: 1 percent
Landform: Oxbows on flood plains

Landform position (three-dimensional): Dip Down-slope shape: Linear, concave Across-slope shape: Linear, concave

## Mu-Veriand-Urban land complex

## Map Unit Setting

National map unit symbol: db9j
Elevation: 0 to 4,000 feet
Mean annual precipitation: 8 to 60 inches
Mean annual air temperature: 54 to 73 degrees $F$
Frosi-free period: 180 to 335 days
Fammland classification: Not prime farmand

## Map Unit Composition

Verland and similar soils: 50 percent
Urban land: 35 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

## Description of Veriand

## Setting

Landform: Meander scrolls
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Loamy fluviomarine deposits of late pleistocene age

## Typical profife

H1-0 to 7 inches: silty clay loam
H2-7 to 20 inches: clay
H3-20 to 72 inches: clay
Properties and qualities
Slope: 0 to 1 percent
Depth to restricive feature: More than 80 inches
Natural dramage class: Somewhat poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat). Very low to moderately low ( 0.00 to $0.06 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 3 percent
Available water storage in profile: High (about 10.9 inches)

## Custom Soil Resource Report

## Interpretive groups

Land capability classification (irrigated): 3 w Land capability classification (nonirrigated): $3 w$
Hydrologic Soil Group: D
Ecological site: Blackland 24-44" pz (R150AY526TX)

## Description of Urban Land

Typical profile
H1-0 to 40 inches: variable
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8s
Hydrologic Soil Group: D
Minor Components
Unnamed
Percent of map unit: 15 percent

## URLX—Urban land

## Map Unit Setting

National map unit symbol: 2sych
Elevation: 10 to 200 feet
Mean annual precipitation: 48 to 62 inches
Mean annual air temperature: 67 to 72 degrees $F$
Frost-free period: 240 to 300 days

## Map Unit Composition

Urban land: 100 percent
Estimates are based on obsenations, descriptions, and transects of the mapunit.

## Description of Urban Land

## Setting

Down-slope shape: Linear
Across-slope shape: Linear

## Typical profile

M-0 to 40 inches: variable

## Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 0 inches to manufactured tayer
Runoff class: Very high
Capacity of the most limiting layer to fransmit water (Ksat): Very low ( 0.00 to 0.00 in/hr)

Custom Soil Resource Report

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.
American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.
Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/ portal/nres/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware, U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

## Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf
generally plane to slightly convex; and slopes range from 0 to 1 percent and average about 0.3 percent. This complex is composed of 20 to 85 percent Addicks loam, 10 to 60 percent urban land, and 5 to 20 percent other soils. Addicks soils are poorly drained, have slow surface runoff and internal drainage, moderate permeability, and high available water capacity.

Gessner-Urban Land Complex soils occur in broad nearly level areas and in depressions that vary from 15 to 180 acres in area with a few occurrences of several hundred acres. The parent material of these soils is loamy fluviomarine deposits. Gessner soils make up approximately 55 percent of this mapping unit, Urban soils compose approximately 35 percent, and other soils make up approximately 10 percent. Down-slope and across-slope shape of the unit is concave. Gessner soils are poorly drained, and are generally saturated in winter and carly spring. Surface runoff is very slow, and internal drainage is slow. Water remains in surface depressions of this soil for long periods following rain. The soils have moderate permeability and high available water capacity.

Hatliff-Pluck-Klan Complex (HatA) is a nearly level soil on floodplains. The parent material is loamy alluvium. The surface slope ranges from 0 to 1 percent. The soils are frequently flooded. The Hatliff and similar soils make up about 38 percent of the unit; Pluck and similar soils make up approximately 35 percent of the unit; Klan and similar soils, 24 percent of the unit; and other soils, 3 percent of the unit. The Hatliff soils have a linear down-slope shape and a convex acrossslope shape. The soils are well drained with negligible runoff. Water storage is moderate. Pluck soils have a concave down-slope and across-slope shape. The soils are poorly drained with high runoff. Available water storage is high. Klan soils have a linear down-slope shape and concave and linear across-slope shape. The soils are poorly drained with high runoff. Available water storage is moderate.

The Verland-Urban land complex (Mu; also known as Midland Urban land complex) is present in nearly level in broad irregular areas that vary from 30 to 600 acres. Slopes range from 0 to 1 percent and average 0.5 percent. Both down-slope and across-slope shapes are linear. Approximately 50 percent of this mapping unit is composed of Verland soils, 35 percent is urban land, and 15 percent or less is composed of other soils. Limitations for development on this mapping unit are severe due to poor drainage and shrinking and swelling in underlying layers. Verland series soils are characterized by very slow surface runoff, permeability, and internal drainage and high available water capacity.

Urban land (URLX) has a slope of 0 to 3 percent and has a linear down-slope and across-slope shape. Runoff is very high and available water capacity is very low.

### 4.4.3 Groundwater and Floodplains

According to the 1994 Texas Water Development Board's Major Aquifers in Texas Map, the Gulf Coast Aquifer, which includes nine geologic formations, is the underlying aquifer in the area of the Subject Property. A map and description of the Gulf Coast Aquifer (modified from Baker 1979) is attached in Appendix D. The aquifer consists of complex interbedded clays, silts, sands and gravels which are hydraulically connected. The two major aquifers in the Houston area are the Chicot and the Evangeline aquifers. These aquifers are Pliocene and Pleistocene in age and generally consist of sand layers interbedded with clays and gravels that occur near the surface and


## Gulf Coast Aquifer

The Gulf Colst aquifer forms a wide beh along he Gulf of Mexico from Forida wo dexion In Texas, the aquifer
 Nunicipal and irrigation uses acomm for 90 percen of the wal pumpage from the aghifer The Greate Howson meropoliman arat is the largese muncipal user, where well yidds average abour $1,600 \mathrm{gal} / \mathrm{min}$,

The aqufer consists of complex mentedded ctays, siths, sands, and gravels of Cenozoic age, when are hydrologically connectel to fomm a large, leaky anesian aquifer system. This sysm compriso four major components consining of he following generally recognized water-producing formanons. The deepes is the Catahonha, which concains ground water near
 Onkitle Sandstone. The Burkevile contming hayer sepanes the jaspe from the overtying Evangeline aquifer, which is conained whin the Fleming and Goliad sands. The Chicon squife, or upper componem of the Galt Coas aquifer system, consiss of he Lissie, Willis, Bentey, Nontgomery, and Bemmon fomanions, and overying alluvial deposts. Nor all fommations ate present chroughout he sysm, and nomenchare ofien differs from one and of the systas to she obet. Maximum total sand hickness ranges from 700 fee in the somb 10 , 300 fee in the aomern exiem.

Water quality is generally good in the shatlower porion of he aquifer. Gromed water comming less hon 50 ongil dissolved solds is usually encountered to a maximum depth of 3,200 fee in the aquifer from the San Anomo River Basin nonheastwat ro Lowisiana. From 青e San Amono River Basin southwesward ro Mexico, qualiy deneriomion is evident in the form of inceased chtonde concemman and satwater encruachment along he coass. Litele of his grount wate is suiable for prolonged irrganion due so enler lugh salinity or alkalinisy, or both. In several areas a or near he coast, including Galveston lsand and the cemmand southern pars of Orame Councy, heavy mumeipol or andusmal pmonge had prevously catsed an updip mignation, or salwater introsion, of poor-qualizy water into the aquifer. Recem meducions in pampage here have resulsed in a stabilizaion and, in some cases, even improvenent of growd-water qualiy.

Years of heavy pumpage for muncipal and manufacturing use in ponions of he aquifer have resnled in meas of
 Harris and nornem Galveston counies. Ohter areas of significane water-level deches inchude he Kingsville area in KJeberg Couny and ponions of fefferson, Orange, and Whanon counties. Some of hese decimes have resubed in compraion of dewaered clays and significan land surface subsidence. Subsidence is generally less than 0.5 foo own most of the Texas coast, bur has been as much as nime fee in thanis and surrounding coumics. As a resmh, strmerural damage and footing have occured in many tow-lying amas along Galveston Bay in Bayown, Texas City, and Hownon, Conversion mo datace-wace use in many of the problem areas has reversed he decline nend.

## References


 TWDB Rept. $150,80 \mathrm{p}$.
MCOy, TW., 1990, Evatuation of gromd-waer resonces in the Lowe Ro Grande Valley, Texas: TWDB Repi 316, 48 p. Nuller, D.A., and Price, R.D., 1979, Ground-waer awilabiliy in Texas, estimates and projections drough 2030: TDWR Rept. $238,77 \mathrm{p}$.

 ,1970, Greund-water vesources of Aransas Couny, Texas: TWDB Repi. 124, 83p.
Shafer, C.H., and Baker, E.T., Ir, 1973, Gromd-water resources of Kleberg, Kenedy, and southern fim Wells cometes, Jexas: TWDB Rept. 173, 69 p .

Thokiksen, D. and Qumcy, R., 1990, Evaluation of water resources of Orange and easem Jefferson commes, Texas: TWDB Rept. $320,34 \mathrm{p}$.
Wesselman, J, B., 1967, Ground-wnter resonces of Jisper and Newton countics, Texas: TWDB Rept. 59, 167p.
 133, 183 p .

LEGEND SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION
BY THE $1 \%$ ANNUAL CHANCE FLOOD EVENT. The it annual chance food f100-yeor floodi, also knowry as the bese fiood, is shin fiacd

 ZOREA Nobaso fiood mbvations deterraned.
ZOME AE Easoflood chovations detormined.
Floed tepths of 7 to 3 feet fusually arcas of pondingl; bese flood
Food depths of 1 to 3 feet fustioly shet low on sloping farain): average dupthe detemmed. Fot areas of atluvial fan flooding, velocities
also determined.
zONEAR Arca of gpecial flood hazard formeriy protected from the $1 \%$ ammal decerinied. Zone AR indicates that the former flowd control bystem is being zestored to provide protection from tha $1 \%$ amual chance or proafer flood event.
2OME ASS Alea to be protented from i\% ammat chance food event by a Federai flood protection sysiem under construction; no base flood elevotions
determined.
Coastas thood rone whth velocity hazarif (wave action); no base tood elevations determined.
Coastat flood zone with velocity hazard fwave action); base flood elbvations
cfetermined.

## FLOODNAY AREAS INZONE AE

The floodway is the diannel of a titeom phas any adjacent soodolan areas that must be


## OTHER FLOOD ABEAS




## APPENDIXE

HISTORICAL RESEARCH DOCUMENTATION


SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT
SOURCE: ASCS
$\begin{array}{ll}\text { DATE: } & \text { 04-03-44 } \\ \text { COUNTY: HARRIS, } T X \\ \text { Approximate Subject } \\ \text { Right-Of-way }\end{array} \quad \begin{aligned} & \text { ApQSearch }\end{aligned}$
SCALE: $\quad 1^{\prime \prime}=700^{\prime} \quad \square$ Right-Of-Way
E102-15



108 \# 103134 - 362015

## SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT SOURCE: ASCS

DATE: 04-26-53
COUNTY: HARRIS,TX



## $\mathrm{N}-\mathrm{S}_{\mathrm{S}}^{\mathrm{N}}-\mathrm{E}$

## SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT <br> SOURCE: ASCS

## DATE: 04-26-53

COUNTY: HARRIS,TX
SCALE: $\quad 1^{\prime \prime}=700^{\prime}$



308 *) 100134-202015

SITE:
SOURCE: USGS
DATE: 10-19-66
COUNTY: HARRIS, TX
SCALE: $\quad 1^{n \prime}=700$
$\square$



JOB \#. 103134 - 3e2015
SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT
SOURCE:
TXDOT
DATE: 10-10-89
COUNTY: HARRIS,TX SCALE: $\quad 1^{\prime \prime}=700^{\prime}$


J0e \& 103134
SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT
SOURCE: TXDOT
DATE: 10-10-89
COUNTY: HARRIS, TX
SCALE: $\quad 1^{\prime \prime}=700^{\prime}$
I Subject Right-Of-Way
E102-15

2005. 103134
$\begin{array}{ll}\text { SITE: } & \text { MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT } \\ \text { SOURCE: USGS }\end{array}$ SOURCE: USGS

## DATE: 1996

COUNTY: HARRIS,TX SCALE: $\quad 1^{\prime \prime}=700^{\circ}$

Ge®Search

$3 O B=103134$

SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT
SOURCE: USDA
DATE: 2004
COUNTY: HARRIS, TX
SCALE: $\quad 1^{\prime \prime}=700^{\circ}$

Subject Right-Of-Way

E102-15


SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT SOURCE: USDA DATE: 2012 COUNTY: HARRIS, TX SCALE: $\quad 1^{\prime \prime}=700^{\circ}$ $\qquad$ Ge®Search


SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT
QUAD: HILLENDAHIL, TX
DATE: 1915
SCALE: 1:31,680



SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT QUAD: ADDICKS, TX
DATE: 1919
SCALE: 1:62,500


DATE: 1928
SCALE: 1:62,500


SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT
QUAD: ADDICKS, $T X$
DATE: 1955
SCALE: 1:62,500



SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT QUAD: HEDWIG VILLAGE, TX
DATE: 1982
SCALE: 1:24,000


SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT QUAD: HEDWIG VILLAGE, TX



SITE: MEMORIAL DRIVE PHASE I ENVIRONMENTAL SITE ASSESSMENT QUAD: HEDWIG VILLAGE, TX

## APPENDIX $F$ : <br> HARRIS COUNTY APPRAISAL DISTRICT SEARCH RESULTS



Value as of January 1, 2014
Value as of January 1, 2015



$$
\Xi_{\text {Print }}
$$

Ownership History: 0401600000029

## 12860 MEMORIAL DR

HOUSTON TX 77024

| Owner | Effective Date |
| :--- | :---: |
| WHEATLEY INVESTMENTS LTD | $12 / 18 / 2003$ |
| CHEVRON USA INC | $1 / 2 / 1988$ |
| GULF OIL CO | $1 / 2 / 1984$ |

[^9]HARRIS COUNTY APPRAISAL DISTRICT REAL PROPERTY ACCOUNT INFORMATION 0401600000011
$\square_{\text {E-mail }}$

Ownership History | Fiduciary Information
Owner and Property Information

| Owner Name \& | BRIGGS ROBERT A JR | Legal | TR 1A |
| :--- | :--- | :--- | :--- |
| Mailing Address: | 311 W GAYWOOD DR | Description: | ABST 3 G L BELLOWS |
|  | HOUSTON TX 77079-7228 | Property | 12699 MEMORIAL DR |





$$
\Xi_{\text {Print }}
$$

Ownership History: 0401600000011

## 12699 MEMORIAL DR

 HOUSTON TX 77024| Owner | Effective Date |  |
| :--- | :---: | :---: |
| BRIGGS ROBERT A JR |  | $1 / 2 / 1992$ |
| CONOCO INC |  | $5 / 30 / 1986$ |
| CONTINENTAL OIL CO | $1 / 2 / 1984$ |  |
|  | [end of record] |  |
|  | -close window- |  |

Phase 1 Environmental Site Assessment for TaRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 160 Feet East of Tallowood Road, Houston, Texas

## APPENDIX G

## PHOTOGRAPHS



Photograph 1: View to the north along West Sam Houston Parkway feeder road from its intersection with Memorial Drive. A Chevron LPST site is located to the right of photograph.


Photograph 2: View to the west along Memorial Drive from near its intersection with West Sam Houston Parkway. The Chevron LPST site is located to the left of the photograph.

ESA I Memorial Drive between West Sam Houston Parkway and Tallowood Road, E102-15


Photograph 3: View to the northwest of Harris County Flood Control District Channel W153 near Tallowood Road. The railing is the northern edge of the Memorial Drive right-of-way.


Photograph 4: View to the north of a monitor well on the south side of Memorial Drive. The building at the top of the photograph is Chase Bank at 12802 Memorial Drive.

ESA I Memorial Drive between West Sam Houston Parkway and Tallowood Road, E102-15


Photograph 5: View to the east of a monitor well on the west side of Memorial Drive. The monitor well is across from the Bank of Texas. The building with the pink canopy is A-1 Cleaners, a VCP and LPST site.


Photograph 6: View to the southeast along Memorial Drive of a monitor well in front of A-1 Cleaners at 1754 Memorial Drive.

ESA I Memorial Drive between West Sam Houston Parkway and Tallowood Road, E102-15


Photograph 7: View of two plugged monitor wells on the southern side of Memorial Drive opposite the end of Tallowood Road. The MW Cleaners/Lantern Lane Shopping Center-Pro Cleaners, VCP and IHWCA site is located in the upper right corner of the photograph.


Photograph 8: View to the north along West Bough Lane from near Memorial Drive. The Bank of Texas at 12764 Memorial Drive is to the right of the photograph.

ESA I Memorial Drive between West Sam Houston Parkway and Tallowood Road, E102-15


Photograph 9: View to the northwest of a monitor well on the West Bough Lane right-of-way. Chase Bank is in the background.


Photograph 10: View to the north along Hollow Drive from near Memorial Drive.


Photograph 11: View to the north towards Memorial Drive of two plugged monitor wells on Legend Lane.


Photograph 12: View to the northeast from the intersection of Memorial Drive and the West Sam Houston Parkway feeder road of the Chevron LPST site at 12860 Memorial Drive.

ESA I Memorial Drive between West Sam Houston Parkway and Tallowood Road, E102-15


Photograph 13: View to the west of plugged monitor wells and recovery well at the Chevron LPST site.


Photograph 14: View to the east of monitor wells at the Town and Country Village Shopping Center. These wells are associated with the release of VOCs from Your Valet Cleaners at 614 West Bough Lane.


Photograph 15: View to the southeast of one of the five monitor wells on the Bank of Texas property at 12764 Memorial Drive. A-1 Cleaners is in the background of the photograph and Memorial Drive is to the right.


Photograph 16: View to the east of A-1 Cleaners VCP and LPST site at 12754 Memorial Drive.

ESA I Memorial Drive between West Sam Houston Parkway and Tallowood Road, E102-15


Photograph 17: View to the northeast of a monitor well and remediation system at A-1 Cleaners.


Photograph 18: View to the north of MW Cleaners/Pro Cleaners VCP and IHWCA site at 12534 Memorial Drive.


Photograph 19: View to the south from Memorial Drive of the Memorial Green VCP site at 12601 Memorial Drive.


Photograph 20: View to the southwest of the former Conoco 43059 LPST site at 12699 Memorial Drive.


Photograph 21: View to the northeast of a monitor well on Broken Bough Drive. Memorial Drive is at the traffic light.


Photograph 22: View to the north of the Sprint PCS Tower IOP site at 608 West Bough Lane.


Photograph 23: View to the northeast of the former Your Valet Cleaners at 614 West Bough Lane (currently 650 West Bough Lane, Suite 100). Note the plugged monitor wells.


Photograph 24: View to the west-southwest of Gulf States Laundry Machinery Company at 12647 Memorial Drive. Dry cleaners were once located here. The address places this facility close to a recognized environmental condition whose exact location could not be determined (refer to Section 6.0 and Figure 5b).

ESA I Memorial Drive between West Sam Houston Parkway and Tallowood Road, E102-15


Photograph 25: View of 55-gallon drums, various size tanks, equipment, wooden pallets and scrap metal in the concrete loading area of Gulf States Laundry Machinery Company.


Photograph 26: View to the east of a monitor well associated with the former Conoco LPST site. The gasoline station would have been off the upper left corner of the photograph.


Photograph 27: View to the northeast of a monitor well at 12810 Butterfly Lane.

Phase I Environmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam fouston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

## APPENDIX $H$

## INTERVIEWS

| From: | Robert Metzger [rmetzger@avilesengineering.com](mailto:rmetzger@avilesengineering.com) |
| :---: | :---: |
| Sent: | Tuesday, April 7, 2015 11:48 AM |
| To: | 'Inettles@velaw.com' |
| Subject: | request for information A-1 dry cleaner release and Town \& Country historic dry cleaner release |
| Importance: | High |

tarry,
Thank you for speaking with me on the telephone. As discussed, please send map of monitor well locations and groundwater information for above sites.

Thank you.

Robert J. Metzger, P.G., CAPM
Aviles Engineering Corporation
5790 Windfern
Houston, TX 77041
Office: 713-895-7645
Fax: 713-895-7943
The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is prohibited. If you received this in error, please contact the sender and delete the material from any computer.

## Robert Metzger

## From:

Sent:
To:
Subject:

Nettles, Larry < Inettles@velaw.com>
Tuesday, April 7, 2015 5:10 PM
Robert Metzger
RE: request for information A-1 dry cleaner release and Town \& Country historic dry cleaner release

I am not sure why you need this information but the maps I sent you show the wells that are associated with A1 and have not been plugged. All other wells (not associated with A-1) have been plugged. There are no more Town \& Country Village wells - all were plugged within the past month.

The monitor wells are completed into a groundwater zone that is $25-30$ feet below ground surface. There may be shallower pockets of water in various locations, but the contaminated zone is at 25-30 feet BGS.

From: Robert Metzger [mailto:metzger@avilesengineering.com]
Sent: Tuesday, April 07, 2015 4:10 PM
To: Nettles, Larry
Subject: RE: request for information A-1 dry cleaner release and Town \& Country historic dry cleaner release
Larry,
Thank you for the map. It is very helpful. A few additional questions:

- Are all the wells shown associated with A-1 cleaners release or are some of them associated with the leak from the historic dry cleaners at Town and Country Village Shopping Center? If they are from two different sources would you let me know which monitor wells belongs to which release.
. When you say the groundwater is at 25 feet, is that the shallowest groundwater zone or just the one impacted? I know at some locations further east along Memorial Drive and north of Memorial Drive there are shallow water zones located around 16 feet.
*. If you have a table summary of water levels measured for each of the A-1 project and the Town and Country Project monitor wells I would appreciate it if you could send them to me.

Thanks,

Robert J. Metzger, P.G., CAPM
Aviles Engineering Corporation
5790 Windfern
Houston, TX 77041
Office: 713-895-7645
Fax: 713-895-7943

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is prohibited. If you received this in error, please contact the sender and delete the material from any computer.

From: Nettles, Larry Imailto:Inettles@velaw.com]
Sent: Tuesday, Apris 7, 2015 1:20 PM
To: Robert Metzger
Subject: RE: request for information A-1 dry cleaner release and Town \& Country historic dry cleaner release

## Robert:

A diagram showing the groundwater monitoring wells associated with the A-1 Cleaners facility is attached. There are two maps instead of one because the wells hold two different right-of-way permits from the City of Houston. All of the wells formerly associated with the Town \& Country Village site have been plugged and abandoned. The depth to groundwater is 25 feet below ground surface. Please let me know if you have any questions or need additional information.

Larry Nettles


From: Robert Metzger [mailo:rmetzger@avilesengineering.com]
Sent: Tuesday, April 07, 2015 11:48 AM
To: Nettles, Larry
Subject: request for information A-1 dry cleaner release and Town \& Country historic dry cleaner release Importance: High

Larry,
Thank you for speaking with me on the telephone. As discussed, please send map of monitor well locations and groundwater information for above sites.

Thank you.

Robert J. Metzger, P.G., CAPM
Aviles Engineering Corporation
5790 Windfern
Houston, TX 77041
Office: 713-895-7645
Fax: 713-895-7943
The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is prohibited. If you received this in error, please contact the sender and delete the material from any computer.

CONFDEATIALITY NOTICE: The information in this enajl may be confidential andior privileged. This enail is
intenced to be reviewed by only the individual or organization named above. If you are not the intended recipient or an
authorized representative of the intended recipient, you are nereby notified that any deview, dissemination or copying of this enail and its attachments, if any, of the information contained herein is prohibited. If you have received this
enail in eryox, please impdiately notify the sender by retum enail and delete this email from your system.

Thark You.




## Robert Metzger

| From: | Mintz, Andrew < Andrew.Mintz@bglip.com> |
| :---: | :---: |
| Sent: | Tuesday, April 7, 2015 11.02 AM |
| To: | rmetzger@avilesengineering.com |
| Subject: | Direct your question |

Mr. Metzger,
Your best bet would be to contact the firm's front desk at 713.223 .2300 . They hopefully will be able to direct your question to someone with more knowledge of your specific case. Sorry I could not be of more help.

Thanks,

Andrew Mintz | Bracewell \& Giuliani LLP
711 Louisiana Street, Suite 2300 | Houston, Texas | 77002-2770
T: $+1.713 .221 .1580 \mid F:+1.800 .404 .3970$
andrew.mintz@bglip.com | www.bglip.com

This Groundwater Monitoring Report has been reviewed and has been found to be in general conformance with standard industry professional practices.


## Table of Contents

Page
1.0 Introduction ..... 1
2.0 Sampling and Analytical Procedures ..... 2
2.1 Quality Assurance/Quality Control .....  2
2.2 Groundwater Sampling Procedures ..... 2
3.0 Groundwater Monitoring. ..... 4
3.1 Summary of Analytical Results ..... 4
4.0 Conclusions and Recommendations ..... 6

## Tables, Figures and Appendices

## Table 1 Summary of Groundwater Elevations

Table 2 . Summary of Chlorinated Organic Compounds in Groundwater
Table 3 Summary of Field Parameters

Figure 1 Site Location Map
Figure 2 . Proposed MSD Boundary with Groundwater Monitoring Locations
Figure $3 \quad \cdots$ Groundwater Gradient Map 1t GWBU-March 2011
Figure $4 \quad \cdots$ Groundwater Gradient Map 2 ${ }^{\text {nd }}$ GWBU-March 2011.
Figure 5 PCE Concentrations in $1^{\text {st }}$ GWBU
Figure 6 PCE Concentrations in $2^{\text {nd }}$ GWBU
Figure 7 TCE Concentrations in $1^{\text {st }}$ GWBU
Figure $8 \cdots$..... TCE Concentrations in $2^{\text {nd }}$ GWBU

Appendix A Field Sampling Forms
Appendix $8 \quad$ Laboratory Analytical Report and Data Usability Summary

### 1.0 Introduction

InControl Technologies, Inc was retained by Differential Development - 1994, Ltd. (the former property owner), to provide environmental consutting services at the Lantern Lane Shopping Center located at 12534 Memorial Drive in Houston, Harnis County, Texas. The property is currently owned by amREIT Lantern Lane, LP, a Texas limited partnership. Prior to the sale of the shopping center, it was discovered that the subject property had been impacted by historical dry cleaning operations. The subject property (Site) consists of approximately 6.75 -acres of land located west of downtown Houston, Harris County, Texas (Figure 1). The subject property is developed with a retail shopping center. The former Pro Cleaners operated a dry cleaning facility in the western portion of the Lantern Lane Shopping Center. Pro Cleaners ceased dry cleaning operations in June 2007.

On November 3, 2008, Differential submitted its MSD Application to the City of Houston. The City of Houston has assigned number 2008-012-DD to the application and has deemed the application administratively complete. The public meeting for this application was held on August 31, 2010. The public hearing for this application was held on September 16, 2010 with the City Council Committee on Development and Regulatory Affairs. The City of Houston has passed a Municipal Setting Designation Ordinance No. 2010-779 prohibiting the use of groundwater. We are continuing discussions with the municipalities and retail public utilises whose support and approval are required under the MSD Application.

The purpose of this report is to document the results of InControl Technologies' March 2011 groundwater monitoring event performed on March 21-23, 2011.

### 2.0 Sampling and Analytical Procedures

### 2.1 Quality Assurance/Quality Control

A formal Ouality Assurance program was implemented for sampling activities associated with groundwater monitoring at the site. Groundwater samples are being collected in conjunction with groundwater response action activities to evaluate groundwater conditions and monitor progress of the groundwater response action. The following procedures were followed to ensure that the quality of collected data is sufficient to evaluate groundwater quality at the site:

- Dedicated sampling equipment is used for each well to reduce the possible effects of cross contamination. This practice eliminates the need for collection of equipment rinsate blanks.
- Low-flow groundwater sampling devices are used to reduce the potential for constituent loss through volatilization.
- Samples are analyzed for chlorinated organic compounds by EPA Method 8260B. Sample Quantitation Limits (except where noted) are below the Tier 1 Protective Concentration Levels (PCLs).
- Analytical data are reviewed to ensure that the samples were properly preserved and analyzed within the required holding times.
- Laboratory quality control resuts are reviewed to verify proper instrument calibration and the accuracy of the analytical results.


### 2.2 Groundwater Sampling Procedures

Groundwater samples were collected from the thirty-four (34) monitoring wells associated with this site (Figure 1) in March 2011. Prior to sampling, groundwater elevations were measured (Table 1). Groundwater samples were collected using low-flow purging and sampling methodology as prescribed in TCEQ guidance. Dedicated polyethylene tubing was used to extract groundwater from the mid-point of the well screen. A peristaltic pump was used to purge the groundwater at a rate less than 0.1 liters per minute. The volume of purge water was evaluated through continuous monitoring of field parameters such as pH , specific conductance, temperature, dissolved oxygen (DO), turbidity, and oxidation-reduction potential (ORP) which are measured inside the low-flow cell during purging and sampling.

Samples for volatiles analyses were collected directly into 40 -mililititer vials and preserved with hydrochloric acid. A label that includes the sample identification number, the date and time of sample coliection, the sampler's name or initials, and other pertinent information as needed was placed on each sample container. Each sample was enclosed in a zipper-type plastic bag and placed on ice in a cooler for transport to ALS Laboratory Group (ALS) in Houston, Texas. Each set of samples (i.e., each cooler) was submitted to the laboratory under standard inControl Technologies chain of custody protocol. Field sampling forms for the March 2011 sampling event are included as Appendix $A$.

Analytical method 8260 B was used to analyze the groundwater samples for chlorinated orgarics. The target compounds for this site are perchloroethylene (PCE), frichtoroethylene (TCE), vinyl chloride (VC), cis-1,2-dichloroethylene (cis-DCE), and trans-1,2-dichloroethylene (trans-DCE).

Refer to Appendix B for a copy of the laboratory report and Data Usability Summary (DUS). The DUS contains a review of the quality assurance/quality control parameters described above.

### 3.0 Groundwater Monitoring

Thity-four (34) groundwater monitoring samples were collected at the site on March 21-23, 2011 using low-flow purging and sampling methods. Samples were obtained from monitoring wells $1-\mathrm{MW}-1$ through 1-MW-22 and 2-MW-1 through 1-MW-12, with the exception of 1-MW-3 and 1-MW-12, which were not able to be sampled. Purging and sampling was conducted with a peristaltic pump and dedicated tubing. Development was considered complete when field parameters of $\mathrm{pH}, \mathrm{SC}$, and temperature had stabilized, and water quality had improved. Groundwater quality parameter measurements for the March 2011 sampling events are included in Table 2. Well development and sampling forms are included in

## Appendix A.

Groundwater elevations were measured in all wells prior to the sampling event. The potentiometric surface maps for the March 2011 monitoring event are presented on Figures 3 and 4. The direction of groundwater flow in the first groundwater bearing unit has consistently remained to the southwest with a gradient of 0.006 feet/foot. The direction of groundwater flow in the second groundwater bearing unit has consistently remained to the southwest with a gradient of 0.001 feetfoot. Groundwater elevation data are summarized in Table 1.

Current analytical data results for the site constituents of concern are presented along with the cumulative results of the previous monitoring events in Table 2. Groundwater samples were analyzed for chlorinated solvents (tetrachloroethene and its daughter products) during these sampling events. Figure 5 and Figure 7 illustrate the distribution of COCs in the first groundwater bearing unit at the site. Figure 6 and Figure 8 illustrate the distribution of COCs in the second groundwater beaning unit at the site. Copies of the laboratory analytical and quality assurance reports from events completed during the current monitoring period are included in Appendix B.

Table 3 summarizes the field parameters for each monitoring well. The groundwater sample results. discussed herein were collected on March 21-23, 2011.

### 3.1 Summary of Analytical Results

Thirty-four (34) groundwater monitoring wells (1-MW-1 through 1-MW-22 and 2-MW-1 through 1-MW-12. with the exception of $1-\mathrm{MW}-3$ and $1-\mathrm{MW}-12$ ) were sampled during the March 2011 sampling event. A summary of results is contained in Table 2. The foliowing is a summary of the sampling results:

## First Groundwater Bearing Unit

- Tetrachloroethene and its daughter products (trichloroethene, cis-1,2-dichioroethene and vinyl chloride) are the primary VOCs detected on the subject property (Figures 5 and 7);
-...Tetrachloroethene was detected above its Tier 1 PCL of $0.005 \mathrm{mg} / \mathrm{L}$ in the groundwater samples collected from monitoring wells $1-\mathrm{MW}-5,1-\mathrm{MW}-9,1-\mathrm{MW}-11$, and $1-\mathrm{MW}-15$. The concentration of tetrachloroethene decreased in all groundwater monitoring wells except two during the March 2011 sampling event. The remaining wells reported stable concentrations within the historical range.
-. Trichloroethene was detected above its Tier 1 PCL of $0.005 \mathrm{mg} / \mathrm{L}$ in the groundwater samples obtained from monitor wells 1-MW-4, 1 MWW-5, 1-MW-9, and 1-MW-11.
- Cis-1,2-dichloroethene was detected above its Tier 1 PCL of $0.07 \mathrm{mg} / \mathrm{L}$ in the groundwater sample obtained from monitor well $1-\mathrm{MW}-4$. All other wells reported concentrations below the PCL .
- Trans-1,2-dichloroethene was not detected in any montoring well above its Tier 1 PCL of $0.1 \mathrm{mg} / \mathrm{L}$.
. Vinyl chloride was not detected above its Tier 1 PCL of $0.002 \mathrm{mg} / \mathrm{L}$ in any of the monitoring wells.


## Second Groundwater Bearing Unit

- Tetrachloroethene and its daughter products (trichloroethene, cis-1,2-dichloroethene and vinyl chloride) are the primary VOCs detected on the subject property (Figures 6 and 8);
- Tetrachloroethene was detected above its Tier 1 PCL of $0.005 \mathrm{mg} / \mathrm{L}$ in the groundwater samples coflected from monitoring wells $2-\mathrm{MW}-1,2-\mathrm{MW}-2,2-\mathrm{MW}-3,2-\mathrm{MW}-6,2-\mathrm{MW}-9,2-\mathrm{MW}-10$, and $2 \mathrm{MW}-$ 11. The concentration of tetrachtoroethene decreased in all groundwater monitoring welts.
- Trichloroethene was detected above its Tier 1 PCL of $0.005 \mathrm{mg} / \mathrm{L}$ in the groundwater samples obtained from monitor wells $2-\mathrm{MW}-1,2-\mathrm{MW}-2,2-\mathrm{MW}-6$, and $2 \mathrm{MW}-9$.
- Cis-1,2-dichloroethene was detected above its Tier 1 PCL of $0.07 \mathrm{mg} / \mathrm{L}$ in the groundwater sample. obtained from monitor weil $2-\mathrm{MW}-2$. All other wells reported concentrations below the PCL .
- Trans-1,2-dichloroethene was not detected in any monitoring well above its Tier 1 PCL of $0.1 \mathrm{mg} / \mathrm{L}$.
- Vinyl chloride was detected above its Tier 1 PCL of $0.002 \mathrm{mg} / \mathrm{L}$ in the groundwater sample obtained from monitor well $2-\mathrm{MW}-2$. All other wells reported concentrations below the PCl .

Overall decreased concentrations of ail COCs were noted in the groundwater samples collected during this event. Decreasing tetrachloroethene and trichloroethene concentrations have been noted in most of the monitoring wells. The presence of both cis-1,2-dichoroethene and vinyl chloride indicates that natural processes are actively attenuating the chlorinated solvents. The fact that cis-1,2-dichloroethene and vinyl chloride are not significantly accumulating indicates that the process is continuing through ethene.

### 4.0 Conclusions and Recommendations

The groundwater monitoring data provide a basis for the following conclusions:
-. The concentrations of tetrachloroethene and trichloroethene have decreased significantly within the PCLE zone.

- The potentiometric data indicate that direction of groundwater flow is to the southwest in both the first and second groundwater bearing units. This is generally consistent with the historic direction of groundwater flow.

Based on the conclusions listed above, inControf Technologies recommends annual sampling of the monitoring wells.

Table 1
Summary of Groundwater Elevations
Lantern Lane Shopping Center
12534 Memorial Drive
Houston, Texas
VCP No. 1714

| Monitoring Well | Top of Casing (feet) | Date | Depth to Water (feet) | Groundwater <br> Elevation (feet) |
| :---: | :---: | :---: | :---: | :---: |
| first Groundwater Bearing Unit |  |  |  |  |
| 1-MWV-1 | 98.12 | $\begin{gathered} 7 / 12 / 2006 \\ 10 / 3 / 2006 \\ 4 / 2 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{gathered} 18.11 \\ 18.39 \\ 47.33 \\ - \\ 17.89 \end{gathered}$ | $\begin{gathered} 80.01 \\ 79.73 \\ 80.79 \\ \text { NA } \\ 80.23 \end{gathered}$ |
| 1-MW-2 | 97.90 | $\begin{gathered} \hline 7 / 12 / 2006 \\ 10 / 3 / 2006 \\ 4 / 2 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 18.28 \\ & 18.56 \\ & 17.60 \\ & 16.70 \\ & 18.00 \end{aligned}$ | $\begin{aligned} & 79.62 \\ & 79.34 \\ & 80.30 \\ & 81.20 \\ & 79.90 \end{aligned}$ |
| $1-\mathrm{MW}-3$ | 98.78 | $4 / 7 / 2005$ $7 / 12 / 2006$ $10 / 3 / 2006$ $12 / 20 / 2006$ $4 / 2 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | 16.91 18.61 18.72 18.65 17.67 16.74 -- | $\begin{gathered} 81.87 \\ 80.17 \\ 80.06 \\ 80.13 \\ 81.11 \\ 82.04 \\ \text { NA } \end{gathered}$ |
| $1-\mathrm{MW}-4$ | 98.89 | $4 / 7 / 2005$ $7 / 12 / 2006$ $10 / 3 / 2006$ $12 / 19 / 2006$ $4 / 2 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | $\begin{aligned} & 17.65 \\ & 19.13 \\ & 19.30 \\ & 19.26 \\ & 18.30 \\ & 17.49 \\ & 18.81 \end{aligned}$ | $\begin{aligned} & 81.24 \\ & 79.76 \\ & 79.59 \\ & 79.63 \\ & 80.59 \\ & 81.40 \\ & 80.08 \end{aligned}$ |
| 1-MW-5 | 98.93 | $4 / 7 / 2005$ $7 / 12 / 2006$ $12 / 20 / 2006$ $4 / 2 / 2007$ $9 / 18 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | 16.81 18.69 18.72 17.74 17.41 16.77 18.23 | $\begin{aligned} & 82.12 \\ & 80.24 \\ & 80.21 \\ & 81.19 \\ & 81.52 \\ & 82.16 \\ & 80.70 \end{aligned}$ |
| 1-MW-6 $\ldots$ | 97.53 | $4 / 6 / 2005$ $7 / 12 / 2006$ $10 / 3 / 2006$ $12 / 19 / 2006$ $4 / 2 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | 16.06 17.70 17.84 17.75 16.86 15.97 17.35 | $\begin{aligned} & 81.47 \\ & 79.83 \\ & 79.69 \\ & 79.78 \\ & 80.67 \\ & 81.56 \\ & 80.18 \end{aligned}$ |

Table
Summary of Groundwater Elevations Lantern Lane Shopping Center 12534 Memorial Drive

Houston, Texas
VCP No. 1714

| Monitoring Well | Top of Casing (feet) | Dave | Depth to Water (feet) | Groundwater Elevation (feet) |
| :---: | :---: | :---: | :---: | :---: |
| 1-MW-7 | 98.50 | $\begin{gathered} 7 / 12 / 2006 \\ 10 / 3 / 2006 \\ 4 / 2 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{array}{r} - \\ \cdots \quad 18.02 \\ \hdashline 16.89 \\ 15.66 \\ 17.32 \end{array}$ | $\begin{gathered} \text { NA } \\ 80.48 \\ 81.61 \\ 82.84 \\ 81.18 \end{gathered}$ |
| 1-MW-8 | 98.40 | $4 / 7 / 2005$ $7 / 12 / 2006$ $10 / 3 / 2006$ $4 / 2 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | -- $\ddots 18.35$ 17.32 16.37 15.66 17.85 | NA 80.05 81.08 82.03 82.74 80.55 |
| 1-MW-9 | $98.22$ | $4 / 6 / 2005$ $7 / 12 / 2006$ $10 / 3 / 2006$ $12 / 20 / 2006$ $4 / 2 / 2007$ $9 / 18 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | 17.44 18.86 19.05 19.83 18.07 17.22 17.39 18.62 | $\begin{aligned} & \hline 80.78 \\ & 79.36 \\ & 79.17 \\ & 78.39 \\ & 80.15 \\ & 81.00 \\ & 80.83 \\ & 79.60 \end{aligned}$ |
| 1-MW-10 | 98.20 | $\begin{gathered} 4 / 6 / 2005 \\ 7 / 12 / 2006 \\ 10 / 3 / 2006 \\ 4 / 2 / 2007 \\ 9 / 17 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 17.13 \\ & 18.50 \\ & 18.80 \\ & 17.83 \\ & 17.24 \\ & 17.08 \\ & 18.35 \end{aligned}$ | $\begin{aligned} & 81.07 \\ & 79.70 \\ & 79.40 \\ & 80.37 \\ & 80.96 \\ & 81.12 \\ & 79.85 \end{aligned}$ |
| 1-MW-11 | 97.65 | $\begin{gathered} 4 / 6 / 2005 \\ 7 / 12 / 2006 \\ 10 / 3 / 2006 \\ 4 / 2 / 2007 \\ 9 / 17 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | 16.61 18.00 18.30 17.25 16.34 16.54 17.84 | $\begin{aligned} & 81.04 \\ & 79.65 \\ & 79.35 \\ & 80.40 \\ & 81.31 \\ & 81.11 \\ & 79.81 \end{aligned}$ |
| 1-MW-12 | 99,35 $\ldots$ | $\begin{gathered} \hline 7 / 12 / 2006 \\ 12 / 18 / 2006 \\ 4 / 2 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{gathered} 18.95 \\ 18.90 \\ 17.98 \\ -- \\ - \end{gathered}$ | $\begin{gathered} \hline 80.40 \\ 80.45 \\ 81.37 \\ \text { NA } \\ \text { NA } \end{gathered}$ |

Table 1
Summary of Groundwater Elevations
Lantern Lane Shopping Center
12534 Memorial Drive
Houston, Texas
VCP No. 1714

| finonitoring Well | Top of Casing (feet) | Date | Depth to Water (feet) | Groundwater Elevation (feet) |
| :---: | :---: | :---: | :---: | :---: |
| 1-MW-13 | 98.39 | $\begin{gathered} 7 / 12 / 2006 \\ 10 / 3 / 2006 \\ 4 / 2 / 2007 \\ 9 / 17 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | 18.51 18.77 17.86 17.00 17.04 18.35 | $\begin{aligned} & 79.88 \\ & 79.62 \\ & 80.53 \\ & 81.39 \\ & 81.35 \\ & 80.04 \end{aligned}$ |
| 1 -MW-14 | $97.67$ | $\begin{gathered} 7 / 12 / 2006 \\ 10 / 3 / 2006 \\ 12 / 19 / 2006 \\ 6 / 21 / 2007 \\ 4 / 2 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | 18.50 18.78 18.76 18.78 17.79 18.11 18.37 | $\begin{aligned} & 79.17 \\ & 78.89 \\ & 78.91 \\ & 78.89 \\ & 79.88 \\ & 79.56 \\ & 79.30 \end{aligned}$ |
| 1-MW-15 .. | 96.79 | $7 / 12 / 2006$ $10 / 3 / 2006$ $12 / 20 / 2006$ $6 / 21 / 2007$ $4 / 2 / 2007$ $9 / 18 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | 18.24 18.49 18.49 18.04 17.56 16.85 17.05 18.10 | $\begin{aligned} & 78.55 \\ & 78.30 \\ & 78.30 \\ & 78.75 \\ & 79.23 \\ & 79.94 \\ & 79.74 \\ & 78.69 \end{aligned}$ |
| 1-MW-16 | 97.03 | $\begin{gathered} 12 / 20 / 2006 \\ 4 / 2 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 18.30 \\ & 17.62 \\ & 18.06 \\ & 18.02 \end{aligned}$ | $\begin{aligned} & 78.73 \\ & 79.41 \\ & 78.97 \\ & 79.01 \end{aligned}$ |
| 1-MW-17 | 98.29 | $\begin{gathered} 9 / 13 / 2006 \\ 4 / 2 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 18.46 \\ & 17.68 \\ & 16.73 \\ & 18.03 \end{aligned}$ | $\begin{aligned} & 79.83 \\ & 80.61 \\ & 81.56 \\ & 80.26 \end{aligned}$ |
| 1-MW-18 | $96.59 \ldots$ | $9 / 13 / 2006$ $10 / 3 / 2006$ $6 / 21 / 2007$ $4 / 2 / 2007$ $3 / 3 / 2008$ $3 / 21 / 2011$ | 17.66 17.79 17.81 16.81 16.10 17.37 | $\begin{aligned} & 78.93 \\ & 78.80 \\ & 78.78 \\ & 79.78 \\ & 80.49 \\ & 79.22 \end{aligned}$ |
| 1-MW-19 | $96.51$ | $\begin{gathered} 9 / 13 / 2006 \\ 10 / 3 / 2006 \\ 12 / 19 / 2006 \\ 4 / 2 / 2007 \\ 9 / 18 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 18.73 \\ & 18.86 \\ & 18.81 \\ & 18.05 \\ & 17.56 \\ & 17.71 \\ & 18.58 \end{aligned}$ | $\begin{aligned} & 77.78 \\ & 77.65 \\ & 77.70 \\ & 78.46 \\ & 78.95 \\ & 78.80 \\ & 77.93 \end{aligned}$ |

Table 1
Summary of Groundwater Elevations
Lantern Lane Shopping Center
12534 Memorial Drive
Houston, Texas
VCP No. 1714

| Monitoring Well | Top of Casing (feet) | Date | Depth to Water (feet) | Groundwater <br> Elevation (feet) |
| :---: | :---: | :---: | :---: | :---: |
| 1-MW 20 | 96.11 | 12/19/2006 | 18.74 | 77.37 |
|  |  | 6/21/2007 | 17.88 | 78.23 |
|  |  | 4/2/2007 | 18.08 | 78.03 |
|  |  | 9/47/2007 | 17.75 | 78.36 |
|  |  | 3/3/2008 | 17.74 | 78.37 |
|  |  | 3/21/2011 | 18.51 | 77.60 |
| 1-MW-21 | 95.74 | 12/20/2007 | 18.79 | 76.95 |
|  |  | 6/21/2007 | 17.70 | 78.04 |
|  |  | 4/2/2007 | 17.91 | 77.83 |
|  |  | 9/12/2007 | 17.29 | 78.45 |
|  |  | 3/3/2008 | 17.54 | 78.20 |
|  |  | 3/21/2011 | 18.53 | 77.21 |
| 1-MW-22 | 96.13 | 12/20/2007 | 18.60 | 77.53 |
|  |  | 6/21/2007 | 17.42 | 78.71 |
|  |  | 4/2/2007 | 17.70 | 78.43 |
|  |  | 9/12/2007 | 16.98 | 79.15 |
|  |  | 3/3/2008 | 17.23 | 78.90 |
|  |  | 3/21/2011 | 18.35 | 77.78 |
| Second Groundwater Bearing Unit |  |  |  |  |
| $2-\mathrm{NW} \sim 1$ | 98.58 | 7/12/2006 | 28.07 | 70.51 |
|  |  | 2/5/2007 | 26.89 | 71.69 |
|  |  | 3/19/2007 | 26.90 | 71.68 |
|  |  | 3/28/2007 | 26.69 | 71.89 |
|  |  | 4/2/2007 | 26.63 | 74.95 |
|  |  | 8/24/2007 | 25.42 | 73.16 |
|  |  | 10/1/2007 | 25.98 | 72.60 |
|  |  | 11/7/2007 | 26.63 | 71.95 |
|  |  | 3/3/2008 | 25.43 | 73.15 |
|  |  | 3/21/2011 | 26.96 | 71.62 |
| 2-MW-2 | 98.15 | 7/12/2006 | 27.88 | 70.27 |
|  |  | 10/3/2006 | 27.79 | 70.36 |
|  |  | 2/5/2007 | 26.30 | 71.25 |
|  |  | 3/19/2007 | 27.34 | 70.81 |
|  |  | 3/28/2007 | 26.62 | 71.53 |
|  |  | 4/2/2007 | 26.46 | 71.69 |
|  |  | 8/24/2007 | 25.32 | 72.83 |
|  |  | 10/1/2007 | 25.81 | 72.34 |
|  |  | 11/7/2007 | 26.44 | 71.71 |
|  |  | 3/3/2008 | 25.34 | 72.81 |
|  |  | 3/21/2011 | 26.74 | 71.41 |

Table 1
Summary of Groundwater Elevations
Lantern Lane Shopping Center
12534 Memorial Drive
Houston, Texas
VCP No. 1714

| Monitoring Well | Top of Casing (feet) | Date | Depth to Water (feet) | Groundwater Elevation (feet) |
| :---: | :---: | :---: | :---: | :---: |
| 2-MW-3 | 96.88 | $\begin{aligned} & 3 / 19 / 2007 \\ & 3 / 28 / 2007 \\ & 4 / 2 / 2007 \\ & 8 / 24 / 2007 \\ & 10 / 1 / 2007 \\ & 11 / 7 / 2007 \\ & 3 / 3 / 2008 \\ & 3 / 21 / 2011 \end{aligned}$ | 25.80 25.42 25.35 24.22 24.71 25.35 24.23 25.64 | $\begin{aligned} & 71.08 \\ & 71.46 \\ & 71.53 \\ & 72.66 \\ & 72.17 \\ & 71.53 \\ & 72.65 \\ & 71.24 \end{aligned}$ |
| 2-MW-4 | 96.27 | $\begin{aligned} & 3 / 19 / 2007 \\ & 3 / 28 / 2007 \\ & 4 / 2 / 2007 \\ & 8 / 24 / 2007 \\ & 10 / 1 / 2007 \\ & 11 / 7 / 2007 \\ & 3 / 3 / 2008 \\ & 3 / 21 / 2011 \end{aligned}$ | 27.25 24.73 24.67 23.72 24.14 24.69 23.78 24.96 | $\begin{aligned} & 69.02 \\ & 71.54 \\ & 71.60 \\ & 72.55 \\ & 72.13 \\ & 71.58 \\ & 72.49 \\ & 71.31 \end{aligned}$ |
| 2-MW-5 | 98.68 | $\begin{gathered} 3 / 19 / 2007 \\ 3 / 28 / 2007 \\ 4 / 2 / 2007 \\ 8 / 24 / 2007 \\ 10 / 1 / 2007 \\ 11 / 7 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 27.65 \\ & 27.00 \\ & 26.93 \\ & 25.81 \\ & 26.32 \\ & 26.98 \\ & 25.82 \\ & 27.25 \end{aligned}$ | $\begin{aligned} & 71.03 \\ & 71.68 \\ & 71.75 \\ & 72.87 \\ & 72.36 \\ & 71.70 \\ & 72.86 \\ & 71.43 \end{aligned}$ |
| 2-MW-6 | 96.01 | $\begin{gathered} 8 / 24 / 2007 \\ 10 / 1 / 2007 \\ 11 / 7 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 23.29 \\ & 23.71 \\ & 24.07 \\ & 23.50 \\ & 24.54 \end{aligned}$ | $\begin{aligned} & 72.72 \\ & 72.30 \\ & 71.94 \\ & 72.51 \\ & 71.47 \end{aligned}$ |
| 2-MW-7 | 95.12 | $\begin{gathered} 10 / 1 / 2007 \\ 11 / 7 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & 18.45 \\ & 30.01 \\ & 29.82 \\ & 31.25 \end{aligned}$ | $\begin{aligned} & 76.67 \\ & 65.11 \\ & 65.30 \\ & 63.87 \end{aligned}$ |
| 2-MW-8 | 97.62 | $\begin{gathered} 11 / 7 / 2007 \\ 3 / 3 / 2008 \\ 3 / 21 / 2017 \end{gathered}$ | $\begin{aligned} & 26.04 \\ & 24.83 \\ & 26.35 \end{aligned}$ | $\begin{aligned} & 71.58 \\ & 72.79 \\ & 71.27 \end{aligned}$ |

Table 1
Summary of Groundwater Elevations
Lantern Lane Shopping Center
12534 Memorial Drive
Houston, Texas
VCP No. 1714

| Monitoring <br> Well | Top of Casing <br> (feet) | Date | Depth to Water <br> (feet) | Groundwater <br> Elevation (feet) |
| :--- | :---: | :---: | :---: | :---: |
| $2-\mathrm{MW}-9$ | 96.16 | $3 / 3 / 2008$ | 23.83 | 72.33 |
|  |  | $3 / 21 / 2011$ | 24.99 | 71.17 |
| $2-\mathrm{MW}-10$ | 96.19 | $3 / 3 / 2008$ | 24.96 | 71.23 |
|  |  | $3 / 21 / 2011$ | 25.04 | 71.15 |
| 2-MW-11 | 96.21 | $3 / 3 / 2008$ | 29.48 | 66.73 |
|  |  | $3 / 21 / 2011$ | 30.07 | 66.14 |
| $2 \mathrm{MW}-12$ | 96.09 | $3 / 3 / 2008$ | 18.12 | 77.97 |
|  |  | $3 / 21 / 2011$ | 19.13 | 76.96 |

Table 2
Summary of Chlorianted Compounds in Groundwater Lantern Lane Shopping Center

Houston, Texas
VCP No. 1714

| Monitoring Well | Sample Date | $\begin{gathered} \text { PCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { TCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \hline \text { cis-1,2-DCE } \\ (m g / L) \end{gathered}$ | $\begin{gathered} \hline \text { trans-1,2-DCE } \\ (\mathrm{m} / \mathrm{g} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { VC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { 1,1,-DCE } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tier $1{ }^{\sigma W}$ GW $_{\text {lrg }}$ Critical PCL without MSD |  | 0.005 | 0.005 | 0.07 | 0.1 | 0.002 | 0.007 |
| Tier $1{ }^{\text {NTI }} \mathbf{G W}_{\text {In }}$ with | Critical PCL D | 330 | 160 | 16,000 | 10,000 | 3.6 | 980 |
| First Groundwater Bearing Unit |  |  |  |  |  |  |  |
| 1-MWN-1 | $\begin{gathered} \hline 2 / 18 / 2004 \\ 4 / 4 / 2006 \\ 3 / 6 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{aligned} & <0.00043 \\ & <0.0005 \\ & <0.0005 \\ & <0.0006 \end{aligned}$ | $\begin{gathered} <0.0007 \\ 0.00081 \mathrm{~J} \\ <0.0007 \\ <0.0005 \end{gathered}$ | $<0.00074$ $<0.0005$ $<0.0005$ $<0.0005$ | $\begin{aligned} & <0.00063 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{gathered} <0.00079 \\ <0.006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} <0.00053 \\ <0.006 \\ <0.0006 \\ <0.0005 \end{gathered}$ |
| 1-MW-2 | $\begin{gathered} \hline 2 / 18 / 2004 \\ 4 / 4 / 2006 \\ 4 / 3 / 2007 \\ 3 / 6 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{gathered} \hline<0.00043 \\ 0.00096 \mathrm{~J} \\ 0.0016 \mathrm{~J} \\ 0.0024 \mathrm{~J} \\ 0.0031 \mathrm{~J} \end{gathered}$ | $\begin{gathered} <0.0007 \\ <0.0007 \\ 0.00086 \mathrm{~J} \\ 0.0014 \mathrm{~J} \\ 0.0021 \mathrm{~J} \end{gathered}$ | $\begin{gathered} <0.00074 \\ <0.0005 \\ <0.0005 \\ 0.00061 \mathrm{~J} \\ 0.0023 \mathrm{~J} \end{gathered}$ | $\begin{aligned} & <0.00063 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{gathered} <0.00079 \\ <0.006 \\ <0.006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} <0.00053 \\ <0.006 \\ 0.00098 \mathrm{~J} \\ 0.0025 \mathrm{~J} \\ 0.0024 \mathrm{~J} \end{gathered}$ |
| 1-MW-3 | $\begin{gathered} \hline 2 / 18 / 2004 \\ 3 / 10 / 2004 \\ 4 / 7 / 2005 \\ 4 / 4 / 2006 \\ 7 / 7 / 2006 \\ 10 / 4 / 2006 \\ 12 / 20 / 2006 \\ 4 / 3 / 2007 \\ 3 / 8 / 2008 \end{gathered}$ | 0.0037 0.0029 J $<0.00043$ 0.0084 0.0130 0.0040 J 0.0032 J 0.0023 J $<0.0005$ | $\begin{aligned} & \hline 0.120 \\ & 0.110 \\ & 0.063 \\ & 0.180 \\ & 0.150 \\ & 0.110 \\ & 0.062 \\ & 0.060 \\ & 0.037 \end{aligned}$ | $\begin{aligned} & 0.059 \\ & 0.063 \\ & 0.044 \\ & 0.066 \\ & 0.070 \\ & 0.061 \\ & 0.043 \\ & 0.082 \\ & 0.072 \end{aligned}$ | 0.015 0.021 0.019 0.019 0.020 0.022 0.017 0.036 0.036 | $\begin{gathered} <0.00079 \\ \mathbf{0 . 0 0 1 1} \mathrm{~J} \\ <0.00079 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \end{gathered}$ | 0.0008 J 0.00089 J $<0.00053$ $<0.0006$ $<0.0006$ $<0.0006$ 0.00070 J 0.00085 J $<0.0006$ |
| 1-MW-4 | $4 / 28 / 2004$ $4 / 5 / 2005$ $4 / 7 / 2005$ $4 / 4 / 2006$ $7 / 7 / 2006$ $10 / 4 / 2006$ $12 / 19 / 2006$ $4 / 3 / 2007$ $3 / 11 / 2008$ $3 / 23 / 2011$ | $\begin{gathered} <0.00043 \\ 0.00108 \\ 0.0012 \mathrm{~J} \\ <0.0005 \\ 0.0025 \mathrm{~J} \\ <0.0005 \\ <0.0005 \\ <0.0005 \\ 0.0017 \mathrm{~J} \\ <0.0006 \end{gathered}$ | $\quad 0.011$ $\mathbf{0 . 2 7 2}$ 0.220 $<0.0007$ 0.0014 J $<0.0007$ $<0.0007$ $<0.0007$ 0.200 0.015 | $\begin{aligned} & \hline 0.091 \\ & 0.227 \\ & 0.190 \\ & 0.045 \\ & 0.033 \\ & 0.023 \\ & 0.020 \\ & 0.059 \\ & 0.110 \\ & 0.140 \end{aligned}$ | 0.026 0.0381 0.037 0.013 0.007 0.0046 J 0.0046 0.016 0.038 0.039 | 0.0039 $\mathbf{0 . 0 2 8 8}$ $\mathbf{0 . 0 1 1 0}$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $\mathbf{0 . 0 0 7 1}$ $\mathbf{0 . 0 0 1 8} \mathbf{~ J}$ | $\begin{gathered} <0.00053 \\ \mathrm{ND} \\ 0.0015 \mathrm{~J} \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ 0.0067 \\ <0.0005 \end{gathered}$ |
| 1-MW-5 | $4 / 28 / 2004$ $4 / 6 / 2005$ $4 / 7 / 2005$ $4 / 4 / 2006$ $7 / 6 / 2006$ $10 / 4 / 2006$ $12 / 20 / 2006$ $4 / 4 / 2007$ $9 / 18 / 2007$ $3 / 6 / 2008$ $3 / 21 / 2011$ | 0.520 0.610 0.470 0.230 0.170 0.170 0.088 0.230 0.061 0.510 0.200 | 0.160 0.180 0.130 0.110 0.075 0.100 0.050 0.093 0.110 0.130 0.094 | $\begin{aligned} & 0.046 \\ & 0.050 \\ & 0.029 \\ & 0.021 \\ & 0.018 \\ & 0.024 \\ & 0.013 \\ & 0.022 \\ & 0.034 \\ & 0.038 \\ & 0.046 \end{aligned}$ | 0.0034 0.0037 0.0019 0.0016 J 0.0013 J 0.0019 J 0.0014 J $<0.0006$ 0.0012 J 0.0014 J 0.0033 J | $\begin{gathered} <0.00079 \\ N D \\ <0.00079 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} <0.00053 \\ N D \\ <0.00053 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ |

Table 2
Summary of Chlorianted Compounds in Groundwater
Lantern Lane Shopping Center
Houston, Texas
VCP No. 1714

| Monitoring Well | $\begin{gathered} \hline \text { Sample } \\ \text { Date } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { PCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { TCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \hline \text { cis-1,2-DCE } \\ \text { (mg/L) } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { trans-1,2-DCE } \\ \text { (mg/L) } \end{array}$ | $\begin{gathered} \text { VC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} 1,1, \cdot \mathrm{DCE} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tier $1^{{ }^{\text {WW}}}{ }^{\text {GW }}{ }_{\text {Img }}$ Critical PCL without MSD |  | 0.005 | 0.005 | 0.07 | 0.1 | 0.002 | 0.007 |
| Tier $1^{\text {N }}{ }^{\text {GW }}$ with | Critical PCL SD | 330 | 160 | 16,000 | 10,000 | 3.6 | 980 |
| 1-MW-6 | $\begin{gathered} \hline 4 / 30 / 2004 \\ 4 / 30 / 2004 \\ 4 / 5 / 2006 \\ 4 / 6 / 2006 \\ 4 / 4 / 2006 \\ 7 / 7 / 2006 \\ 10 / 4 / 2006 \\ 12 / 19 / 2006 \\ 4 / 3 / 2007 \\ 3 / 5 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | 0.0083 0.0076 ND 0.0013 J 0.00076 J 0.0026 J 0.0018 J 0.00065 J 0.0026 J 0.0019 J 0.00062 J | 2.10 $<0.0007$ ND $<0.0007$ $<0.0007$ $<0.0007$ $<0.0007$ $<0.0007$ $<0.0007$ $<0.0007$ $<0.0005$ | $\begin{gathered} \text { ND } \\ <0.00074 \\ \text { ND } \\ <0.00074 \\ <0.0005 \\ <0.0005 \\ <0.0005 \\ <0.0005 \\ <0.0005 \\ <0.0005 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \mathrm{ND} \\ <0.00063 \\ \mathrm{ND} \\ <0.00063 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \mathrm{ND} \\ <0.00079 \\ \mathrm{ND} \\ <0.00079 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \hline \text { ND } \\ <0.00053 \\ \mathrm{ND} \\ <0.00053 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ |
| 1-MWW-7 | $\begin{gathered} 4 / 30 / 2004 \\ 4 / 30 / 2004 \\ 4 / 4 / 2006 \\ 3 / 11 / 2008 \\ 3 / 21 / 2011 \end{gathered}$ | $\begin{gathered} 0.0010 \\ <0.00043 \\ <0.0005 \\ <0.0005 \\ <0.0006 \end{gathered}$ | ND $<0.0007$ $<0.0007$ $<0.0007$ $<0.0005$ | $\begin{gathered} \text { ND } \\ <0.00074 \\ <0.0005 \\ <0.0005 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \mathrm{ND} \\ <0.00063 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \text { ND } \\ <0.00079 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \text { ND } \\ <0.00053 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ |
| 1-MW-8 | $4 / 30 / 2004$ $4 / 30 / 2004$ $4 / 7 / 2005$ $4 / 4 / 2006$ $4 / 4 / 2007$ $3 / 5 / 2008$ $3 / 21 / 2011$ | $\begin{gathered} \hline 0.0140 \\ 0.0130 \\ 0.0012 \mathrm{~J} \\ 0.0010 \\ 0.0024 \mathrm{~J} \\ 0.0015 \mathrm{~J} \\ 0.0010 \mathrm{~J} \end{gathered}$ | $\begin{aligned} & \hline 0.0011 \\ & <0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0005 \end{aligned}$ | $\begin{gathered} \hline \text { ND } \\ <0.00074 \\ <0.00074 \\ <0.0005 \\ <0.0005 \\ <0.0005 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \hline \text { ND } \\ <0.00063 \\ <0.00063 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \hline \text { ND } \\ <0.00079 \\ <0.00079 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \hline \text { ND } \\ <0.00053 \\ <0.00053 \\ <0.0008 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ |
| 1-MW-9 | $2 / 25 / 2005$ $2 / 25 / 2005$ $4 / 5 / 2005$ $4 / 6 / 2005$ $4 / 5 / 2006$ $7 / 7 / 2006$ $10 / 4 / 2006$ $12 / 20 / 2006$ $4 / 5 / 2007$ $9 / 18 / 2007$ $3 / 7 / 2008$ $3 / 23 / 2011$ | $\begin{aligned} & \hline 4.480 \\ & 2.700 \\ & 2.240 \\ & 2.700 \\ & 1.200 \\ & 1.900 \\ & 2.100 \\ & 1.300 \\ & 1.900 \\ & 2.300 \\ & 1.100 \\ & 2.700 \end{aligned}$ | 0.246 0.190 0.371 0.310 0.190 0.230 0.220 0.160 0.230 0.230 0.180 0.100 | 0.0645 0.054 0.0901 0.065 0.064 0.079 0.079 0.048 0.069 0.087 0.056 0.052 | ND 0.0075 ND 0.0065 0.0035 0.0044 J 0.0041 J 0.0034 J 0.0067 0.0079 0.0100 0.0021 J | ND $<0.00079$ ND $<0.00079$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ | ND $<0.00053$ ND $<0.00053$ $<0.0006$ $<0.0006$ $<0.0006$ 0.00093 J $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ |
| 1-MW-10 | 2/25/2005 <br> 2/25/2005 <br> 4/5/2005 <br> 4/6/2005 <br> 4/5/2006 <br> 7/28/2006 <br> 4/4/2007 <br> 9/17/2007 <br> 3/6/2008 <br> 3/22/2011 | 0.0555 0.035 0.00358 0.00211 J 0.0026 J 0.0033 J 0.0011 J 0.0017 J 0.0021 J 0.0016 J | 0.0182 0.015 0.00329 0.0061 0.042 0.033 0.0085 $<0.0007$ 0.0042 J 0.0050 J | $\begin{gathered} 0.0445 \\ 0.046 \\ 0.00863 \\ 0.028 \\ 0.023 \\ 0.021 \\ 0.015 \\ 0.0094 \\ 0.037 \\ 0.015 \end{gathered}$ | 0.0209 0.019 0.0015 0.012 0.0064 0.0060 0.0047 J 0.0024 J 0.013 0.0050 J | $\begin{gathered} \hline 0.00103 \\ <0.00079 \\ \mathrm{ND} \\ <0.00079 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | ND $<0.00053$ ND $<0.00053$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ |

Table 2
Summary of Chlorianted Compounds in Groundwater
Lantern Lane Shopping Center
Houston, Texas
VCP No. 1714

| Monitoring Well | Sample Date | $\begin{aligned} & \hline \text { PCE } \\ & \text { (mg/L) } \end{aligned}$ | $\begin{gathered} \text { TCE } \\ \text { (mg/L) } \end{gathered}$ | $\begin{gathered} \hline \text { cis-1,2-DCE } \\ \text { (mg/L) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { trans-1,2-DCE } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{VC} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { 1,1,-DCE } \\ \text { (mg/L) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tier $1^{{ }^{0 W} \text { GW }}$ | $\begin{aligned} & \text { ritical PCL } \\ & \text { ASD } \end{aligned}$ | 0.005 | 0.005 | 0.07 | 0.1 | 0.002 | 0.007 |
| $\begin{array}{r}\text { Tier } 1{ }^{010} \mathrm{GW}_{\text {In }} \\ \text { with } \\ \hline\end{array}$ | Critical PCL S | 330 | 160 | 16,000 | 10,000 | 3.6 | 980 |
| 1-MW-11 | $2 / 25 / 2005$ $2 / 25 / 2005$ $4 / 5 / 2005$ $4 / 8 / 2005$ $4 / 4 / 2006$ $7 / 27 / 2006$ $10 / 4 / 2006$ $4 / 5 / 2007$ $9 / 17 / 2007$ $3 / 5 / 2008$ $3 / 21 / 2011$ | $\begin{aligned} & \hline 0.528 \\ & 0.340 \\ & 0.322 \\ & 0.30 \\ & 0.28 \\ & 3.50 \\ & 2.30 \\ & 0.81 \\ & 0.90 \\ & 0.78 \\ & 0.15 \end{aligned}$ | 0.060 0.049 0.102 0.12 0.044 0.24 0.16 0.086 0.078 0.21 0.03 | $\begin{gathered} \hline 0.0202 \\ 0.017 \\ 0.0242 \\ 0.025 \\ 0.014 \\ 0.11 \\ 0.095 \\ 0.024 \\ 0.018 \\ 0.037 \\ 0.008 \end{gathered}$ | 0.00984 0.0079 0.0071 0.016 0.0032 J 0.006 0.0044 J 0.0028 J 0.0064 0.015 0.0032 J | $\begin{gathered} \mathrm{ND} \\ <0.00079 \\ \mathrm{ND} \\ <0.00079 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ | $\begin{gathered} \text { ND } \\ <0.00053 \\ \text { ND } \\ <0.00053 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0006 \\ <0.0005 \end{gathered}$ |
| 1-MW-12 | $4 / 4 / 2006$ $7 / 6 / 2006$ $12 / 18 / 2006$ $3 / 11 / 2008$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0007 \end{aligned}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \end{aligned}$ |
| 1-MW-13 | $\begin{gathered} \hline 7 / 13 / 2006 \\ 7 / 27 / 2006 \\ 4 / 4 / 2007 \\ 9 / 17 / 2007 \\ 3 / 5 / 2008 \\ 3 / 22 / 2011 \end{gathered}$ | $\begin{gathered} \hline 0.019 \\ 0.016 \\ 0.044 \\ 0.098 \\ 0.055 \\ <0.0006 \end{gathered}$ | $\begin{gathered} 0.0035 \mathrm{~J} \\ 0.0023 \mathrm{~J} \\ 0.0085 \\ 0.016 \\ 0.0085 \\ <0.0005 \end{gathered}$ | $\begin{gathered} 0.0047 \\ 0.0029 \mathrm{~J} \\ 0.016 \\ 0.031 \\ 0.011 \\ <0.0005 \end{gathered}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0008 \\ & <0.0005 \end{aligned}$ | $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ | $\begin{gathered} <0.0006 \\ <0.0006 \\ <0.0006 \\ 0.0033 \mathrm{~J} \\ 0.0034 \mathrm{~J} \\ 0.0061 \end{gathered}$ |
| 1-MW-14 | $\begin{gathered} 7 / 13 / 2006 \\ 7 / 28 / 2006 \\ 12 / 19 / 2006 \\ 4 / 3 / 2007 \\ 3 / 6 / 2008 \\ 3 / 22 / 2011 \end{gathered}$ | 0.011 0.012 0.0034 J 0.0063 0.0028 J 0.0019 J | $\begin{aligned} & \quad<0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |
| 1-MW-15 | $7 / 14 / 2006$ $10 / 5 / 2006$ $12 / 20 / 2006$ $4 / 4 / 2007$ $9 / 18 / 2007$ $3 / 4 / 2008$ $3 / 22 / 2011$ | $\begin{aligned} & 0.082 \\ & 0.066 \\ & 0.034 \\ & 0.039 \\ & 0.059 \\ & 0.058 \\ & 0.029 \end{aligned}$ | $\begin{gathered} \hline 0.0019 \mathrm{~J} \\ 0.0013 \mathrm{~J} \\ 0.00082 \mathrm{~J} \\ 0.00095 \mathrm{~J} \\ 0.0012 \mathrm{~J} \\ 0.0011 \mathrm{~J} \\ <0.0005 \end{gathered}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ | $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ | $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ |
| 1-MW-16 | $\begin{gathered} 1 / 2012006 \\ 4 / 3 / 2007 \\ 9 / 18 / 2007 \\ 3 / 6 / 2008 \\ 3 / 22 / 2011 \end{gathered}$ | $\begin{gathered} 0.0016 \mathrm{~J} \\ 0.00098 \mathrm{~J} \\ 0.00065 \mathrm{~J} \\ 0.0013 \mathrm{~J} \\ 0.00081 \mathrm{~J} \end{gathered}$ | $<0.0007$ $<0.0007$ $<0.0007$ 0.0054 0.0092 | $\begin{gathered} \hline 0.00069 \mathrm{~J} \\ 0.0024 \mathrm{~J} \\ 0.024 \\ 0.037 \\ 0.048 \end{gathered}$ | $\begin{gathered} <0.0006 \\ <0.0006 \\ 0.0053 \\ 0.0099 \\ 0.0150 \end{gathered}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |
| 1-MW-17 | $\begin{aligned} & 9 / 13 / 2006 \\ & 3 / 12 / 2008 \\ & 3 / 21 / 2011 \end{aligned}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0006 \end{aligned}$ | $\begin{aligned} & <0.0007 \\ & <0.0007 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & \quad<0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & \hline<0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |

Table 2
Summary of Chlorianted Compounds in Groundwater Lantern Lane Shopping Center

Houston, Texas
VCP No. 1714

| Monitoring Well | Sample Date | $\begin{gathered} \hline \text { PCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \begin{array}{c} \text { TCE } \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { cis-1,2-DCE } \\ \text { (mg/L) } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { trans-1,2-DCE } \\ (\mathrm{m} g / \mathrm{L}) \end{array}$ | $\begin{gathered} \text { VC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} 1,1,-\mathrm{DCE} \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tier $1^{\text {cW }}$ GW $_{\text {leg }}$ Critical PCL without MSD |  | 0.005 | 0.005 | 0.07 | 0.1 | 0.002 | 0.007 |
| Tier $1^{\text {AT }} \mathrm{GW}_{1}$ with | Critical PCL SD | 330 | 160 | 16,000 | 10,000 | 3.6 | 980 |
| 1-MWW-18 | $\begin{gathered} 9 / 13 / 2006 \\ 4 / 2 / 2007 \\ 3 / 4 / 2008 \\ 3 / 22 / 2011 \end{gathered}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0006 \end{aligned}$ | $\begin{aligned} & \hline<0.0007 \\ & <0.0007 \\ & <0.0007 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0008 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |
| 1-MW-19 | $9 / 13 / 2006$ $10 / 5 / 2006$ $12 / 19 / 2006$ $4 / 4 / 2007$ $9 / 18 / 2007$ $3 / 5 / 2008$ $3 / 22 / 2011$ | 0.025 0.030 0.0088 0.018 0.0031 J 0.0038 J 0.0029 J | $\begin{gathered} \hline 0.0025 \mathrm{~J} \\ 0.0032 \mathrm{~J} \\ 0.0017 \mathrm{~J} \\ 0.0033 \mathrm{~J} \\ 0.00084 \mathrm{~J} \\ <0.0007 \\ <0.0005 \end{gathered}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ |
| 1-MW-20 | $12 / 19 / 2006$ $4 / 2 / 2007$ $6 / 21 / 2007$ $9 / 17 / 2007$ $12 / 12 / 2007$ $3 / 12 / 2008$ $3 / 22 / 2011$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \\ & 0.0007 \mathrm{~J} \\ & <0.0005 \\ & <0.0005 \\ & <0.0006 \end{aligned}$ | $<0.0007$ $<0.0007$ $<0.0007$ $<0.0007$ $<0.0007$ $<0.0007$ $<0.0005$ | $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0006$ $<0.0005$ |
| 1-MW-21 | $12 / 20 / 2006$ $1 / 9 / 2007$ $4 / 3 / 2007$ $6 / 21 / 2007$ $9 / 12 / 2007$ $12 / 12 / 2007$ $3 / 11 / 2008$ $3 / 23 / 2011$ | 0.012 0.0028 J 0.0088 0.0015 J 0.0037 J 0.0021 J 0.0022 J $=0.0006$ | $\begin{gathered} \hline 0.002 \mathrm{~J} \\ 0.0022 \mathrm{~J} \\ 0.0023 \mathrm{~J} \\ 0.0024 \mathrm{~J} \\ 0.003 \mathrm{~J} \\ 0.0034 \mathrm{~J} \\ 0.0031 \mathrm{~J} \\ 0.0012 \mathrm{~J} \end{gathered}$ | $\begin{aligned} & 0.0013 \mathrm{~J} \\ & 0.0019 \mathrm{~J} \\ & 0.0019 \mathrm{~J} \\ & 0.0021 \mathrm{~J} \\ & 0.0028 \mathrm{~J} \\ & 0.0027 \mathrm{~J} \\ & 0.0025 \mathrm{~J} \\ & 0.0013 \mathrm{~J} \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |
| 1-MW-22 | $12 / 18 / 2006$ $4 / 3 / 2007$ $6 / 21 / 2007$ $9 / 12 / 2007$ $12 / 12 / 2007$ $3 / 12 / 2008$ $3 / 22 / 2011$ | $\begin{gathered} \hline 0.0026 \mathrm{~J} \\ 0.0076 \\ 0.0042 \mathrm{~J} \\ 0.0023 \mathrm{~J} \\ 0.0037 \mathrm{~J} \\ 0.003 \mathrm{~J} \\ <0.0006 \end{gathered}$ | 0.0014 J 0.0011 J 0.00087 J $<0.0007$ $<0.0007$ $<0.0007$ $<0.0005$ | $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ $<0.0005$ |  | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |

Table 2
Summary of Chlorianted Compounds in Groundwater Lantem Lane Shopping Center

Houston, Texas
VCP No. 1714

| Monitoring Well | Sample Date | $\begin{gathered} \text { PCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \hline \text { TCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \hline \text { cis-1,2-DCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \hline \text { trans-1,2-DCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \mathrm{VC} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} 1,1,-D C E \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tier $1^{\text {GW }}{ }^{\text {GW }}{ }_{\text {mg }}$ Critical PCL without MSD |  | 0.005 | 0.005 | 0.07 | 0.1 | 0.002 | 0.007 |
| $\begin{gathered} \text { Tier } 1^{\text {AII }} \mathrm{GW}_{\text {Inth-v }} \text { Critical PCL } \\ \text { with MSD } \end{gathered}$ |  | 330 | 160 | 16,000 | 10,000 | 3.6 | 980 |
| Second Groundwater Bearing Unit |  |  |  |  |  |  |  |
| 2-MW-1 | 7/12/2006 | 0.055 | <0.0007 | <0.0005 | <0.0006 | $<0.0006$ | $<0.0006$ |
|  | 4/5/2007 | 0.064 | 0.0012 J | <0.0005 | $<0.0006$ | $<0.0006$ | <0.0006 |
|  | 9/12/2007 | 0.056 | 0.0065 | <0.0005 | $<0.0006$ | $<0.0006$ | <0.0006 |
|  | 3/7/2008 | 0.056 | 0.0078 | $<0.0005$ | 0.00093 J | $<0.0006$ | <0.0006 |
|  | 3/21/2011 | 0.007 | 0.0150 | 0.012 | 0.0022 J | $<0.0005$ | <0.0005 |
| 2-MW-2 | 7/12/2006 | 1.6 | 0.009 | 0.002 | <0.0006 | <0.0006 | $<0.0006$ |
|  | 7/27/2006 | 1.3 | 0.0085 | 0.0021 J | <0.0006 | $<0.0006$ | <0.0006 |
|  | 4/5/2007 | 1.8 | 0.017 | 0.0021 J | <0.0006 | <0.0006 | $<0.0006$ |
|  | 9/18/2007 | 1.7 | 0.43 | 0.0099 | 0.0035 J | <0.0006 | $<0.0006$ |
|  | 3/712008 | 1.5 | 0.13 | 0.47 | 0.0056 | <0.0006 | 0.00077 J |
|  | 3/23/2011 | 0.25 | 0.45 | 1.30 | 0.0025 J | 0.0027 | 0.0025 J |
| 2-MW-3 | 3/19/2007 | 0.086 | 0.0013 J | $<0.0005$ | <0.0006 | $<0.0006$ | <0.0006 |
|  | 4/5/2007 | 0.083 | 0.0015 J | <0.0005 | $<0.0006$ | $<0.0006$ | <0.0006 |
|  | 9/18/2007 | 0.081 | 0.0039 J | $<0.0005$ | $<0.0006$ | <0.0006 | <0.0006 |
|  | 3/4/2008 | 0.087 | 0.0061 | $<0.0005$ | 0.003 J | $<0.0006$ | <0.0006 |
|  | 3/22/2011 | 0.020 | $<0.0005$ | $<0.0005$ | 0.0010 J | $<0.0005$ | <0.0005 |
| 2-MW-4 | 3/19/2007 | 0.024 | 0.003 J | 0.00066 J | <0.0006 | $<0.0006$ | <0.0006 |
|  | 4/5/2007 | 0.021 | 0.0029 J | $<0.0005$ | <0.0006 | <0.0006 | <0.0006 |
|  | 9/18/2007 | 0.014 | 0.0023 J | $<0.0005$ | $<0.0006$ | <0.0006 | $<0.0006$ |
|  | 10/26/2007 | 0.015 | 0.0025 J | $<0.0005$ | <0.0006 | $<0.0006$ | <0.0006 |
|  | 3/4/2008 | 0.016 | 0.0016 J | <0.0005 | <0.0006 | $<0.0006$ | $<0.0006$ |
|  | 3/22/2011 | 0.0048 J | 0.0013 J | $<0.0005$ | <0.0005 | $<0.0005$ | $<0.0005$ |
| 2-MW-5 | 3/19/2007 | 0.038 | 0.0017 J | $<0.0005$ | $<0.0006$ | <0.0006 | $<0.0006$ |
|  | 4/5/2007 | 0.033 | 0.0013 J | $<0.0005$ | $<0.0006$ | <0.0006 | $<0.0006$ |
|  | 9/18/2007 | 0.055 | 0.0034 J | 0.0071 | $<0.0006$ | <0.0006 | <0.0006 |
|  | $3 / 7 / 2008$ | 0.023 | 0.0091 | 0.032 | $<0.0006$ | <0.0006 | <0.0006 |
|  | 3/23/2011 | 0.0012 J | 0.0045 J | 0.035 | $<0.0005$ | $<0.0005$ | <0.0005 |
| 2-MW-6 | 8/9/2007 | 0.14 | 0.0036 J | 0.00069 J | $<0.0006$ | $<0.0006$ | <0.0006 |
|  | 8/23/2007 | 0.15 | 0.0035 J | 0.00072 J | <0.0006 | $<0.0006$ | <0.0006 |
|  | 12/13/2007 | 0.15 | 0.0036 J | 0.00072 J | <0.0006 | $<0.0006$ | <0.0006 |
|  | 3/5/2008 | 0.16 | 0.0039 J | 0.00068 J | $<0.0006$ | $<0.0006$ | <0.0006 |
|  | 3/22/2011 | 0.047 | 0.013 | $<0.0005$ | $<0.0005$ | $<0.0005$ | $<0.0005$ |
| 2-MW-7 | 10/2/2007 | $<0.0005$ | <0.0007 | $<0.0005$ | $<0.0006$ | <0.0006 | $<0.0006$ |
|  | 3/12/2008 | 0.0042 J | <0.0007 | $<0.0005$ | $<0.0006$ | <0.0006 | $<0.0006$ |
|  | 3/23/2011 | 0.0046 J | $<0.0005$ | $<0.0005$ | <0.0005 | <0.0005 | $<0.0005$ |
| 2-MW-8 | 11/7/2007 | $<0.0005$ | $<0.0007$ | <0.0005 | <0.0006 | <0.0006 | $<0.0006$ |
|  | 3/11/2008 | $<0.0005$ | $<0.0007$ | <0.0005 | $<0.0006$ | <0.0006 | $<0.0006$ |
|  | 3/22/2011 | <0.0006 | $<0.0005$ | <0.0005 | $<0.0005$ | $<0.0005$ | $<0.0005$ |

Table 2
Summary of Chlorianted Compounds in Groundwater
Lantern Lane Shopping Center
Houston, Texas
VCP No. 1714

| Monitoring Well | Sample Date | $\begin{gathered} \text { PCE } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \hline \text { TCE } \\ \text { (mg/L) } \end{gathered}$ | $\begin{gathered} \hline \text { Cis-1,2-DCE } \\ \text { (mg/L) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { trans-1,2-DCE } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{VC} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} 1,1,-D C E \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tier $1^{\text {GW }} \mathrm{GW}_{\text {ng }}$ Critical PCL without MSD |  | 0.005 | 0.005 | 0.07 | 0.1 | 0.002 | 0.007 |
| $\begin{gathered} \hline \text { Tier } 1^{\text {AII }} \text { GW }_{\text {Inh-v }} \text { Critical PCL } \\ \text { with MSD } \end{gathered}$ |  | 330 | 160 | 16,000 | 10,000 | 3.6 | 980 |
| 2-MW-9 | $\begin{gathered} \hline 12 / 13 / 2007 \\ 12 / 21 / 2007 \\ 3 / 12 / 2008 \\ 3 / 22 / 2011 \end{gathered}$ | $\begin{aligned} & \hline 0.021 \\ & 0.026 \\ & 0.033 \\ & 0.030 \end{aligned}$ | $\begin{aligned} & \hline 0.0051 \\ & 0.0055 \\ & 0.0069 \\ & 0.0550 \end{aligned}$ | $\begin{gathered} \hline 0.0011 \mathrm{~J} \\ 0.0014 \mathrm{~J} \\ 0.0011 \mathrm{~J} \\ 0.024 \end{gathered}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & \hline<0.0006 \\ & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |
| 2-MW-10 | $\begin{gathered} \hline 3 / 4 / 2008 \\ 3 / 23 / 2011 \end{gathered}$ | $\begin{aligned} & 0.0490 \\ & 0.0110 \end{aligned}$ | $\begin{aligned} & \hline 0.0020 \mathrm{~J} \\ & 0.0016 \mathrm{~J} \end{aligned}$ | $\begin{aligned} & \hline<0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0005 \end{aligned}$ |
| 2-MW-11 | $\begin{aligned} & 2 / 20 / 2008 \\ & 3 / 12 / 2008 \\ & 3 / 23 / 2011 \end{aligned}$ | $\begin{aligned} & 0.012 \\ & 0.015 \\ & 0.012 \end{aligned}$ | $\begin{aligned} & <0.0007 \\ & <0.0007 \\ & 0.0012 \mathrm{~J} \end{aligned}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & 0.0014 \mathrm{~J} \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |
| 2-MW-12 | $\begin{aligned} & 2 / 20 / 2008 \\ & 3 / 12 / 2008 \\ & 3 / 23 / 2011 \end{aligned}$ | $<0.0005$ <br> $<0.0005$ <br> $<0.0006$ | $\begin{aligned} & <0.0007 \\ & <0.0007 \\ & <0.0005 \end{aligned}$ | $<0.0005$ $<0.0005$ $<0.0005$ | $<0.0006$ $<0.0006$ $<0.0005$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \\ & <0.0005 \end{aligned}$ |  |
| Wastewater Samples |  |  |  |  |  |  |  |
| Sewer-1 | 3/16/2004 | 0.290 | 0.0130 | <0.00074 | $<0.00063$ | $<0.00079$ | $<0.00053$ |
| Sewer 040806 | 4/6/2006 | $<0.0005$ | 0.020 | $<0.0005$ | $<0.0006$ | <0.0006 | <0.0006 |
| Sewer 070706 | 7/7/2006 | <0.025 | $<0.035$ | <0.025 | <0.03 | $<0.03$ | $<0.03$ |
| Sewer | $\begin{gathered} 12 / 20 / 2006 \\ 4 / 3 / 2007 \end{gathered}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{gathered} 1.1 \\ <0.0007 \end{gathered}$ | $\begin{aligned} & <0.0005 \\ & <0.0005 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \end{aligned}$ | $\begin{aligned} & <0.0006 \\ & <0.0006 \end{aligned}$ | $\begin{aligned} & \quad<0.0006 \\ & <0.0006 \\ & \hline \end{aligned}$ |
| Bold Bold | alues exceed th xceeds ${ }^{6 \pi} \mathrm{GW}_{\mathrm{m}}$ | boratory CL | quantitatio |  |  |  |  |






Limited Phase II Environmental Site Assessment

## Local Drainage Project - 12522 Old Oaks <br> WBS No. M-000126-0063-3

TABLE 2
Summary of B-1 through B-4 Soil Sample Analyses

| SOIL BORING ${ }^{1}$ | Sample Interval, feet below pavement surface | CONTAMINANT CONCENTRATIONS ABOVE SAMPLE DETECTION LIMITS IN SOIL SAMPLES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4-Isopropyl- toluene (Cymene), $\mathrm{mg} / \mathrm{kg}^{2}$ | Methyl Ethyl Ketone (MEK), $\mathrm{mg} / \mathrm{kg}$ | Toluene, mg/kg | Tetrachloroethylene, mg/kg | 1,2-Dibromoethane (Ethylene Dibromide), mg/kg |
| B-1 | 1 to 2 | 0.117 | 0.025 | 0.003 | $U^{3}$ | U |
| B-2 | 10 to 11 | U | U | U | U | U |
| B-3 | 1 to 2 | U | U | U | 0.022 | U |
| B-4 | 10 to 11 | U | U | U | U | $0.003{ }^{4}$ |
| TCEQ TRRP Tier 1 Protective Concen (PCLs), ${ }^{{ }^{6 W}}{ }_{\text {Soil }}^{\text {lng }}$ | sidential Soil tion Levels | 230 | 29.0 | 8.20 | 0.050 | 0.00021 |
| ${ }^{1}$ Refer to Boring Location Map in Figures 1 and 2 ${ }^{2} \mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram or parts per million. <br> ${ }^{3} \mathrm{U}=$ Undetected at Sample Detection Limit <br> ${ }^{4}$ Bolded concentration exceeds Residential ${ }^{\text {GW }}$ Soil ${ }_{10}$ PCL |  |  |  |  |  |  |

Phase I Euvironmental Site Assessment for TIRZ 17 Reconstruction of Memorial Drive Between West Sam Houston Parkway and 100 Feet East of Tallowood Road, Houston, Texas

## APPENDIXI

## RESUME

ENGINEERING CORP.
POSITION

EDUCATION

## REGISTRATIONS

EXPERIENCE
Conducted Phase I and Phase IL ESAs for the City of Houston Department of Public Works and Engineering Projects:

- Gessner Water Main Replacement
- Water Line Replacement in Imperial Valley Area Package II
- Water Line Replacement in Antoine Forest Area
- Riverwood Estates No. 1 Lift Station and Force Main
- Harvey Wilson Drive and Armour Drive Reconstruction
- Riverwood Estates, John Alber, and Garden Oaks Phase II Arcas Water Line Replacements
Jensen Drive Pump Station Valve Box and Pipeline
- Polk Street Underpass Storm Water Inlet Replacement
- Park Row Road from State Highway 6 to Eldridge Parkway
- Heights Area Waterline Replacement
- West Little York Street Reconstruction from Deep Forest Drive to TC Jester Boulcvard
- Bastrop Street Sanitary Sewer Line
- Northgate Regional Lift Station and Force Main
- Corder Subdivision Water Main Replacement
- Bennington Subdivision Water Main Replacement
- Westheimer North Water Main Replacement
- Lockwood Street Paving from Bennington Boulevard to Tidwell Road
- Huntington Water Main Replacement
- McCarty \#1 Lift Station and Force Main Replacement
- Parker Road Water Main Replacement
- Kingspoint Road Sanitary Sewer Line
- Alabonson Area Water Line Replacment
- Mangum Manor Areas Water Line Replacment

EXPERIENCE, continued

ROBERT J. METZGER, PG, CAPM, page 2

Phase II Environmental Site Assessment: Toyota Center, Houston, Texas: Conducted comprehensive Phase 1I ESA of a sixblock site to assess and delineate contaminated soil and groundwater prior to construction of the Toyota Center.

Houston Airport Systems Hobby Airport Taxiway H Phase II Environmental Site Assessment: Conducted Phasc 11 ESA for expansion of Taxiway H at Hobby Airport, which included advancement of soil borings, installation of temporary groundwater monitoring wells and soil and groundwater sampling. Prepared Plase 11 ESA report.

Environmental Assessment: Houston Police Department Firing Range at George Bnsh Intercontinental Airport: Oversight of drilling soil borings and installation of monitor wells during decommissioning of tiring range to determine soil and groundwater disposal options and site cleanup. Prcparcd and edited assessment report.

Environmental Soil Sampling and Analysis Woodhouse Paving Phase 1 aud Il Project Areas at Port of Houston Authority: During the Phase I Project, surface concrete was cored, a soil boring was conducted from the soil surface to 18 inches below the surface, and a soil sample was collccted from each boring at 20 locations. During the Phase 11 Project, six soil borings were drilled to 4 feet below the ground surface (bgs), two borings were drilled to 10 fect bgs, and two borings were drilled to 30 feet bgs. One to two soil samples were collected from each boring for a total of 14 samples. Each of the soil samples collected during Phase 1 and Phase ll was submitted to a commercial laboratory for analyses of the following potential environmental contaminants:

- Total petroleum hydrocarbons
- Total RCRA metals
- Volatile and semi volatile organic compounds
- Polychlorinated biphenyls (PCBs)
- Herbicides and Pesticides

Following analysis, a report was prepared for each project area describing the soil boring and sampling procedures, and the results of the laboratory analyses. Concentrations of contaminant in the soil samples were compared to applicable TCEQ standards.

# Response to Public Questions/Comments Regarding Memorial Drive Mobility \& Drainage Improvements Project T-1738A 

| No. | Abbreviated Questions | Response |
| :---: | :---: | :---: |
| 1 | Could you please tell me when are we (Memorial area residents) going to get Detention Ponds? Spring Branch has so many and we have none. | TIRZ is currently actively pursuing underground and surface detention opportunities south of IH10. |
| 2 | Where will $10 \times 10$ culverts be placed. Will the culverts under Memorial Drive from W153 be expanded? | 10-FT x 10-FT box culverts will be placed directly under the Memorial Drive pavement within the project limits. We are evaluating the W153 Memorial crossing to determine if improvements are justified and can be completed without causing adverse impacts downstream. The final preliminary engineering report will be posted on the TIRZ 17 website once approved by the City. |
| 3 | What happens to the bridge on Memorial? | We are evaluating the W153 Memorial crossing to determine if improvements are justified and can be completed without causing adverse impacts downstream. The final preliminary engineering report will be posted on the TIRZ 17 website once approved by the City. |
| 4 | Does TIRZ have in its possession any engineering study that demonstrates that Buffalo Bayou is capable of carrying more water than has been flowing into it so far during big rains? What if extra water causes flooding for folks downstream? | 1. TIRZ 17 doesn't have such a report. <br> 2. TIRZ 17 has no plans for additional runoff to W153 or Buffalo Bayou. The objective of this project was to maximize the box culverts under the roadway and construct restrictors to reduce flow to the W153 channel. HCFCD regulations require any drainage project discharging into receiving streams and bayous have no adverse impact on the system. This project will adhere to the regulatory standards. |
| 5 | What impact will your project have on the drainage situation for W153? - W153 is restricted at Memorial Drive. How will your work avoid making this situation worse than it already is?? Where will the water captured under memorial drive go? Into W153? | TIRZ 17 has no plans for additional runoff to W153. The objective of this project was to maximize the box culverts under the roadway and construct restrictors to reduce flow to the W153 channel. HCFCD regulations require any drainage project discharging into receiving streams and bayous have no adverse impact on the system. This project will adhere to the regulatory standards. The water will be detained in the large $10-\mathrm{Ft} \times 10-\mathrm{FT}$ boxes under the Memorial Drive pavement. |
| 6 | Median - How will side street traffic be able to turn left onto Memorial with medians blocking the road. Drainage - Why cant they put in $510 \times 10$ boxes across Memorial rather than 2. | 1. The median opening locations will be strategically placed throughout the corridor based on City of Houston Infrastructure Design Manual, traffic operations analysis, crash locations, geometrics and engineering judgment. The majority of the cross streets will have median openings. Traffic generated from the smaller driveways will have to drive to the adjacent median opening and make a U-turn. <br> 2. Adding additional rows of boxes will lead to conflicts with private (AT\&T and Center Point) and public (water and wastewater) utilities located throughout the corridor. The number of boxes is also impacted by traffic control phasing and construction methods. |
| 7 | Since you'll be digging up Memorial Drive at Tallowood, will the project put in a larger transit under Memorial for W-153? This is the lowest total cost option for the City as it deals with W153 | We are evaluating the W153 Memorial crossing to determine if improvements are justified and can be completed without causing adverse impacts downstream. The final preliminary engineering report will be posted on the TIRZ 17 website once approved by the City. |
| 8 | 100 to $150^{\prime}$ on side streets be modified to improve operations on Memorial. For instance right or left turn bays -West Bough -Intersections by Robert's China/ Convenience Store -Tallowood | The limits of the TIRZ improvements does not include any of the side streets. |
| 9 | Can you explain how the additional drainage will not affect W153 drainage under Memorial? You will have more water trying to get down W153 which by the limitation of no additional flow downstream of Memorial Dr means less water flow available to W153 from North of Memorial | TIRZ 17 has no plans for additional runoff to W153. We will either meet or reduce flow into W153. The objective of this project was to maximize the box culverts under the roadway and construct restrictors to reduce flow to the W153 channel. The proposed boxes will function by storing runoff currently reaching W153 and releasing it well after W153 recedes. HCFCD regulations require any drainage project discharging into receiving streams and bayous have no adverse impact on the system. This project will adhere to the regulatory standards. |
| 10 | 1. I've heard nothing tonight about "safe crossings" for children and other pedestrians crossing Memorial Dr to schools north of the roadway. Unacceptable. <br> 2. The stretch of Memorial Dr reconstruction from Kirkwood to Eldridge is bing funded 80\% by TXDOT and $20 \%$ by City of Houston taxpayers. the Tirz's project, estimated to cost approximately $\$ 15$ million to reconstruct Memorial Drive from Beltway 8 to Tallowood is being financed $100 \%$ by Houston taxpayer. It would appear that approximately $\$ 12$ million ( $80 \%$ of $\$ 15$ million) is being left on the table. Your thoughts? <br> 3. An 18 -foot curb face to curb face median/esplanade with 1-foot turning lane cuts would appear to be an acceptable configuration with less threat to future removal of esplanade to add more lanes in the future (think Gessner). <br> 4. Why no dedicated bike lanes as with the current Memorial Drive project between Kirkwood to Eldridge... same 100' Right of Way, by the way. <br> 5. Please consult the Energy Corridor's Mast Plan for intersections. the innovative design fives pedestrians and cyclists a "head start" ahead of vehicle traffic. | 1. Adding a raised median throughout the alignment will increase vehicular and pedestrian safety. The actual pedestrain crossings located at West Bough and BW Frontage Road will have accessible ramps, pedestrain signals and audible push buttons. No mid-block crossings between West Bough and the eastern limits are proposed at this time. <br> 2. TIRZ 17 is perpetually seeking to leverage funding through project cost sharing. Presently TIRZ 17 is investigating other fund leveraging opportunities including Federal grants. <br> 3. Reducing median width to 18 -FT leads to the following safety issues: <br> - Passenger cars having difficulties making U-turns in a single maneuver. This will lead to vehicles stopping \& reversing in the travel lane to be able to make the U-turn which is not safe. - Passenger cars waiting in the median opening will protrude into adjacent traffic lane (Typical length of a standard passenger car is 19-FT, pickup trucks tend to be longer). <br> 4. It's safer to have a shared used path because you are separating vehicular traffic from bike traffic. In addition, the City had indicated that they do not want on-street dedicated bike lanes. <br> 5. Will do. Thank you for your suggestion. |
| 11 | 1. Can Councilman Pennington explain what was done from Kirkwood to Eldridge there are no esplanades or turn lanes. <br> 2. Is there a phase 2 or 3 to this proposed project? <br> 3. Why did the Barryknoll work take more than a year and then part had to be redone? <br> 4. How about a show of hands on the three alternatives. | 1. CM Pennington's office to address. This TIRZ 17 portion of Memorial Drive is from BW 8 Frontage road to Tallowood. <br> 2. To minimize traffic impacts, the project will be constructed in multiple phases. The phases will be determined during detail design. <br> 3. Barryknoll Lane Construction project encountered several delays outside the purview of anyone representing the TIRZ. These delays were primarily due to the contractor having to demobilize in association with AT\&T's conflict. <br> 4. The recommended alternative is to improve the roadway to a curb and gutter concrete section with $24-\mathrm{FT}$ wide raised medians to improve safety, mobility and access management along the project corridor. |
| 12 | 1. Please consider a 18 ' to $20^{\prime}$ median with trees between peds \& sidewalks on both sides. <br> 2. Please put the extra feet from a smaller median into separated ped and bikeway. <br> 3. Consider either box detention under wider sidewalk or using permeable sidewalks with open bottomed detention system. | 1 \& 2. Reducing median width to 18-FT leads to the following safety issues: <br> - Passenger cars having difficulties making U-turns in a single maneuver. This will lead to vehicles stopping \& reversing in the travel lane to be able to make the U-turn which is not safe. - Passenger cars waiting in the median opening will protrude into adjacent traffic lane (Typical length of a standard passenger car is 19-FT, pickup trucks tend to be longer). <br> Wider sidewalks will be placed on both sides of the roadway to promote a pedestrian friendly environment. Trees and landscaping amenities design will commence during the detail design phase of the project. <br> 3. We will evaluate during the preliminary engineering phase. |

## Response to Public Questions/Comments Regarding Memorial Drive Mobility \& Drainage Improvements Project T-1738A

| No. | Abbreviated Questions | Response |
| :---: | :---: | :---: |
| 13 | Will you listen to CM Pennington's suggestion no to expand Memorial Drive beyond existing 4 lanes. Will you follow TIRZ 18 plan to limit to 4 lanes with few left hand turn lanes TIRZ 18 should be an example to TIRZ 17 as to how to respect the residents and to work with them. Please understand that families live in the Memorial neighborhoods for the \#1 school district \#2 established residential amenities \#3 safety. Nobody move to Memorial for the commercial offices and shops-Nobody. Please refrain from expanding Memorial Drive into the yards and demolishing private fences of residents AS TO BOX CULVERTS, expensive maintenance is required. You say you do not maintain. Who then? | The project objectives are as follows: <br> 1. Improve Safety \& Mobility <br> -The roadway will be improved to a curb and gutter concrete section with 24-FT wide raised medians to improve safety, mobility and access management along the project corridor. <br> -The roadway will also be reconstructed to meet current roadway geometric requirements. <br> - Left-turn bays will be added at median openings for safe queuing <br> - Traffic signals at BW 8 Frontage Road and West Bough Lane will be upgraded to meet current <br> City of Houston standards <br> - The 4-lane roadway configuration will not change. We do not plan to add any additional through lanes. <br> - No right-of-way acquisition will be needed except for a single $20^{\prime} \times 20^{\prime}$ corner clip at the Memorial Drive and West Bough intersection to accommodate traffic signal equipment and ADA pedestrian ramps. <br> 2. Improve Drainage <br> - The installation of dual 10-FT x 10-FT reinforced concrete box storm sewers will reduce overland flows to neighboring areas. <br> - Provide net detention of +10 -acre feet ( 3.3 million gallons) <br> - Reduce area flooding <br> - City will maintain the boxes, we are going through the City process for approval. We have met with the Drainage and Maintenance groups at the City and they are fully aware of the project. <br> 3. Improve Quality of Life <br> - Pedestrian-friendly environment <br> - Continuous, wider sidewalks <br> - Multi-use/shared-use paths <br> - Landscaping/trees within median <br> - Pedestrian lighting |
| 14 | Why put bicyclists in with pedestrians? Whey not make median $8^{\prime}-10^{\prime}$, reduce sidewalk width and have two separate 5 ' bike lanes at edge of road on both sides of Memorial? | Reducing median width to 8-10-FT leads to the following safety issues: <br> - Passenger cars having difficulties making U-turns in a single maneuver. This will lead to vehicles stopping \& reversing in the travel lane to be able to make the U-turn which is not safe. - Passenger cars waiting in the median opening will protrude into adjacent traffic lane (Typical width of a standard passenger car is 19-FT, pickup trucks tend to be longer). <br> It's safer to have a shared used path because you are separating vehicular traffic from bike traffic. In addition, the City has indicated that they do not want on-street dedicated bike lanes. |
| 15 | We think project should extend to Gessner. | Extension beyond the existing project limits requires action from the City of Houston. Extension to Gessner also requires coordination with the City of Bunker Hill as the portion of Memorial west of Gessner is within the City of Bunker Hill City Limits. |
| 16 | Wouldn't it make sense to extend the Memorial Drive Project - street and drainage - past Tallowood to Gessner? | Extension beyond the existing project limits requires action from the City of Houston. Extension to Gessner also requires coordination with the City of Bunker Hill as the portion of memorial west of Gessner is within the City of Bunker Hill City Limits. |
| 17 | How is drainage under Memorial of 153 being addressed? How is our quality of life being addressed when you are using our property + house as a holding pond? | We are evaluating the W153 Memorial crossing to determine if improvements are justified and can be completed without causing adverse impacts downstream. The final preliminary engineering report will be posted on the TIRZ 17 website once approved by the City. |
| 18 | Why are there no extra lanes planned? | The traffic counts do not warrant additional lanes. In addition, the City identifies Memorial Drive as a roadway that has sufficient width and does not need to be widened in the Marjor Thoroughfare and Freewy Plan (MTFP). |
| 19 | Does the City plan to take any property for eminent domain. If so - where? I live on corner of Tallowood \& Memorial | No right-of-way acquisition will be needed except for a single $20^{\prime} \times 20^{\prime}$ corner clip at the Memorial Drive and West Bough intersection to accommodate traffic signal equipment and handicap ramps |
| 20 | Why did the TIRZ stop where it did? Why not go to Gessner or even further? To W-151? | The project terminates at the existing TIRZ boundary limits. Extension beyond the existing project limits requires action from the City of Houston. Extension to Gessner also requires coordination with the City of Bunker Hill as the portion of memorial west of Gessner is within the City of Bunker Hill Limits. |
| 21 | If you go down to an 18 ft median would you be able to add dedicated bike lanes? | Reducing median width to 18-FT leads to the following safety issues: <br> - Passenger cars having difficulties making U-turns in a single maneuver. This will lead to vehicles stopping \& reversing in the travel lane to be able to make the U-turn which is not safe. - Passenger cars waiting in the median opening will protrude into adjacent traffic lane (Typical width of a standard passenger car is 19-FT, pickup trucks tend to be longer). In addition, the City has indicated that they do not want on-street dedicated bike lanes |
| 22 | Why does Gessner need to be a major thoroughfare? Isn't this what Beltway 8 is for? | The classification of Gessner as a Major Thoroughfare is not a function of TIRZ 17. The City of Houston determines the thoroughfare classification. The City uses several factors to classify streets into categories: length of road, existing and projected traffic volume, character of adjacent properties and possibility of expansion. |
| 23 | Are the box culverts closed end at W153? i.e., no water can go into W153? | Memorial Drive storm sewers discharge into W153 under the current conditions. The proposed storm sewer trunklines will discharge into W153 through restrictors that limit the flow to match or be below the existing flow rate. |
| 24 | I'm concerned that the water run off will cause flooding near Gessner and Briar Forest. | The proposed Memorial Drive improvements will remove runoff form the surface and store it in large underground storage boxes. The project will have no adverse impact on Gessner and Briar Forest. |
| 25 | What retention currently exists South of Memorial City within TIRZ17? Any? Could a block of older housing be purchase and underground detention be put in and either a park or new buildings be put in the same area? | TIRZ is actively pursuing underground and surface detention opportunities south of $\mathrm{IH}-10$. |

## Response to Public Questions/Comments Regarding Memorial Drive Mobility \& Drainage Improvements Project T-1738A

| No. | Abbreviated Questions | Response |
| :---: | :---: | :---: |
| 25 | 1. Memorial Drive between Gessner and the Beltway at times is a race track filled with speeders. What provisions are going to be made to make this very safe? <br> 2. The Memorial Green Project will collect water from the 15 acres and bring it to the NorthWest corner of the property. It then will go into an open ditch along Memorial and move West to ditch 153 which is a bottleneck. What are you going to do about this transition? | 1. The roadway will be improved to a curb and gutter concrete section with $24-\mathrm{FT}$ wide raised medians to improve safety, mobility and access management along the project corridor. The roadway will also be reconstructed to meet current roadway geometric requirements. Left-turn bays will be added at median openings for safe queuing. <br> 2. TIRZ 17 does not regulate, review or permit development plans. We are not involved in Memorial Green. Our project limits end at Tallowood, where we are transitioning to the existing roadway configuration of 4-lanes with a continuous left turn lane and tieing into the existing drainage system. |
| 26 | ALT 1=Most desirable <br> ALT 2= Too narrow median - not to Spec. 6' sidewalks unnecessary ALT 3=?? | Alternate 1 - Improving roadway to a curb and gutter concrete section with 30-FT wide raised medians. This alternate was not selected because it will impact a lot of properties that are currently encroaching into City's right-of-way. <br> Alternate 2 - Improving roadway to a curb and gutter concrete section with 24-FT wide raised medians. This alternate was the recommended one because it will mitigate impacts to properties that are currently encroaching into City's right-of-way. It will also increase safety and mobility throughout the corridor. Having raised medians with trees/landscaping also provides the quality of life component of the project. <br> Alternate 3 - Improving roadway to a curb and gutter concrete section with a middle continuous two way left turn lane. This alternate was not recommended because the middle lane creates conflicts and is not as safe at alternate 2. It also lacks the quality of life component. |
| 27 | Will (or can) a traffic signal be added at Boheme at Memorial Drive? Boheme is a major cutthrough street connecting Memorial Drive and Beltway 8. Traffic flow is significant. | Based on peak hour volumes, a traffic signal is not warranted at this intersection. However, the proposed median opening will allow for safer turning movements. |
| 28 | Do you plan to close Beltway 8 trunkline that drains run-off from Beltway $8 / \mathrm{I}-10$ south to Buffalo Bayou? Do you plan to redirect the entire trunkline east to W -153 via box culverts under Memorial Drive. | No, we will not impact or modify the BW 8 trunkline. A portion of the existing Memorial Drive project corridor drains to the BW 8 trunkline. We will maintain the same flow rate to the BW8 trunkline with the proposed project. We will install $2-10-\mathrm{FT} \times 10-\mathrm{FT}$ boxes under memorial without connecting them to the BW 8 trunkline. The proposed boxes will carry no flow from the BW 8 trunkline to W153. |
| 29 | Make median openings along Legend Lane so traffic doesn't have to make a U-turn at Somerset Place. | The median opening locations will be strategically placed throughout the corridor based on City of Houston Infrastructure Design Manual, traffic operations analysis, crash locations, geometrics and engineering judgment. The majority of the cross streets will have median opening. <br> We are currently in the preliminary engineering phase and evaluating the locations of the median openings. |
| 30 | Suggest having an 11' lane and either as 12 ' outside or $13^{\prime}$ outside lane so total paved width is 23 or 24 feet. | The latest City of Houston's Infrastructure Design Manual requires all lanes to be 11 feet wide. |
| 31 | Requesting Left Turn Bays at Memorial Drive and Legend Lane and object to any plan that puts additional drainage into W -153. | We are evaluating this as part of the preliminary engineering process. |
| 32 | 1. Space, trees, and plantings between the roadway and the sidewalk maximized. <br> 2. Suggest an 8 ' shared use path EB and WB. <br> 3. Median width should be a compromise of 20 feet. <br> 4. Are 11' lanes including / excluding the usable gutter pan in the outside lane. | 1. Landscaping amenities will be designed during the detail design phase. <br> 2. The final configuration of the shared used path is being evaluated during the preliminary engineering phase. <br> 3. Reducing median width to 20-FT leads to the following safety issues: <br> - Passenger cars having difficulties making U-turns in a singla maneuver. This will lead to vehicles stopping \& reversing in the travel lane to be able to make the U-turn which is not safe. - Passenger cars waiting in the median opening will protrude into adjacent traffic lane (Typical length of a standard passenger car is 19-FT, pickup trucks tend to be even longer). <br> 4. 11-Ft lanes are from face of curb to middle of lane line or stripe |
| 33 | Suggests improvement to Buffalo Bayou to deal with flooding. | HCFCD has jurisdiction on Buffalo Bayou. |
| 34 | 1. How will you provide replacement drainage. 2. The 100 ' ROW will require tree removal. | 1. The existing drainage infrastructure along Memorial Drive will be replaced with large concrete box trunklines to improve the risk of flooding in the area. <br> 2. To comply with City Ordinance, an Urban Forester will inventory and evaluate all the trees within the corridor and develop tree protection plans to minimize impacts to trees. |
| 35 | Right-of-way width is $90-\mathrm{ft}$ not $100-\mathrm{ft}$ | The City MTFP does show Memorial Drive, from Bunkerhill City Limits to West Belt as a 90 -foot right-of-way (ROW) section. <br> For our project limits, our Surveyor, Kuo \& Associates, developed the existing ROW lines at 100 feet width, per iron rods found out in the field. In addition, the HCAD maps show a varying width ROW ( $103^{\prime}-106^{\prime}$ ). In summary, we must proceed with the 100 -foot wide ROW based on ACTUAL iron rods found out in the field by our Registered Professional Land Surveyor (RPLS). |
| 36 | Do you plan to close the TxDot Beltway 8 trunkline that drains storm water run-off from Beltway $8 /$ Interstate 10 south to Buffalo Bayou? Do you plan to redirect this entire TxDot Beltway 8 trunkline east to W-153 via box culverts under Memorial Drive? I need an explanation | We are not changing any of the existing drainage patterns along Memorial Drive. What currently drains to the west towards BW 8 Frontage road will continue to do so in the proposed conditions and what currently drains to the east towards W153 will also continue to do so. <br> Our recommendation is to maintain flow rates from Memorial to the existing storm sewer trunk line beneath Beltway 8 . That is to say that some flow from Memorial is currently draining to the Beltway 8 trunk line and that same flow rate will be maintained in the proposed conditions. The Beltway 8 system will not be rerouted and no additional water from the Beltway 8 system will be conveyed to W153. <br> Large trunk lines are proposed as part of the Memorial Drive improvements. These large storm sewer boxes will provide relief for W153 by storing water that currently reaches W153 and allowing it to be discharged through a restrictor after W153 has lowered. The large boxes will not be connected to the Beltway 8 trunk line therefore no flow from the Beltway 8 system will be conveyed to W153. |


[^0]:    - CURRENT ACTMITY INFCRMAATION

[^1]:    $I_{\text {NT }}$ - Not Tested

[^2]:    
    
    
    NGE：Samples collected by hesource Engintering， 1 la ，，in 1985 and 1986 ．
    への的…

[^3]:    
    2）âblefevations：
    
    
    ＝－fippertad yajue 15 less than the detection liont．
    

[^4]:    Report Data Errors
    Statewide Links: Texas.gov I Texas Homeland Security I TRAIL Statewide Archive I Texas Veterans Portal

[^5]:    Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Security | Contact Us | Central Registry | Search Hints | Report Data Errors Statewide Links: Texas.gov I Texas Homeland Security | TRAIL Statewide Archive | Texas Veterans Portal
    8) 2002-2013 Texas Commission on Environmental Quality

[^6]:    
    Satewide Lirks: Texas.gov I Texas Homeland Security I TRAAL Stasemide Acthive I Texas Veterans Portal

[^7]:    Site Help | Disclaimer | Web Policies | Accessibility | Our Compact with Texans | TCEQ Homeland Sccurity | Contact Us | Central Registry | Search Hints | Report Data Errors
    Statewide Uinks: Te

    8 2002-2013 Texas Commission on Environmental Quality

[^8]:    Report Data Errors Report Data Errors
    Statewide Links: Te

[^9]:    [end of record]
    -close window-

